AN ADAPTIVE ALGORITHM for PDEs with RANDOM DATA

David Silvester

University of Manchester, United Kingdom

Key references:

Alex Bespalov, Catherine Powell and David Silvester Energy norm a posteriori error estimation for parametric operator equations, SIAM J. Scientific Computing, **36**, A339–A363, 2014. https://doi.org/10.1137/130916849

Alex Bespalov and David Silvester,

Efficient adaptive stochastic Galerkin methods for parametric operator equations, SIAM J. Scientific Computing, **38**, A2118–A2140, 2016. https://doi.org/10.1137/15M1027048

Motivating example (target model problem)

Find $u(\mathbf{x}, \mathbf{y})$ satisfying

$$\begin{aligned} &-\nabla\cdot\left(a(\mathbf{x},\mathbf{y})\,\nabla u(\mathbf{x},\mathbf{y})\right) &= f(\mathbf{x}) & \mathbf{x}\in D, \ \mathbf{y}\in\Gamma, \\ &u(\mathbf{x},\mathbf{y}) &= 0 & \mathbf{x}\in\partial D, \ \mathbf{y}\in\Gamma, \end{aligned} \tag{D}$$

where $D \subset \mathbb{R}^d$ (d = 2, 3), $\Gamma := \prod_{m=1}^{\infty} [-1, 1]$ and

$$a(\mathbf{x},\mathbf{y}) = a_0(\mathbf{x}) + \sum_{m=1}^{\infty} a_m(\mathbf{x}) y_m, \qquad \mathbf{x} \in D, \ \mathbf{y} \in \Gamma.$$

General framework: parametric operator equation

$$A(\mathbf{y}) u(\mathbf{y}) = f(\mathbf{y}), \text{ where } A(\mathbf{y}) = A_0 + \sum_{m=1}^{\infty} y_m A_m \quad \forall \, \mathbf{y} \in \Gamma,$$

where $A : \Gamma \to \mathcal{L}(H, H')$, $f : \Gamma \to H'$, H is a separable Hilbert space (cf. [Schwab, Gittelson '11]).

Parametric operator equation: weak formulation

$$A(\mathbf{y}) u(\mathbf{y}) = f(\mathbf{y}), \text{ where } A(\mathbf{y}) = A_0 + \sum_{m=1}^{\infty} y_m A_m \quad \forall \mathbf{y} \in \Gamma.$$

Weak formulation: find $u \in V := L^2_{\pi}(\Gamma; H)$ such that

$$B(u, v) = F(v) \qquad \forall v \in V, \qquad (V)$$

where

$$B(u, v) = \int_{\Gamma} \langle A(\mathbf{y})u, v \rangle \, d\pi(\mathbf{y}) = \int_{\Gamma} \langle A_0 u, v \rangle \, d\pi(\mathbf{y}) + \sum_{m=1}^{\infty} \int_{\Gamma} \langle A_m u, v \rangle y_m d\pi(\mathbf{y})$$
$$=: B_0(u, v) + \sum_{m=1}^{\infty} B_m(u, v) \quad \forall u, v \in V,$$
$$F(v) = \int_{\Gamma} \langle f(\mathbf{y}), v(\mathbf{y}) \rangle \, d\pi(\mathbf{y}).$$

Parametric operator equation: well posedness

$$A(\mathbf{y}) u(\mathbf{y}) = f(\mathbf{y}), \text{ where } A(\mathbf{y}) = A_0 + \sum_{m=1}^{\infty} y_m A_m \quad \forall \mathbf{y} \in \Gamma.$$

Weak formulation: find $u \in V := L^2_{\pi}(\Gamma; H)$ such that

$$B_0(u,v) + \sum_{m=1}^{\infty} B_m(u,v) = F(v) \qquad \forall v \in V.$$
 (V)

Assumptions ensuring the well posedness of (V):

- $A_0 \in \mathcal{L}(H, H')$ is symmetric and positive definite;
- $A_m \in \mathcal{L}(H, H')$ for $(m \in \mathbb{N})$ are symmetric and $\exists \ \tau \in [0, 1)$ s.t. $\forall \ \mathbf{y} \in \Gamma$

$$\left|\left\langle \sum_{m=1}^{\infty} y_m A_m v, v \right\rangle \right| \leq \tau \left\langle A_0 v, v \right\rangle \quad \forall v \in H$$

(cf. [Schwab, Gittelson '11]).

Parametric operator equation: norm equivalence

$$A(\mathbf{y}) u(\mathbf{y}) = f(\mathbf{y}), \text{ where } A(\mathbf{y}) = A_0 + \sum_{m=1}^{\infty} y_m A_m \quad \forall \mathbf{y} \in \Gamma.$$

Weak formulation: find $u \in V := L^2_{\pi}(\Gamma; H)$ such that

$$\underbrace{B_0(u,v) + \sum_{m=1}^{\infty} B_m(u,v)}_{B(u,v)} = F(v) \quad \forall v \in V.$$
 (V)

Norm equivalence

Note that $(B(u, u))^{1/2} = ||u||_B$ is equivalent to the B_0 -norm: there exist positive constants $\lambda < 1 < \Lambda$ such that

$$\lambda B(v, v) \leq B_0(v, v) \leq \Lambda B(v, v) \qquad \forall v \in V.$$
(B₀)

Discrete formulation

Solution space: $V := L^2_{\pi}(\Gamma; H) \sim H \otimes L^2_{\pi}(\Gamma)$ (isometric isomorphism).

Finite-dimensional subspace: $X \otimes \mathcal{P}_P =: V_{XP} \subset V$, where

- X is a finite-dimensional subspace of H (corresponding, e.g., to spatial finite element discretization on D);
- *P*_P ⊂ *L*²_π(Γ) is a polynomial space on Γ, more precisely, the set of tensor product polynomials associated with a finite subset *P* of the index set ℑ of finitely supported sequences

$$\mathfrak{I}:=ig\{
u=(
u_1,
u_2,...)\in\mathbb{N}_0^{\mathbb{N}};\ \#\operatorname{supp}
u<\inftyig\},$$

where supp $\nu := \{m \in \mathbb{N}; \ \nu_m \neq 0\}$ for any $\nu \in \mathbb{N}_0^{\mathbb{N}}$.

Galerkin projection: find $u_{XP} \in V_{XP} = X \otimes \mathcal{P}_P$ such that

$$B(u_{XP}, v) = F(v) \quad \forall v \in V_{XP}.$$

Linear algebra

Galerkin projection: find $u_{XP} \in V_{XP} = X \otimes \mathcal{P}_P$ such that

$$B(u_{XP}, v) = F(v) \quad \forall v \in V_{XP}.$$

Discrete system: find $\mathbf{x} \in \mathbb{R}^{n_x \cdot n_{\xi}}$ such that $\mathcal{A}\mathbf{x} = \mathbf{b}$ with

$$\mathcal{A} = \mathbf{G}_0 \otimes \mathbf{K}_0 + \sum_{m=1}^M \mathbf{G}_m \otimes \mathbf{K}_m, \qquad \mathbf{b} = \mathbf{g}_0 \otimes \mathbf{f}_0$$

Error estimation I

The estimator $e^* \in V_{XP}^*$ satisfies: $B(e^*, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{XP}^*$. Recall that $B(u, v) = B_0(u, v) + \sum_{m=1}^{\infty} B_m(u, v)$.

Exploit the structure of the enriched finite-dimensional space $V_{XP}^* \supset V_{XP}$:

$$X^* = X \oplus Z, \quad X \cap Z = \{0\}; \quad \mathcal{P}_{P^*} = \mathcal{P}_P \oplus \mathcal{P}_Q, \quad \mathcal{P}_P \cap \mathcal{P}_Q = \{0\};$$
$$V^*_{XP} := \underbrace{V_{X^*P}}_{X^* \otimes \mathcal{P}_P} \oplus \underbrace{V_{XQ}}_{X \otimes \mathcal{P}_Q} = \underbrace{V_{XP}}_{X \otimes \mathcal{P}_P} \oplus \underbrace{V_{ZP}}_{Z \otimes \mathcal{P}_P} \oplus \underbrace{V_{XQ}}_{X \otimes \mathcal{P}_Q}.$$

This leads to the new error estimate

$$\eta := \left(\|e_{ZP}\|_{B_0}^2 + \|e_{XQ}\|_{B_0}^2 \right)^{1/2}$$
,

where two contributing estimators are defined by

$$e_{ZP} \in V_{ZP}$$
: $B_0(e_{ZP}, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{ZP},$
 $e_{XQ} \in V_{XQ}$: $B_0(e_{XQ}, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{XQ}.$

Error estimation II

The estimator $e^* \in V_{XP}^*$ satisfies: $B(e^*, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{XP}^*$. New error estimate

$$\eta := \left(\|e_{ZP}\|_{B_0}^2 + \|e_{XQ}\|_{B_0}^2
ight)^{1/2}$$
 ,

where two contributing estimators are defined by

$$e_{ZP} \in V_{ZP}$$
: $B_0(e_{ZP}, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{ZP},$
 $e_{XQ} \in V_{XQ}$: $B_0(e_{XQ}, v) = F(v) - B(u_{XP}, v) \quad \forall v \in V_{XQ}.$

The relation between the estimator e^* and the componentwise estimate η :

$$\sqrt{\lambda} \eta \leq \|\boldsymbol{e}_*\|_B \leq \frac{\sqrt{\Lambda}}{\sqrt{1-\gamma^2}} \eta,$$

where λ , Λ are the norm-equivalence constants in (B_0) , $\gamma \in [0, 1)$ is the constant in the strengthened Cauchy–Schwarz inequality for the subspaces $X, Z \subset H$ w.r.t. inner product $\langle A_0 \cdot, \cdot \rangle$.

Error reduction indicators

Recall

$$\eta := \left(\|e_{ZP}\|_{B_0}^2 + \|e_{XQ}\|_{B_0}^2
ight)^{1/2}$$
 ,

with $e_{ZP} \in V_{ZP}$ and $e_{XQ} \in V_{XQ}$.

Enhanced Galerkin approximations: $u_{X^*P} \in X^* \otimes \mathcal{P}_P$ and $u_{XP^*} \in X \otimes \mathcal{P}_{P^*}$.

Estimates of the error reduction [Bespalov, Powell, Silvester '14]:

$$\sqrt{\lambda} \| e_{ZP} \|_{B_0} \le \| u_{X^*P} - u_{XP} \|_B \le \frac{\sqrt{\Lambda}}{\sqrt{1 - \gamma^2}} \| e_{ZP} \|_{B_0},$$
$$\sqrt{\lambda} \| e_{XQ} \|_{B_0} \le \| u_{XP^*} - u_{XP} \|_B \le \sqrt{\Lambda} \| e_{XQ} \|_{B_0}.$$

Here, λ , Λ are the constants in (B_0) and $\gamma \in [0, 1)$ is the constant in the (deterministic) strengthened Cauchy–Schwarz inequality.

The error estimator e_{XQ} : decomposition

Lemma 1. For any *finite* detail set $Q = \{\mu \in \mathfrak{I}; \mu \notin P\}$ one has

$$e_{XQ} = \sum_{\mu \in Q} e_{XQ}^{(\mu)}$$
 with $\|e_{XQ}\|_{B_0}^2 = \sum_{\mu \in Q} \|e_{XQ}^{(\mu)}\|_{B_0}^2$,

where $e_{XQ}^{(\mu)} \in X \otimes \mathcal{P}_{\mu}$ satisfies

$$B_0(e_{XQ}^{(\mu)},v)=F(v)-B(u_{XP},v) \qquad \forall v\in X\otimes \mathcal{P}_{\mu}.$$

Note:

- each $e_{XQ}^{(\mu)}$ can be independently and cheaply computed (the same coefficient matrix for all $\mu \in Q$);
- $||e_{XQ}^{(\mu)}||_{B_0}$ provides the error reduction estimate for the corresponding enhanced approximation u_{XP^*} with $P^* = P \cup \mu$.

The error estimator e_{XQ} : choosing Q

Lemma 2. Assume that $f(\mathbf{y})$ has the decomposition

$$f(\mathbf{y}) = f_0 + \sum_{m=1}^{\infty} y_m f_m, \quad \forall \, \mathbf{y} \in \Gamma.$$

For any finite detail index set $Q \subset \mathfrak{I}$ the error estimator $e_{XQ}^{(\mu)} \neq 0$ if

$$\mu \in Q_{\infty} := \left\{ \mu \in \mathfrak{I} \setminus P; \ \mu = \nu \pm \varepsilon^{(m)}, \ \forall \nu \in P, \ \forall m = 1, 2, ... \right\}.$$

Here, $\varepsilon^{(m)} = (\varepsilon_1^{(m)}, \varepsilon_2^{(m)}, ...) \in \mathfrak{I}$ represents the Kronecker delta sequence for the coordinate *m*, i.e., $\varepsilon_j^{(m)} = \delta_{jm}$ for any $j \in \mathbb{N}$.

Proof. Apply the three-term recurrence formula for orthogonal polynomials.

Numerical experiments: model problem

[Eigel, Gittelson, Schwab, Zander '14]

We solve the steady-state diffusion problem

$$\begin{aligned} &-\nabla \cdot \left(a(\mathbf{x},\mathbf{y}) \, \nabla u(\mathbf{x},\mathbf{y}) \right) &= f(\mathbf{x}) & \mathbf{x} \in D, \, \mathbf{y} \in \Gamma, \\ &u(\mathbf{x},\mathbf{y}) &= 0 & \mathbf{x} \in \partial D, \, \mathbf{y} \in \Gamma \end{aligned} (D)$$

with $\mathbf{x} = (x_1, x_2) \in D := [0, 1]^2$, $\mathbf{y} \in \Gamma = \prod_{m=1}^{\infty} [-1, 1]$, $f(\mathbf{x}) = 1$ and

$$a(\mathbf{x},\mathbf{y}) = \underbrace{\mathbf{1}}_{a_0} = \mathbb{E}[a] + \sum_{m=1}^{\infty} \bar{\alpha} \ m^{-\tilde{\sigma}} \cos(2\pi\beta_1(m) x_1) \cos(2\pi\beta_2(m) x_2) \ \mathbf{y}_m.$$

Here $\tilde{\sigma} > 1$ and $0 < \bar{\alpha} < 1/\zeta(\tilde{\sigma})$ (here, ζ denotes the Riemann zeta function); y_m are the images of uniformly distributed independent mean-zero r.v.

The weak formulation (V) of this problem is well posed because $\tau = \bar{\alpha}\zeta(\tilde{\sigma}) < 1$. Two cases are considered: $\tilde{\sigma} = 4$ (fast decay) and $\tilde{\sigma} = 2$ (slow decay).

model problem | spatial detail space

The detail spaces $Z(h_k)$ for bilinear (Q_1) spatial approximation satisfy

$$X_{h/2}=X_h\oplus Z_h.$$

Thus, Z_h spans the set of bilinear bubble functions corresponding to the edge midpoints and element centroids of the original mesh \Box_h (defined locally)

This gives a decomposition of the error estimate η with

$$V_{XP}^* := V_{XP} \oplus (Z_h \otimes \mathcal{P}_P) \oplus (X_h \otimes \mathcal{P}_Q).$$

The smart choice of the detail space Z_h gives rise to local problems defined on all elements $K \in \Box_h$.

Heidelberg graduate course 2019

model problem | spatial detail space

This gives a decomposition of the error estimate η with

$$V_{XP}^* := V_{XP} \oplus (Z_h \otimes \mathcal{P}_P) \oplus (X_h \otimes \mathcal{P}_Q).$$

For example, we compute $\overline{e}_{ZP}|_{K} \in Z_{h}|_{K} \otimes \mathcal{P}_{P}$ satisfying

$$B_{0,K}(\bar{e}_{ZP}|_{K}, v) = F_{K}(v) + \int_{\Gamma} \int_{K} \nabla \cdot (a(\mathbf{x}, \mathbf{y}) \nabla u_{XP}(\mathbf{x}, \mathbf{y})) v(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\pi(\mathbf{y}) - \frac{1}{2} \int_{\Gamma} \int_{\partial K \setminus \partial D} a(s, \mathbf{y}) \left[\left[\frac{\partial u_{XP}}{\partial n} \right] \right] v(s, \mathbf{y}) ds d\pi(\mathbf{y}),$$

for all $v \in \mathbb{Z}_h|_K \otimes \mathcal{P}_P$.

The coefficient matrix associated with this local problem is the Kronecker product of a 5 \times 5 (stiffness) matrix and an identity matrix of dimension $|P| = \dim(\mathcal{P}_P)$.

Adaptive algorithm

Adaptive_sGFEM
$$[tol, A, f] \rightarrow u_n$$

input h_0, P_0
for $k = 0, 1, 2, ...$ do
 $u_k \leftarrow \text{Solve}[A, f, X(h_k), P_k]$
 $\delta_X \leftarrow \text{Error}_\text{Estimate}_1[A, f, u_k, Z(h_k)]$
 $Q_k \leftarrow \text{Detail}_\text{Index}_\text{Set}[P_k]$ % Lemma 2
for $i = 1, 2, ..., \#(Q_k)$ do
 $\delta_{P,i} \leftarrow \text{Error}_\text{Estimate}_2[A, f, u_k, \mu_i]$
end
 $\eta_k := \left(\delta_X^2 + \sum_{i=1}^{\#(Q_k)} \delta_{P,i}^2\right)^{1/2}$ % Lemma 1
if $\eta_k < tol$ then $n := k$, break
if $\delta_X \ge \max \left\{ \delta_{P,i}; i = 1, 2, ..., \#(Q_k) \right\}$ then
 $X(h_{k+1}) := X(h_k) \oplus Z(h_{k+1}), P_{k+1} := P_k$
else $X(h_{k+1}) := X(h_k), P_{k+1} := P_k \cup \left\{ \mu_i \in Q_k; \delta_{P,i} \ge \delta_X \right\}$
end

Numerical experiments I: performance of the adaptive algorithm

Bilinear (Q_1) spatial approximation on uniform grids \Box_h

Numerical experiments II: evolution of the index set

Bilinear (Q_1) spatial approximation on uniform grids \Box_h

k	fast decay	slow decay		
0	$(0 \ 0) \\ (1 \ 0)$	$(0 \ 0 \ 0 \ 0) \\ (1 \ 0 \ 0 \ 0)$		
1				
2	(2 0)			
3	—	$(0\ 1\ 0\ 0) \\ (2\ 0\ 0\ 0)$		
4	—	—		
5	(3 0)	$(0 \ 0 \ 1 \ 0) \\ (1 \ 1 \ 0 \ 0)$		
6	—			
7	$(0 \ 1) \\ (4 \ 0)$	$(0 \ 0 \ 0 \ 1) \\ (3 \ 0 \ 0 \ 0) \\ (1 \ 0 \ 1 \ 0)$		
8	$(1 \ 1)$			
9	_			

Numerical experiments III: performance of the adaptive algorithm

Biquadratic (Q_2) spatial approximation on uniform grids \Box_h

Numerical experiments IV: evolution of the index set

Biquadratic (Q_2) spatial approximation on uniform grids \Box_h

Numerical experiments V: effectivity

 $u \in L^2_{\pi}(\Gamma, H^1_0(D))$ – the (unknown) exact solution; $u_k \in X_k \otimes \mathcal{P}_{P_k}$ – the Galerkin solution at the step k = 0, 1, 2, ...; $e_k := u - u_k$ – the true error ($||e_k||_B \approx \eta_k$).

The error representation:

$$\begin{aligned} \|e_k\|_B &= \|u - u_k\|_B = \left(\|u\|_B^2 - \|u_k\|_B^2\right)^{1/2} \\ &\approx \left(\|u_{\text{ref}}\|_B^2 - \|u_k\|_B^2\right)^{1/2} := \|e_k^{\text{ref}}\|_B, \end{aligned}$$

where $u_{ref} \in X_{ref} \otimes \mathcal{P}_{P_{ref}}$ is an accurate (reference) solution.

The effectivity index:

$$heta_k = rac{\eta_k}{\|e_k^{\mathsf{ref}}\|_B}.$$

In the case of Q_1 approximations:

 u_{ref} is generated by running the adaptive algorithm with Q_2 approximations on a fine spatial grid until a small tolerance (tol = 2.5e-4) is reached.

Numerical experiments V: effectivity

Model problem with $\tilde{\sigma} = 2$ (slow decay).

The Galerkin solution u_k using Q_1 approximation (k = 0, 1, 2, ...).

The reference solution u_{ref} using Q_2 approximation

 $\|u_{\text{ref}}\|_{B} = 1.90117\text{e-}01, \ N_{\text{ref}} = 1'081'665.$ effectivity indices: $\theta_{k} = \eta_{k} / \|e_{k}^{\text{ref}}\|_{B}.$

k	N_k	$ u_k _B$	η_{k}	$\ e_k^{ref}\ _B$	θ_k
0	578	1.89179e-01	2.29925e-02	1.88606e-02	1.22
1	2178	1.89633e-01	1.39596e-02	1.35540e-02	1.03
2	8450	1.89746e-01	1.08927e-02	1.18594e-02	0.92
3	16900	1.89996e-01	6.82414e-03	6.76065e-03	1.01
4	66564	1.90025e-01	5.21155e-03	5.89584e-03	0.88
5	99846	1.90074e-01	3.79683e-03	4.03873e-03	0.94
6	396294	1.90081e-01	3.08163e-03	3.68263e-03	0.84
7	594441	1.90100e-01	2.23643e-03	2.55596e-03	0.87

Conclusions

What have we achieved?

- ★ Novel error estimation strategy: this exploits the tensor product structure of the approximation spaces.
- ★ Effective adaptive algorithm: adaptive refinement is driven by dominant error reduction estimates.