Unit testing &
continuous integration

How to find bugs as soon as you create them

David A. Selby
R-thritis Computing Group
19 November 2021

1/23

Typically, we test code to ensure its output meets our
expectations.

CENTRE FOR
EPIDEMIOLOGY

2/23

ARTHRITIS

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Great Expectations

is_plausible <- function(value, minimum = -Inf, maximum

value >= minimum & value <= maximum

What do you expect the output to be?
is_plausible(c(10, 37, -999), min = 0, max = 112)
[1] TRUE TRUE FALSE
is_plausible("2", min = 0, max = 10)
[1] FALSE

Why? Because "10" < "2" in lexical order

Inf)

Unit testing

4|23

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

UnittestinginR

Unit testing is the process in which the smallest testable
parts of source code are tested individually and
independently, usually in an automated way.

> Formalises the testing of code

> Makes it easier to identify bugs when they are introduced
> Helps ensure that the code meets all necessary criteria

> Reassures the user that the code works correctly

5/23

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

UnittestinginR

testthat is an R package created by Hadley Wickham for the
purpose of writing unit tests for R code. It is available on

CRAN.

Other unit testing packages are available (but not covered
here), e.g. RUnit, testrmd.

6/23

https://cran.r-project.org/package=RUnit
https://github.com/rmflight/testrmd

Unit testing with testthat

The testthat framework comprises three parts:

Expectations «
the core functions. They all have prefix expect_
Tests «
a series of expectations about one feature, wrapped in
test_that()
Files «
containing a set of tests of related functionality

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

7/23

Unit testing with testthat

Expectations in testthat compare an object with a reference
value or property. If they do not match, an error is thrown.

(If they do match, the tested object is returned, invisibly.)

expect_equal
expect_1is
expect_length
expect_true
expect_error

vV V V V V V

CENTRE FOR
EPIDEMIOLOGY

8 /23

ARTHRITIS

(]
{ns]
=
|
-
oM
o 1 |
{—]
-

IDEMIOL

—
Z

(=]
eN=

ARTHRITIS

Unit testing with testthat

expect_equal compares a number with a reference value

hyp <— 312 + 4A2
expect_equal(hyp, 25) # Runs without error
expect_equal(hyp, 26) # Throws an error:

Error: “hyp not equal to 26.
1/1 mismatches
4 [1] 25 - 26 == -1

expect_equal(sqrt(2), 1.41) # Throws an error:

Error: sqrt(2) not equal to 1.41.
1/1 mismatches
[1] 1.41 - 1.41 == 0.00421

expect_equal(sqrt(2), 1.41, tolerance = .01) # No error thrown

9/23

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Unit testing with testthat

expect_is checks the data type of an object

val <- 43.7
expect_is(val, 'numeric') # Runs without error
expect_is(val, 'character') # Produces an error:

Error: “val® dnherits from " 'numeric'® not " 'character'’.

expect_Tlength checks the number of elements in a vector

expect_length(letters, 26) # Runs without error
expect_length(letters, 25) # Throws an error:

Error: “letters’ has length 26, not length 25.

10/ 23

Unit testing with testthat

Some expectation functions check against a (fixed)
condition, rather than a custom reference value.

codes <- c(no = F, yes = T)
expect_true(codes['yes']) # Runs without error
expect_true('yes') # Throws an error:

Error: "yes" 1is not TRUE

"actual’ 1is a character vector ('yes')

HF O FH H HF

“expected’ 1is a logical vector (TRUE)

expect_named(codes) # Runs without error
expect_false(as.logical(0)) # Runs without error

CENTRE FOR
EPIDEMIOLOGY

11/ 23

ARTHRITIS

Unit testing with testthat

Other such functions include expect_error, which checks
that a function call throws an error when evaluated.

Analogously, there are expect_warning, expect_message, etc.

expect_error(3.14 + 'hello') # Runs without error
expect_error(3.14 < 'hello') # Throws an error:

Error: “3.14 < "hello" did not throw an error.

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

12/ 23

Back to our example

expect_true(is_plausible(5, min = 0, max = 10)) # No error
expect_false(is_plausible(-1, min = 0, max = 1)) # No error
©, max = 10)) # Error:

expect_true(is_plausible('2', min

Error: 1is_plausible("2", min = 0, max = 10) is not TRUE
#

“actual : FALSE

“expected : TRUE

Now decide:

[1] Fix the code just enough to satisfy the expectation,

[2] Or: have arethink?

CENTRE FOR
EPIDEMIOLOGY

13/23

ARTHRITIS

(]
{ns]
=
|
-
oM
o 1 |
{—]
-

IDEMIOL

—
Z

(=]
eN=

ARTHRITIS

Back to our example

Fix to pass the test (not recommended here; will cause warnings):

is_plausible <- function(value, minimum = -Inf, maximum = Inf) {
value <- as.numeric(value)
value >= minimum & value <= maximum

}

expect_true(is_plausible('2', min = 0, max = 10)) # No error
Or rethink, by expecting stricter handling of inputs:

is_plausible <- function(value, minimum = -Inf, maximum = Inf) {
stopifnot(is.numeric(value))
value >= minimum & value <= maximum

}

expect_error(is_plausible('2', min = 0, max = 10)) # No error

Writing tests

test_that('Scalar 1integers', {
expect_true(is_plausible(5, min = 0, max = 10))
expect_false(is_plausible(-1, min = 0, max = 1))

})

Test passed

test_that('Integer vectors', {

expect_equal(is_plausible(0:10, min = 0, max = 10),
rep(TRUE, 11))
expect_equal(is_plausible(-1:2, min = 0, max = 1),

C(F, T’ TJ F))
})

Test passed

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Writing tests

test_that('Handle unusual or missing inputs', {
expect_error(is_plausible('2', min = 0, max = 10))
expect_error(is_plausible(min = 0, max = 10))
expect_error(is_plausible(2, min = "0", max = 10))

0, max = "10"))

expect_error(is_plausible(2, min

})

-- Failure (<text>:4:3): Handle unusual or missing inputs —-—--———-———-——-—————-—

“is_plausible(2, min = "0", max = 10) did not throw an error.

-- Failure (<text>:5:3): Handle unusual or missing inputs —-—-—-——-—-———-—-—————-
“is_plausible(2, min = 0, max = "10")" did not throw an error.

(]
{a]
=+
=]
-]
oM
o 1 |
(=]
=

IDEMIOL

—
Z

(=]
eN=

16 [/ 23

ARTHRITIS

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Unit testing workflows

> Add a tests/ folder to an R package

+ run tests with <Ctr1> + <Shift> + T
+ tests will also run during R CMD CHECK

> Or run tests locally in analysis folder:

+ test_file() [/ test_dir()
+ Re-test with every edit: auto_test()

> R Markdown 'test chunks' with error=TRUE or testrmd

Note: most documentation for testthat assumes you are writing a
package. Future talk: how to do analysis as an R package...

17 /23

https://github.com/rmflight/testrmd

Test-driven development

[1] Write a test before any other code.

[2] Check that the test fails.

[3] Write enough code to make it pass.
[4] Add another test and iterate steps 1—3.

[5] Refactor the code, while ensuring it passes all tests.

CENTRE FOR
EPIDEMIOLOGY

18 / 23

ARTHRITIS

Continuous integration

19 /23

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Continuous integration

In software engineering, continuous integration (CI) is the
practice of merging all changes to a central repository, and
automatically rebuilding & testing the code after every
change.

> Use version control to track/manage changes
> Use CI software to automatically rerun/retest code
> Identify bugs/conflicts as soon as they're created

Tools: Fravis-€F, GitHub Actions, Bitbucket Pipelines, Gitlab
CI/CD, Jenkins

20 /23

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

Continuous integration

Make life easier for yourself:

[1] Project metadata in a (dummy) DESCRIPTION file

[2] Rcodein R/ subfolder

[3] Testsinatests/testthat/ subfolder

[4] Runtests quickly: test_local() / <Ctr1>+<Shift>+T

[5] Use Git for version control & CI for automatic testing

Minimal working DESCRIPTION file:

Package: blah
Version: 0.1

Example repo: https://github.com/Selbosh/unittesting

21/ 23

https://github.com/Selbosh/unittesting

Thanks!

Based on a talk by Lewis Rendell
at Warwick R User Group, 2017.

CENTRE FOR
EPIDEMIOLOGY

22 /23

ARTHRITIS

https://warwick.ac.uk/fac/sci/wdsi/events/wrug/resources/unittesting.pdf

Next meeting

Friday 3 December

Advent of Code discussion
https://adventofcode.com/
Attempt days 1—2 and share your approach

See also https://selbydavid.com/2020/12/06/advent-2020/

CENTRE FOR
EPIDEMIOLOGY

ARTHRITIS

23 /23

https://adventofcode.com/
https://selbydavid.com/2020/12/06/advent-2020/

