4. Calculus of Variations
Introduction - Typical Problems

The calculus of variations generalises the theory of maxima and minima.

Example (a): Shortest distance between two points. On a given surface
(e.g. a plane), find the shortest curve between two points. The length L of a
curve y = y (x) between the values x = a and x = b is given by the integral

L:/ab1/1+(ZZ)de:/ab\/lJr(y’fdx. (4.1)

The value of L depends upon the function y () which appears as an argument
in the integrand, an arbitrary continuous function with piecewise continuous
drivative.

Example (b) Minimal surface of revolution. Let the curve y = y(z) > 0
which passes through the points y(a) = y1, y (b) = y2 be rotated about the
z-axis. The resulting surface between z = a and x = b has surface area A given

by
b
A:27T/ /14 () da.

The curve y = y () which gives the smallest surface of revolution is found by
minimising the integral.

Example (c): Isoperimetric problem. Find a closed plane curve of given
perimeter which encloses the greatest area. The area may be written as

A:/ ydx

between some limits (and taking care about regions above and below the z-
axis) and is subject to a constraint of the form equ. (4.1) where now L (the
perimeter) is fixed in length.

Common ingredients:
(1) An integral with an integrand containing an arbitrary function
(2) A problem which asks for a minimum or maximum.

Note the geometric language and that the concepts of "curve" and "function"
do not coincide.

Functionals

Let S be a (vector) space (i.e. set of functions + algebraic structure - closed
under addition of functions f + g and multiplication by a scalar, Af).

Example: Let C* (a,b) denote the set of functions continuous on the closed
interval [a, b] with piecewise continuous first order derivatives.



4.2 Definition: A functional is a mapping (function) from a space of func-
tions into the underlying field (usually the real or complex numbers)

¢ : S —RorC)

¢ yrc

y € S, ceR(C)
0

= g or oy = c.

o (

S is called the domain of the functional and the space of admissible functions.
Examples (a): Evaluating a function is a functional, e.g. for d € [a, b]

¢ (y(z)) =y(c)
(b) ¢(y(2) =y" (1) +y(3).

(c) The Dirac delta "function" is a functional:

b
[o@-dyf@ds= s

(d) Let y(x) € C*(a,b),

o) = [ @) - @) .

(e) The area A of a surface z = z (z,y) lying above the region G in the zy-plane

is given by
Az//,/l—l—z%—&—z%dxdy
G

where z, = 0z/0z, z, = 0z/0y and is a functional of the argument function
z(2,y).

The calculus of variations is concerned with finding extrema or stationary
values of functionals.
Consider functionals (defined by integrals) of the form

b
I(y) =/ F(x,y,y) da. (4.3)

The integrand F depends on the function y (), its derivative y’ (z) and the
independent variable x.
In order to discuss maxima and minima we need to define what is meant by two
functions being "close together", i.e. we need a notion of distance.
4.4 Definition:
Given h € R, h > 0, a function y; (z) lies in the neighbourhood N}, (y) of the
function y (z) if

ly(x) =y (z)| <h



Vz € [a,b].
Sometimes it is necessary to use a more refined definition:
4.4a Definition:
Given h € R, h > 0, a function y; () lies in the first order neighbourhood Ny, (y)
of the function y () if
ly (@) —y1 (z)| <h
and
Y (z) —yi (@) <h

Vo € [a,b].
4.5 Fundamental problem of the Calculus of Variations: Find a function
y =yo (x) € S (a,b) for which the functional I (y) takes an extremal value (i.e.
maximum or minimum) value with respect to all y(z) € S (a,b) in N (y) for
sufficiently small h.
y = yo (x) is called an extremal function.
Note: There is no guarantee a solution exists for this problem (unlike max-
ima and minima of functions continuous on a closed interval where existence is
guaranteed).
Example: The shortest distance between two points A, B is a straight line but
there is no curve of shortest length which departs from A and arrives at B at
right angles to the line segment AB.

FEuler-Lagrange Equations
4.6 Fundamental lemma in the Calculus of Variations

Let f(x) be continuous in [a,b] and let n(x) be an arbitrary function on
[a, b] such that n,n’,n" are continuous and 7 (a) = 7 (b) = 0. If

b
[ r@n@d=o

for all such 7 (z) then f (z) =0 on [a,b].
Proof: Suppose to the contrary w.l.o.g. that f (z) > 0 at, say, z = £.
Then there is a neighbourhood N, £, < z < £, in which f (z) > 0. Let

U(x)z{ (x—¢&) (x—&) forzeN

0 elsewhere
Then .
[ F@n@de>o

contradicting the hypothesis.
4.7 Theorem: Euler-Lagrange Equations
The extremal function y = yo (x) for the functional (4.3)

b
I(y) :/ F(z,y,y) dz



where a, b, y (a), y (b) are given, F is twice continuously differentiable w.r.t. its
arguments and y” () is continuous, satisfies the equation

d (OF or 0

dx <8y’> oy
This is a necessary, but not sufficient, condition for an extremal function.
(Every extremal function yo (x) satisfies the Euler-Lagrange equation,
Not every function f (z) which satisfies the Euler-Lagrange equation is an ex-
tremal function.)
Proof: Let y = y (x) be a variable function and let y = yo () be an extremal
function for the functional I (y), i.e. I (yo) takes an extreme value (maximum
or minimum).
Let n (z) be as in lemma (4.6) and define the function

y(z) =yo (v) +en(v)

where € > 0 is a parameter, and write

Y = yo + dy.

Then 6y = en (z) is called the variation of y = yo ().
For e sufficiently small, y lies in an arbitrarily small neighbourhood N}, (yo) of

yo ().
Now, the integral I (y) = I (yo +¢en) is a function of ® (¢) of ¢.
Let

oI = I(yo+en) —1I(yo) = @ (e) — 2 (0)
then .
oI = /a [ (2, 90 +&n, 95 +en') = F (2,90, 4o)] de.
Expanding ® (¢) in a Maclaurin series with respect to ¢ to first order gives
P(e)=2(0)+ P (0)e
and so to first order in ¢

b
OF dy OF dy
I=3'(0)e = s S A
g (0)e /a {Gy de * oy’ de dv

Y(OF  OF
' (0) = / (ayn + ay,n’) dz.

Now, since y = yo (z) + en (z) where yo (z) is the extremal function, it follows
that 61 = 0 for all 7 (z) with y € Ny (yo) -

For suppose not, then replace n (z) by —n (z) and the sign of 61 changes, con-
tradicting the fact that yg (z) is the extremal function!

SO



Hence I (y) takes a stationary value for y = yo ().

Thus b
oF oF
—_— —n' )dx =0.
/a (0yn+8y’n) v=0

Integrating the second integral by parts with

oF , ,
usgy VS
then
s (P
Cde \oy' )’ =1
gives

or b+/”aF_daF dz =0
8y’na o \ Oy dx \ Oy’ e ==

bToF  d [OF
/a[ay‘dx(az/)]”d““

Hence, since 7 () is arbitrary, using the Fundamental Lemma of the Calculus
of Variations, we obtain
d (0P _0F
dx \ Oy’ oy
Note: For any such f (z,y,y’)
dj 0 of d of dy’
f _of . fdy L fdy

de — dx ' dydr ' 9y dx
so putting f = dF/dy’ gives

0*F " () + 0*F (@) + 0*F _oF
8y’2y 8y’3yy oxdy Oy

This is a 2nd. order ode!

Example: Find the extremal function for

- [ P - v ao

Here,
F(z,y.9) =) -y
" oF oF
oy - W ay 2y



The Euler-Lagrange equation
A (OF\_or
dz \ Oy’ oy

< o)~ (-2) =0

becomes

i.e.
1

y +y=0.

The general solution is
y(xz) = Acosz + Bsinx

y(O):OjA:Oandy(%ﬂ):1:>B=1hence
y=sinz

and I (sinx) is stationary and
/2
I(sinz) = / (cos? z —sin® z) dz = 0.
0

Special cases: First integrals of the Euler-Lagrange equa-

tions
For special forms of F (z,y,y’) the 2nd. order order ode

d(ory _or
dx \ 0y’ oy
may be integrated to give a "first integral".
4.8 Theorem: Let F' = F (z,y’) (no y dependence) then

F tant
—— = constant.
oy’

Proof:
or

i

(Y
de \oy' )

which integrates w.r.t. x to give the result.
4.9 Theorem: Let F' = F (y,y’) (no = dependence) then

0

SO

oF
F —y'—— = constant.

Yy’



Proof: In general F' = F (z,y,y’)

d<F_ ,aF) _ OF OF , OF ,,_,,8F_,d(8F>

a\" Yoy o "oyt Yoyt Vay Vax\ay

oF ,[0F d [(OF
or dy  dx \ oy
oF .
= o by the Euler-Lagrange equation
x

= 0 since, in fact, F' is independent of z.

Extensions of the Euler-Lagrange equations
(a) Several unknown functions y; (), ..., ym () .
Let

b
I(y177yWL):/ F(‘T)ylvaynuy/laay;n)dz (410)

then

d [ OF oF

where j =1,...,m, i.e. m simultaneous ode’s for the m unknowns y;.
(b) Several independent variables 1, ..., Z,. Let y = y (1, ..., x,) and

_ Ay Ay
I(y) /.../‘/F(xl,...,xn,y, FrR 8xn> dxy...dx, (4.12)

(a multiple integral) where V' is a region in n-dimensional (x1, ..., z,, )-space then,
writing
dy

8$Z’ == yy-'[fi = yai = Yi

we have

~ 9 (OF\ OF
> ( ) —— =0, (413
— O \ Oy, dy
a partial differential equation.
(¢) Additional integral constraint - Lagrange multipliers

Suppose that, in addition to Eq. (4.3), y (x) also satisfies an integral con-
straint of the form

b
1) = [ Go)dr=c @)

where C' is a constant. We wish to find stationary values of the functional

b
I(y) =/ F(z,y,y)dx



where y (z) is now not free, but is subject to the constraint Equ.(4.13). In this
case, form the functional

b
K(y) = /(Ff)\G)d:z

b
= / H (z,y,y',\) da, say

where X is a Lagrange multiplier.
The corresponding Euler-Lagrange equation is

d (0H oOH

The general solution of equ. (4.15) contains A and two integration constants.
These are determined by the boundary conditions and the constraint equ. (4.14).
Given several constraints

b
Jk (y) = / Gk (xay7y/) dr = Ck}

where k =1, ..., p, define
P
H=F-> MGk
k=1

Imposing the constraints gives the values of A\; (usually of little physical signif-
icance).

(d) Several functions of several variables.

Now consider m functions yi, ...y,, each of n variables z1, ...z,

Yi = yj (T1,.20) =y (1),
where j =1,....mand ¢t =1,...,n. Let

g =
7 8$¢

and let V denote a region in the n-dimensional (21, ...2, )-space, dV = dx;...dz,,.
Consider the functional

y1  Oym
Oz’ Oz,

I(y1,yeyYm) :/ F (xl, s Ty Y1y oes Yoy > dxy...dz, (4.16)
\%4

which may be abbreviated by

I(y;) = [/F(xi,yj,yji) dzq...dz,,.

The Euler-Lagrange equations are the m equations



" 0 (OF oF
- = 4.1
; aiﬂl <8yji) 8yj 07 ( 7)

where j = 1,...,m. Note that, using the double suffix summation convention
(dssc) we may abbreviate this as

0 <8F ) oFr 0

8z,~ 8ij 6yj ’
where, any term containing a repeated subscript (here ¢) is summed over all
possible values (here i takes the values 1,...,n). A single subscript occurring in
every term of an equation (here j) is callled a free subscript and indicates that
there is an equation for each value (here m).

Example: Dirichlet’s integral and Poisson’s equation.

The above notation was developed as a generalisation of of the original nota-
tion for the simplest case, the functional (4.3) and the original Euler-Lagrange
equation in theorem (4.7). It is not particularly convenient for considering a
single partial differential equation. So, we now change notation. Let n = 3
and let the independent variables x1, x2, x3 be replaced by x,y, 2z (more suitable
for problems in three space dimensions). Also replace the dependent variable y
(now being used as a coordinate) by w. Thus, let u = u (z,y, 2) be a function
of three variables. Recall the notation for the gradient function:

Gu (0 0 00
“= o Oy’ 0z

and the notation

2 ou\ > ou\? ou\ 9 9 9
(Vu)” =Vu-Vu= {7 + a) tlg) mwture

Now, Dirichlet’s integral is defined by

I(u) = /V E (Va)? + fu} v

where V is a volume in R?, f = f (z,v, 2) is a known function of x,y, z. Here,

1 ou\ > ou\ > ou\>
r=3|(5) < (5) ~(5) ]+
Hence
OF _,OF _ oF _ . OF _
ou 7V’ ouy bt Oy Yy ou, b

The Euler Lagrange equations is

9 (OFY, 0 (0PN, 0 (0F\ OF
Ox \ OQuy Oy \ Ouy 0z \ Ou, ou




i.e.

or

where V2 is the Laplacian operator

62 82 82

2—7 —_— R
v _3x2+8y2+8z2'

Thus, the Dirichlet integral is stationary when the function u (z,y, z) satisfies
Poisson’s equation. This is known as Dirichlet’s Principle. This is a simple
example of a wvariational principle, which turns out to be a very important
application of the calculus of variations.
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