
4. Calculus of Variations
Introduction - Typical Problems
The calculus of variations generalises the theory of maxima and minima.
Example (a): Shortest distance between two points. On a given surface

(e.g. a plane), �nd the shortest curve between two points. The length L of a
curve y = y (x) between the values x = a and x = b is given by the integral

L =

Z b

a

s
1 +

�
dy

dx

�2
dx =

Z b

a

q
1 + (y0)

2
dx: (4.1)

The value of L depends upon the function y (x) which appears as an argument
in the integrand, an arbitrary continuous function with piecewise continuous
drivative.
Example (b) Minimal surface of revolution. Let the curve y = y (x) � 0

which passes through the points y (a) = y1, y (b) = y2 be rotated about the
x-axis. The resulting surface between x = a and x = b has surface area A given
by

A = 2�

Z b

a

y

q
1 + (y0)

2
dx:

The curve y = y (x) which gives the smallest surface of revolution is found by
minimising the integral.

Example (c): Isoperimetric problem. Find a closed plane curve of given
perimeter which encloses the greatest area. The area may be written as

A =

Z ��

�
ydx

between some limits (and taking care about regions above and below the x-
axis) and is subject to a constraint of the form equ. (4.1) where now L (the
perimeter) is �xed in length.
Common ingredients:

(1) An integral with an integrand containing an arbitrary function
(2) A problem which asks for a minimum or maximum.
Note the geometric language and that the concepts of "curve" and "function"

do not coincide.

Functionals
Let S be a (vector) space (i.e. set of functions + algebraic structure - closed

under addition of functions f + g and multiplication by a scalar, �f):
Example: Let C1 (a; b) denote the set of functions continuous on the closed

interval [a; b] with piecewise continuous �rst order derivatives.
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4.2 De�nition: A functional is a mapping (function) from a space of func-
tions into the underlying �eld (usually the real or complex numbers)

� : S ! R(or C)
� : y 7! c

y 2 S; c 2 R( C)
� (y) = c; or �y = c:

S is called the domain of the functional and the space of admissible functions.
Examples (a): Evaluating a function is a functional, e.g. for d 2 [a; b]

� (y (x)) = y (c)

(b) � (y (x)) = y00 (7) + y (3) :
(c) The Dirac delta "function" is a functional:Z b

a

� (x� d) f (x) dx = f (d)

(d) Let y (x) 2 C1 (a; b) ;

� (y (x)) =

Z b

a

h
(y (x))

2 � (y0 (x))2
i
dx:

(e) The area A of a surface z = z (x; y) lying above the region G in the xy-plane
is given by

A =

ZZ
G

q
1 + z2x + z

2
ydxdy

where zx = @z=@x, zy = @z=@y and is a functional of the argument function
z (x; y).

The calculus of variations is concerned with �nding extrema or stationary
values of functionals.
Consider functionals (de�ned by integrals) of the form

I (y) =

Z b

a

F (x; y; y0) dx: (4.3)

The integrand F depends on the function y (x), its derivative y0 (x) and the
independent variable x:
In order to discuss maxima and minima we need to de�ne what is meant by two
functions being "close together", i.e. we need a notion of distance.
4.4 De�nition:
Given h 2 R, h > 0; a function y1 (x) lies in the neighbourhood Nh (y) of the
function y (x) if

jy (x)� y1 (x)j < h

2



8x 2 [a; b] :
Sometimes it is necessary to use a more re�ned de�nition:
4.4a De�nition:
Given h 2 R, h > 0; a function y1 (x) lies in the �rst order neighbourhood Nh (y)
of the function y (x) if

jy (x)� y1 (x)j < h

and
jy0 (x)� y01 (x)j < h

8x 2 [a; b] :
4.5 Fundamental problem of the Calculus of Variations: Find a function
y = y0 (x) 2 S (a; b) for which the functional I (y) takes an extremal value (i.e.
maximum or minimum) value with respect to all y(x) 2 S (a; b) in Nh (y) for
su¢ ciently small h.
y = y0 (x) is called an extremal function.
Note: There is no guarantee a solution exists for this problem (unlike max-
ima and minima of functions continuous on a closed interval where existence is
guaranteed).
Example: The shortest distance between two points A;B is a straight line but
there is no curve of shortest length which departs from A and arrives at B at
right angles to the line segment AB:
Euler-Lagrange Equations

4.6 Fundamental lemma in the Calculus of Variations
Let f (x) be continuous in [a; b] and let � (x) be an arbitrary function on

[a; b] such that �; �0; �00 are continuous and � (a) = � (b) = 0: IfZ b

a

f (x) � (x) dx = 0

for all such � (x) then f (x) � 0 on [a; b] :
Proof: Suppose to the contrary w.l.o.g. that f (x) > 0 at, say, x = �:
Then there is a neighbourhood N , �0 < x < �1 in which f (x) > 0: Let

� (x) =

�
(x� �0)

4
(x� �1)

4 for x 2 N
0 elsewhere

:

Then Z b

a

f (x) � (x) dx > 0

contradicting the hypothesis.
4.7 Theorem: Euler-Lagrange Equations
The extremal function y = y0 (x) for the functional (4.3)

I (y) =

Z b

a

F (x; y; y0) dx
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where a; b; y (a) ; y (b) are given, F is twice continuously di¤erentiable w.r.t. its
arguments and y00 (x) is continuous, satis�es the equation

d

dx

�
@F

@y0

�
� @F
@y

= 0:

This is a necessary, but not su¢ cient, condition for an extremal function.
(Every extremal function y0 (x) satis�es the Euler-Lagrange equation,
Not every function f (x) which satis�es the Euler-Lagrange equation is an ex-
tremal function.)
Proof: Let y = y (x) be a variable function and let y = y0 (x) be an extremal
function for the functional I (y), i.e. I (y0) takes an extreme value (maximum
or minimum).
Let � (x) be as in lemma (4.6) and de�ne the function

y (x) = y0 (x) + "� (x)

where " > 0 is a parameter, and write

y = y0 + �y:

Then �y = "� (x) is called the variation of y = y0 (x).
For " su¢ ciently small, y lies in an arbitrarily small neighbourhood Nh (y0) of
y0 (x).
Now, the integral I (y) = I (y0 + "�) is a function of � (") of ":
Let

�I = I (y0 + "�)� I (y0) = � (")� � (0)

then

�I =

Z b

a

[F (x; y0 + "�; y
0
0 + "�

0)� F (x; y0; y00)] dx:

Expanding � (") in a Maclaurin series with respect to " to �rst order gives

� (") = � (0) + �0 (0) "

and so to �rst order in "

�I = �0 (0) " =

0@Z b

a

�
@F

@y

dy

d"
+
@F

@y0
dy0

d"

�
dx

�����
y=y0

1A "
so

�0 (0) =

Z b

a

�
@F

@y
� +

@F

@y0
�0
�
dx:

Now, since y = y0 (x) + "� (x) where y0 (x) is the extremal function, it follows
that �I = 0 for all � (x) with y 2 Nh (y0) :
For suppose not, then replace � (x) by �� (x) and the sign of �I changes, con-
tradicting the fact that y0 (x) is the extremal function!
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Hence I (y) takes a stationary value for y = y0 (x) :
Thus Z b

a

�
@F

@y
� +

@F

@y0
�0
�
dx = 0:

Integrating the second integral by parts with

u =
@F

@y0
; v0 = �0

then

u0 =
d

dx

�
@F

@y0

�
; v = �

gives �
@F

@y0
�

�b
a

+

Z b

a

�
@F

@y
� � d

dx

�
@F

@y0

�
�

�
dx = 0:

Now, � (a) = � (b) = 0 soZ b

a

�
@F

@y
� d

dx

�
@F

@y0

��
�dx = 0:

Hence, since � (x) is arbitrary, using the Fundamental Lemma of the Calculus
of Variations, we obtain

d

dx

�
@F

@y0

�
� @F
@y

= 0:

Note: For any such f (x; y; y0)

df

dx
=
@f

@x
+
@f

@y

dy

dx
+
@f

@y0
dy0

dx

so putting f = @F=@y0 gives

@2F

@y02
y00 (x) +

@2F

@y0@y
y0 (x) +

@2F

@x@y0
� @F
@y

= 0:

This is a 2nd. order ode!

Example: Find the extremal function for

I (y) =

Z �=2

0

h
(y0)

2 � y2
i
dx

with y (0) = 0; y
�
1
2�
�
= 1:

Here,
F (x; y; y0) = (y0)

2 � y2

so
@F

@y
= �2y; @F

@y0
= 2y0:
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The Euler-Lagrange equation

d

dx

�
@F

@y0

�
� @F
@y

= 0

becomes
d

dx
(2y0)� (�2y) = 0

i.e.
y00 + y = 0:

The general solution is
y (x) = A cosx+B sinx

y (0) = 0) A = 0 and y
�
1
2�
�
= 1) B = 1 hence

y = sinx

and I (sinx) is stationary and

I (sinx) =

Z �=2

0

�
cos2 x� sin2 x

�
dx = 0:

Special cases: First integrals of the Euler-Lagrange equa-
tions
For special forms of F (x; y; y0) the 2nd. order order ode

d

dx

�
@F

@y0

�
� @F
@y

= 0

may be integrated to give a "�rst integral".
4.8 Theorem: Let F � F (x; y0) (no y dependence) then

@F

@y0
= constant.

Proof:
@F

@y
= 0

so
d

dx

�
@F

@y0

�
= 0

which integrates w.r.t. x to give the result.
4.9 Theorem: Let F � F (y; y0) (no x dependence) then

F � y0 @F
@y0

= constant.
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Proof: In general F � F (x; y; y0)

d

dx

�
F � y0 @F

@y0

�
=

@F

@x
+
@F

@y
y0 +

@F

@y0
y00 � y00 @F

@y0
� y0 d

dx

�
@F

@y0

�
=

@F

@x
+ y0

�
@F

@y
� d

dx

�
@F

@y0

��
=

@F

@x
by the Euler-Lagrange equation

= 0 since, in fact, F is independent of x:

Extensions of the Euler-Lagrange equations
(a) Several unknown functions y1 (x) ; :::; ym (x) :
Let

I (y1; :::; ym) =

Z b

a

F (x; y1; :::; ym; y
0
1; :::; y

0
m) dx (4.10)

then
d

dx

 
@F

@y0j

!
� @F

@yj
= 0; (4.11)

where j = 1; :::;m; i.e. m simultaneous ode�s for the m unknowns yj :
(b) Several independent variables x1; :::; xn: Let y = y (x1; :::; xn) and

I (y) =

Z
:::

Z
V

F

�
x1; :::; xn; y;

@y

@x1
; :::;

@y

@xn

�
dx1:::dxn (4.12)

(a multiple integral) where V is a region in n-dimensional (x1; :::; xn)-space then,
writing

@y

@xi
� y;xi � y;i � yi

we have
nX
i=1

@

@xi

�
@F

@y;i

�
� @F
@y

= 0; (4.13)

a partial di¤erential equation.
(c) Additional integral constraint - Lagrange multipliers
Suppose that, in addition to Eq. (4.3), y (x) also satis�es an integral con-

straint of the form

J (y) =

Z b

a

G (x; y; y0) dx = C (4.14)

where C is a constant. We wish to �nd stationary values of the functional

I (y) =

Z b

a

F (x; y; y0) dx
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where y (x) is now not free, but is subject to the constraint Equ.(4.13). In this
case, form the functional

K (y) =

Z b

a

(F � �G) dx

=

Z b

a

H (x; y; y0; �) dx, say

where � is a Lagrange multiplier.
The corresponding Euler-Lagrange equation is

d

dx

�
@H

@y0

�
� @H
@y

= 0: (4.15)

The general solution of equ. (4.15) contains � and two integration constants.
These are determined by the boundary conditions and the constraint equ. (4.14).
Given several constraints

Jk (y) =

Z b

a

Gk (x; y; y
0) dx = Ck

where k = 1; :::; p; de�ne

H = F �
pX
k=1

�kGk:

Imposing the constraints gives the values of �k (usually of little physical signif-
icance).
(d) Several functions of several variables.
Now consider m functions y1; :::ym each of n variables x1; :::xn;

yj = yj (x1; :::xn) = yj (xi) ;

where j = 1; :::;m and i = 1; :::; n: Let

yji =
@yj
@xi

and let V denote a region in the n-dimensional (x1; :::xn)-space, dV = dx1:::dxn:
Consider the functional

I (y1; :::; ym) =

Z
V

F

�
x1; :::; xn; y1; :::; ym;

@y1
@x1

; :::;
@ym
@xn

�
dx1:::dxn (4.16)

which may be abbreviated by

I (yj) =

Z
V

F (xi; yj ; yji) dx1:::dxn:

The Euler-Lagrange equations are the m equations
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nX
i=1

@

@xi

�
@F

@yji

�
� @F

@yj
= 0; (4.17)

where j = 1; :::;m. Note that, using the double su¢ x summation convention
(dssc) we may abbreviate this as

@

@xi

�
@F

@yji

�
� @F

@yj
= 0;

where, any term containing a repeated subscript (here i) is summed over all
possible values (here i takes the values 1; :::; n). A single subscript occurring in
every term of an equation (here j) is callled a free subscript and indicates that
there is an equation for each value (here m).
Example: Dirichlet�s integral and Poisson�s equation.

The above notation was developed as a generalisation of of the original nota-
tion for the simplest case, the functional (4.3) and the original Euler-Lagrange
equation in theorem (4.7). It is not particularly convenient for considering a
single partial di¤erential equation. So, we now change notation. Let n = 3
and let the independent variables x1; x2; x3 be replaced by x; y; z (more suitable
for problems in three space dimensions). Also replace the dependent variable y
(now being used as a coordinate) by u. Thus, let u = u (x; y; z) be a function
of three variables. Recall the notation for the gradient function:

ru =
�
@u

@x
;
@u

@y
;
@u

@z

�
and the notation

(ru)2 = ru � ru =
�
@u

@x

�2
+

�
@u

@y

�2
+

�
@u

@z

�2
= u2x + u

2
y + u

2
x:

Now, Dirichlet�s integral is de�ned by

I (u) =

Z
V

�
1

2
(ru)2 + fu

�
dV

where V is a volume in R3; f = f (x; y; z) is a known function of x; y; z. Here,

F =
1

2

"�
@u

@x

�2
+

�
@u

@y

�2
+

�
@u

@z

�2#
+ fu:

Hence
@F

@u
= f;

@F

@ux
= ux;

@F

@uy
= uy;

@F

@uz
= uz:

The Euler Lagrange equations is

@

@x

�
@F

@ux

�
+
@

@y

�
@F

@uy

�
+
@

@z

�
@F

@uz

�
� @F
@u

= 0
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i.e.
@

@x
(ux) +

@

@y
(uy) +

@

@z
(uz)� f = 0

or
r2u = f

where r2 is the Laplacian operator

r2 = @2

@x2
+
@2

@y2
+
@2

@z2
:

Thus, the Dirichlet integral is stationary when the function u (x; y; z) satis�es
Poisson�s equation. This is known as Dirichlet�s Principle. This is a simple
example of a variational principle, which turns out to be a very important
application of the calculus of variations.
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