![]() |
Model-free estimation of a psychometric function |
|---|---|
| Home | Downloads | Demonstration | Documentation | Examples | Functions | Contacts |
|---|
bandwidth_bootstrap
h = bandwidth_bootstrap(r,m,x,H,N,h0,link,guessing,lapsing,K,p,ker,maxiter,tol,method);Bootstrap estimate of the optimal bandwidth
Input:hfor a local polynomial estimate of the psychometric function with specified guessing and lapsing rates.Optional Input:
r: number of successes at pointsx
m: number of trials at pointsx
x: stimulus levels
H: search interval
N: number of bootstrap replications
h0: pilot bandwidth; if not specified, then the scaled plug-in bandwidth is used
link: name of the link function; default is 'logit'
guessing: guessing rate; default is 0
lapsing: lapsing rate; default is 0
K: power parameter for Weibull and reverse Weibull link; default is 2
p: degree of the polynomial; default is 1
ker: kernel function for weights; default is 'normpdf'
maxiter: maximum number of iterations in Fisher scoring; default is 50
tol: tolerance level at which to stop Fisher scoring; default is 1e-6
method: loss function to be used in bootstrap: choose from: 'ISEeta', 'ISE', 'deviance'; by default all possible values are calculatedOutput:
Back to Functions
h: bootstrap bandwidth for the chosenmethod; if nomethodis specified, then it is three-row vector with entries corresponding to the estimated bandwidths on a p-scale, on an eta-scale and for deviance