
1 Introduction
The ecological approach to visual coding is based upon the premise that physical
characterisations of the natural environment can help place in context the aims of, and
constraints upon, human visual processing. One aim of the ecological approach is to
better understand the role of spatial image redundancies in visual coding; much of the
research in this area has made use of the global Fourier transform as a tool for both
analysing (eg Field 1987) and manipulating (eg Knill et al 1990; Tadmor and Tolhurst
1994; Thomson and Foster 1997) statistical image properties. In particular, those second-
order scene statistics quantified by the image power spectrum appear broadly consistent
from image to image, and this analytical result has been related to the properties of
visual cortical cells (Field 1987). Simple Fourier-domain image-processing demonstra-
tions (eg Oppenheim and Lim 1981; Piotrowski and Campbell 1982) imply, however,
that it is image phase spectra which convey the majority of the information used by
organisms to discriminate different scenes. This both motivates and complicates an
extension of the ecological approach: those scene statistics captured by the phase spec-
trum do show some consistencies from image to image (Thomson 1999a, 1999b), and
these consistencies might be expected to have greater import for sensory coding than the
power-spectral consistencies (we must surely discriminate different scenes efficiently),
yet if the phase spectrum is also the chief determinant of image-specific structure, it
will not be so easy to relate those consistencies to the processing carried out by the
human visual system.

Given these difficulties, a study which aims to provide a better understanding of
human sensitivity to phase-related structure in natural scenes would be well advised
to follow a rather parsimonious approach. The key goals of the present study are
(i) to define the simplest global image statistics that are potentially sensitive to changes
in Fourier phase spectra of images, and (ii) to assess the ability of these statistics
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to account for human visual sensitivity to phase perturbations in natural images.
As in previous studies, the global Fourier transform is used to perform the phase
perturbations (Oppenheim and Lim 1981; Piotrowski and Campbell 1982); the class
of statistical image measures investigated here, however, is defined not in the Fourier
domain but in higher-order statistical domains (Nikias and Petropulu 1993). Human
visual sensitivity to image phase perturbations is assessed partly by means of some
new suprathreshold image-processing demonstrations and partly through a psycho-
physical image-discrimination experiment. One measure, based on the normalised fourth
image moment or kurtosis, accounts for human performance particularly well; when
this finding is used to place constraints on the mechanisms underlying early cortical
processing, it is shown to be consistent with a system which processes image structure
by correlating the outputs of relative-phase-sensitive cells.

2 Previous work on phase manipulations
The techniques of phase randomisation and phase quantisation have been used in
several studies to perturb localised scene structure across the whole region of support
of an image. For example, it is well known that natural images whose phase spectra
have been completely randomised convey very little local structural information, and
human observers rapidly and consistently categorise such images as `unnatural' (Field
1987). Julesz and Schumer (1981) claimed that the slightest scrambling of the Fourier
phase spectrum renders an image unrecognisable, and Oppenheim and Lim (1981) even
asserted that no variation in the amplitude spectrum of a pattern is needed to recog-
nise it as long as the phase spectrum is adequately coded. More recent studies (Juwells
et al 1991; Tadmor and Tolhurst 1993; Lohmann et al 1997), however, imply that the
relative importance of Fourier amplitude and phase as determinants of perceived image
structure appears to depend on the exact configuration of the phase spectrum of the
image. Piotrowski and Campbell (1982) showed that natural images could still be
recognised after severe quantisation of their Fourier phase spectra, but the differential
effects of phase quantisation and phase randomisation are still unclear. In the most
systematic study to date, Hu« bner et al (1988) determined detection thresholds for the
effects of quantisation and randomisation on random grayscale textures; their results
showed that the detectability varied monotonically with increased randomisation or
quantisation, and that the thresholds obtained with the use of these two techniques
were similar provided that both techniques shifted the phase components by the same
average amount (cf Piotrowski and Campbell 1982).

This equivalence of randomisation and quantisation is particularly interesting,
since one might intuit that quantising phase values could introduce image structure,
whereas randomising phase values might be expected to destroy image structure. Is this
finding true for natural images as well as for random textures? Do the visual effects
of randomisation and quantisation depend critically on the nature of each individual
image? The following section describes some new image-processing demonstrations
designed to answer these questions and to test some of the findings reported in the
studies cited above.

3 Demonstrations
3.1 Methods
The data set used to produce the demonstrations was an ensemble of eighty-five
calibrated, digitised natural scenes of linear size N � 512 pixels; the images and cali-
bration procedures have been described elsewhere (Thomson and Foster 1997). Phase
perturbations, carried out on a Sun IPX SPARCstation (Sun Microsystems, USA), were
applied by Fourier-transforming each image; computing its power and phase spectra
as a function of Cartesian spatial frequencies (u, v); altering the values in the phase
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spectrum f(u, v); and inverse-Fourier-transforming the resulting spectra to produce a
new image. A second, much larger image ensemble was generated by replacing the natural
phase spectrum of each image with random deviates drawn from a uniform distribution
over the interval [ÿp, �p); this procedure was performed 100 times for each image,
with a different random seed each time, producing a total of 8500 random-phase images.
All random deviates were generated with a linear-congruential pseudo-random-number
generator with a very long cycle (Press et al 1988).

Images in either ensemble could be phase-perturbed in one of two ways, as follows.
Phase quantisation restricts the gamut of image phase states to a smaller number of
permissible levels. An n-level phase quantisation divides the range of the principal
phase spectrum [ÿp, �p) into n equal intervals of size 2p=n; all Fourier components
whose phase values fall anywhere within a given interval are then shifted to a new
phase value defined by the midpoint of that interval. For the purposes of the present
study, n was restricted to the range 3 ^ 16; 2-level quantisation introduces symmetries
into images, caused by a phase-orientation ambiguity (Piotrowski and Campbell 1982),
and quantisations finer than 16-level appear to have no visual effect (Hu« bner et al 1988).
Following Hu« bner et al (1988), phase randomisation is defined here by equivalence
with phase quantisation; before n-level randomisation can be performed, one must first
perform an n-level quantisation of the original image, then, using equation (1), compute
the mean absolute phase difference (MAPD) of the phase values fo (u, v) present in the
original image and the corresponding values ff (u, v) present in the phase-quantised
image:

MAPD � 1

N 2

XN
u� 1

XN
v� 1

� jfo �u, v� ÿ ff �u, v�jmod 2p� . (1)

Randomisation then proceeds as follows: add to the value of each Fourier component
in the original image a random deviate drawn from a uniform distribution over the
interval [ÿJ,�J), with J chosen such that the MAPD of the original and randomised
images is the same as that of the original and quantised images.

The demonstrations require a suprathreshold psychophysical paradigm capable of
revealing which image phase perturbations have perceptual significance and which do
not. The paradigm adopted here is similar to that used by Julesz and coworkers in their
investigations of texture processing (eg Julesz et al 1973). If X is the original image,
drawn from either the natural- or random-phase ensemble, and Y is the same image
after phase perturbation, a composite image Z may be constructed by combining the
pixel values of X with the corresponding pixel values of Y in proportions defined by
a 2-D Gaussian function g centred over the image and with standard deviation of
N=4, thus: Z � gX� (1ÿ g)Y. This partitioning process creates a central area, derived
mainly from image X, and a surround area, derived mainly from image Y, without
producing edge artifacts at the centre ^ surround interface. One may reasonably assume
that if a composite can be segmented instantly and effortlessly by a human observer,
this is because the underlying statistics of images X and Y are sufficiently differentö
the observer does not have access to both original images in their entirety, and so
cannot perform a simple discrimination task that might be based on, for example,
local luminance differences. Moreover, in the demonstrations shown here, images X
and Y always had identical power spectra, so the statistical differences used by the
observer to perform the segmentations must be due to differences in the phase spectra
of those images.
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3.2 Results
Figure 1 shows nine composites generated with the paradigm described above. Composites
A and B each show a natural image (surround) combined with its random-phase counter-
part (centre); the salience of the statistical differences between natural-phase and
random-phase image data gives a `fuzzy' or `noisy' percept in the centre of the stimulus.
Composite C is, in effect, a control experiment, constructed by combining two different
random-phase versions (generated with different random seeds) of the same natural scene:
the composite is not segmentable. Composites D and E each show a natural image
(surround) combined with a 4-level phase-randomised version of the same image (centre):
Composite D is not segmentable, yet composite E is, so the effects of phase random-
isation do indeed depend on the nature of the original image. Composite F, which is not
segmentable, shows one of the random-phase images (surround) combined with the
same image after 3-level phase quantisation (centre): even severe quantisation appears
to introduce no new structure into random-phase images. None of the composites in
the bottom row (G, H, I) is segmentable, yet all were created by combining a 3-level
phase-randomised version (surround) with a 3-level phase-quantised version (centre) of
the same image: when the processes of quantisation and randomisation are normalised
for MAPD, the resulting visual effects do indeed appear perceptually equivalent.

Figure 1. A montage of nine composite images; see text for description.
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These observations may be combined with the results of the studies cited above in
order to summarise the perceptual significance of statistical image changes induced by
phase-perturbing both natural and random-phase images. For natural images, increasing
the severity of phase perturbations generally increases the salience of the resulting visual
effects, and natural images are always readily distinguished from their random-phase
counterparts. Human visual sensitivity to intermediate levels of phase perturbation
depends strongly on the nature of individual images, but not on the exact perturbation
method (provided that the MAPD normalisation is used). For random-phase images,
changes in the precise phase configuration induced by re-randomising the phase spectra
of these images do not generate cues for image segmentation; this finding is not trivial,
since one could easily prescribe an image power spectrum that would render such
changes perceptually significant.

4 A statistical framework
This section is directed towards the first goal of the present study: to define the simplest
global image statistics that are potentially sensitive to changes effected in image phase
spectra. The statistics considered here are conventional nth-order statistics, not those
studied by Julesz and colleagues [see Klein and Tyler (1986) for a discussion of the
advantages of conventional over Julesz statistics]. Given this, global second-order
statistics cannot possibly account for the visual effects of image phase perturbation, since
the phase-perturbation procedures leave the power spectra of the images unchanged.
How, then, should one proceed within the statistical framework? Perhaps the most
obvious approach would be to first compute multiple, local first-order statistics, then
consider how these are to be combined to produce global sensitivity; such an approach
is in direct accord with existing anatomical and physiological evidence, which supports
the notion that early visual processing is subserved by multiple local analysers that feed
into c̀ollator units'. Although this agreement with experimental findings is encouraging,
a number of theoretical issues make it difficult to pursue this `bottom ^ up', local-analyser
approach systematically outside the linear framework; for example, the well-known
problem of disconfounding the precise sensitivities of the local analysers from the details
of how their outputs are to be combined. An alternative strategy, then, is to compute
simple, global higher-order statistics (that is, statistics of order 3 or higher) on the images
themselves in an attempt to predict human sensitivity to phase-related image changes.
Such a strategy is pursued here, not because we believe the visual system computes higher-
order statistics, but because it allows constraints to be placed more directly on the way
in which the outputs of visual analysers are combined. The two approaches are in fact
complementary rather than mutually contradictory (indeed, there would be little point
in following an approach which could not be related ultimately to the physiology), since
many multiple local-analyser arrangements can be recast as a single mechanism whose
sensitivity to the higher-order statistics of the visual input is easily defined.

Which global higher-order statistics should be considered? For any order n, the
simplest possible nth-order statistic of a signal is the nth moment, ie the expected
value of the nth power of the signal. The third and fourth moments of an image, then,
warrant consideration on grounds of parsimonyöthey are the simplest global odd-
order and even-order statistics that are potentially sensitive to image phase changes.
Indeed, Klein and Tyler (1986) found that these measures could account satisfactorily
for the results of a variety of psychophysical phase-discrimination experiments. The
simplicity of these higher-order moments is, however, rather deceptive; they are not pure
third-order and fourth-order statistical measures, since they generally also depend on
second-order signal statistics. It is usually assumed that this dependence can be removed
by normalising with the appropriate power of the variance; this produces from the
third moment a measure termed skewness, and from the fourth moment a measure
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termed kurtosis (1). This normalisation does not guarantee, however, that the skewness
and kurtosis measures will be independent of the form of the power spectrum: to do
so requires that the power spectrum of the signal be completely flattened before these
measures are computed, a process sometimes termed whitening. When this procedure is
followed for natural-image data, the resulting measuresöwhich may be termed phase-only
skewness and phase-only kurtosisödo display certain consistencies across image ensem-
bles; for example, the phase-only kurtosis of natural images is strictly positive, whereas the
phase-only kurtosis of random-phase images is close to zero (Thomson 1999a).

5 Simulations
5.1 Methods
Can either of these higher-order statistics, with or without the modification of spectral
whitening, account for the visual effects of phase-perturbing natural images? One
simple and robust finding, reported in many of the phase-perturbation studies cited
earlier, and illustrated here in figure 1, is that human observers do not confuse natural
images with random-phase images. Figure 1 also shows that re-randomising random-
phase images does not produce visually salient statistical effects. Taken together, these
two observations effectively define bounds on human sensitivity to image-phase pertur-
bations; an important preliminary test of the behaviour of the higher-order image
statistics involves determining whether these statistics predict those bounds, as follows.
Consider a difference measure which computes the magnitude of the changes induced in a
given higher-order statistic as a result of complete phase randomisation of an image: if
such a measure were computed for (a) the natural-image ensemble and (b) the random-
phase ensemble, the distributions over (a) and (b) should not overlapöin fact one would
expect the distribution over (b) to be centred around some very small value.(2)

These difference measures may now be defined formally as follows, given an original
image Io and a phase-perturbed image If , both constrained to be zero-mean, as functions
of x and y :
. Skewness difference, Ds :

1

N 2

���� XN
x� 1

XN
y� 1

�If �x, y�3� ÿ
XN
x� 1

XN
y� 1

�Io �x, y�3 �
�����

1

N 2

XN
x� 1

XN
y� 1

�Io �x, y�2 �
�3=2

; (2)

. Phase-only skewness difference, DsW : computed as in equation (2), but both original
and phase-perturbed images have flat power spectra;

. Kurtosis differences, Dk:

1

N 2

���� XN
x� 1

XN
y� 1

�If �x, y�4 � ÿ
XN
x� 1

XN
y� 1

�Io �x, y�4 �
�����

1

N 2

XN
x� 1

XN
y� 1

�Io �x, y�2 �
�2

; (3)

. Phase-only kurtosis differences, DkW : computed as in equation (3), but both original
and phase-perturbed images have flat power spectra.

(1) In the most common definition of kurtosis, the value 3 is subtracted from the normalised fourth
moment in order to ensure that the kurtosis of a Gaussian random process is zero. This distinction
is irrelevant to the measures described in this section, since they are all difference measures.
(2) In theory, phase-only kurtosis or skewness differences computed from a process with Gaussian
phase statistics are zero, but the images described here are finite 2-D samples, and so some residual
higher-order correlations would be expected.
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For the sake of completeness, we also consider two first-order difference measures
described by Hu« bner et al (1988), both of which were found to model human sensitivity
to phase perturbations in grayscale textures rather well. These are the MAPD measure
set out in equation (1), and a `bit-metric' measure which quantifies local luminance
differences between original and phase-perturbed images (for the purposes of comput-
ing this measure, If and Io are constrained to be strictly positive):

1

N 2

XN
x� 1

XN
y� 1

j If �x, y� ÿ Io �x, y�j
Io �x, y�

.

Like the skewness and kurtosis measures, this bit metric can also be made into a
phase-only measure by computing it on spectrally whitened images.

5.2 Results
The histograms shown in figures 2a (Ds), 2b (Dk), 3a (MAPD), and 3b (bit-metric)
represent the distributions of these difference measures across the two image ensembles

(a) (b)

Figure 2. Histograms showing the distribution of (a) the skewness difference and (b) the kurtosis
difference measures across the natural-image ensemble (thick lines) and the random-phase ensemble
(thin lines). Dark-coloured lines indicate the phase-only measures, DsW in (a) and DkW in (b), and
light-coloured lines indicate the non-phase-only measures, Ds in (a) and Dk in (b).
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Figure 3. Histograms showing the distribution of (a) the MAPD and (b) the bit-metric measure
(PBM) across the natural-image ensemble (thick lines) and the random-phase ensemble (thin lines).
In (b) dark-coloured lines indicate the phase-only bit-metric measures and light-coloured lines
indicate the non-phase-only bit-metric measure.
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described above; the abscissas are plotted on a logarithmic scale, purely because the
range of values is generally very large. Dark-coloured lines indicate the phase-only
measures and light-coloured lines indicate the non-phase-only measures; thick lines
show the distribution for the natural-phase images, and thin lines show the distribution
over the random-phase images.

Only two of the difference measures, DsW and DkW , satisfy the requirement that
there should be no overlap between the distribution over the natural images (thick lines)
and the distribution over the random-phase images (thin lines); indeed, the peaks of these
two distributions are several orders of magnitude apart in both cases.

These findings prompted a more qualitative investigation of the behaviour of the
DsW and DkW measures under increasingly severe phase perturbation, as follows. Each
image in the natural and random-phase image libraries was subjected to n-level quantisa-
tion with n � 3, 4, 5, 6, 7, 8, 10, 12, 14, 16. The DsW and DkW measures were computed
from equations (2) and (3), respectively, this time comparing the phase-only skewness
and phase-only kurtosis of the original images with those of the phase-perturbed
images; the results are plotted as a function of n in figures 4a (DsW ) and 4b (DkW ).
For the purposes of comparison, two more simulations were performed. First, the
random-phase ensemble was used instead of the natural-image ensemble; the corre-
sponding data are also shown in figures 4a and 4b. Second, the technique of phase
randomisation, instead of phase quantisation, was used to phase-perturb images in the
natural-image ensemble: the top part of figure 4a shows the ratio (DsW under random-
isation)=(DsW under quantisation) as a function of n, and the top part of figure 4b
shows the corresponding data for DkW.

Figures 4a and 4b are rather similar (although notice in figure 4a that the error
bars for the natural-image data are rather large, and that the randomisation=quantisa-
tion ratio is not always exactly one): as n decreases, randomisation and quantisation
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Figure 4. (Bottom) (a) DsW and (b) DkW plotted as functions of n under phase-quantisation of
natural images (solid lines) and random-phase images (dotted lines): vertical bars show �1 SEM
of the distribution of DsW and DkW over all images in the ensemble. (Top) the ratio (DsW
under randomisation)=(DsW under quantisation) plotted as a function of n in (a) and the corre-
sponding ratio for DkW plotted in (b).
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produce equivalent monotonic increases in DsW and DkW measured from natural
images, but essentially no change in DsW and DkW measured from random-phase images.
Thus far, then, the effects of phase perturbation on the behaviour of DsW and DkW is
consistent with the associated visual effects. To test the performance of these simple
statistical measures still further, a psychophysical image-discrimination experiment was
devised, and this is described in the following section.

6 Experiment
6.1 Methods
The experiment was designed to investigate further the image-dependence of human
visual sensitivity to phase perturbations. One obvious threshold psychophysical para-
digm would require observers to discriminate a slightly phase-perturbed image from a
natural image, but under these circumstances observers' sensitivities might be deter-
mined by one particular `feature' in the natural images, ie they may not perform the
tasks statistically. To avoid this, observers were instead required to discriminate a
partly phase-randomised image from two fully phase-randomised images with the same
power spectrum. Partly phase-randomised images were generated by adding a random
deviate drawn from a uniform distribution over the interval [ÿJ, �J ) to each phase
value in the original image; for the fully randomised images, the value of J was p.
The stimulus parameter r was the difference in randomisation between the partly and
fully randomised images, expressed as a percentage of full phase randomisation:
r � 100(pÿ J)=p %. A 3-alternative forced-choice paradigm was used, and image
presentation was temporal-sequential: on each trial an observer was presented with
a stimulus; an interstimulus field; a second stimulus; an interstimulus field; a third
stimulus; and a poststimulus field. Each stimulus consisted of a single image presented
in the centre of the visual field on a uniform gray background. The observer was
instructed to choose which one of the three stimuli was the odd one out. One of the
three stimuli contained the partly phase-randomised image and the other two contained
fully phase-randomised images; the (temporal) order of these three stimuli was random.
All three images had identical power spectra but were phase-randomised with the
use of different random seeds. The interstimulus and poststimulus fields consisted of
uniform gray backgrounds. The presentation time for all stimuli and all intervals was
300 ms each; observers used a three-button mouse to signal their responses. Stimuli
were presented on a high-resolution monitor (Sony Japan Trinitron model) driven by a
Silicon Graphics O2 computer system (SGI, UK). The mid-gray of the monitor (gray-
level 128) had a luminance of 30 cd mÿ2; with the viewing distance set at 1.5 m, the
available spatial-frequency bandwidth was 0.125 ^ 45 cycles degÿ1. In a single experi-
mental run, the PEST algorithm (Taylor and Creelman 1967) was used to determine a
single threshold. The algorithm was initialised with a stimulus parameter of 50% and a
step size of 10%; it terminated when the step size was less than 2.5%, and the magni-
tude of the step size could never exceed 20%. Ten estimates of observer threshold
were determined for each of fifteen different images; these fifteen images were selected
at random from the natural-image ensemble. There were thus 150 runs in an entire
experiment, and these runs were conducted in random order. There were two observers,
RJS and ET, both of whom had corrected-to-normal visual acuity (6=6 Snellen acuity).
Observer ET was unaware of the purposes of the experiment; RJS is a coauthor.

6.2 Results
The results of the experiment are plotted in figure 5, which shows the thresholds
recorded by the PEST algorithm for both subjects over the 15 different images.

Notice that the observers' thresholds vary greatly from image to image, from
around 10% to 45%. The two subjects' threshold levels are quite differentöobserver ET
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is around 10%^ 15% more sensitive than observer RJSöbut the trends as a function
of image number do show similarities.

In an attempt to determine whether the sW and kW measures discussed above
could account for human performance, these measures were used to construct model
observers, as follows. First, each image used in the experiment was subjected to
progressive phase randomisation, ranging from no randomisation at all (r � 100%) to
complete phase randomisation (r � 0%) in steps of 5%. When DsW and DkW were
plotted as functions of r, the data were found to be almost perfectly fitted by logistic
functions, ie curves of the form DsW or DkW � c=[1� exp (aÿ br)], where a, b, c
are the parameters determined by the fitting algorithm. Fitting these data in this way
allowed us to compute the value of r for any given value of DsW and DkW ; in fact,
by repeating the entire process 100 times for 100 different random seeds, we were also
able to estimate errors on r due to the variation in random seed. All that remained,
then, was to set a threshold level of DsW or DkW at which the model observers would
judge a partly phase-perturbed image to be discriminable from fully-phase-randomised
images. The human observers' threshold data shown in figure 5 were used to do this,
as follows. The fitted curves described above were used to reparameterise the human
observers' thresholds in DsW and DkW rather than in r; these thresholds were then
averaged across all images to yield a single threshold value; this threshold was
then used as the model observer's threshold. This procedure was performed separately
for each of the two human observers because of the significant difference in their
overall threshold levels. The thresholds set by the two human observers are plotted
in figures 6a (DsW ) and 6b (DkW ) against the corresponding thresholds predicted by
the model observers.

Since the mean threshold of a given model observer over all images has effectively
been fixed to agree with the mean threshold of the corresponding human observer,
what is of interest here is whether the model can predict the significant image-by-
image variation in observer thresholds. Of the two model observers, the one based
on phase-only kurtosis (figure 6b) predicts the observers' thresholds rather well; the
data lie close to a straight line of unit gradient and the correlation coefficient is
0.93. Notice also that, in both figures, the human-observer and model-observer
error estimates are of similar magnitude, implying that the uncertainty in the human
observers' thresholds is explained mainly by the variations in the random seeds.
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7 Discussion
The present work has introduced global statistics that areöunder the conventional
definitionsöthe simplest global statistics that could potentially account for image
changes induced by phase perturbation. It has shown that measures based on image
skewness and kurtosis can, when appropriately normalised to remove the effects of
second-order image structure, account for the observed patterns of human visual sensi-
tivity to the phase-domain changes described here; in addition, the phase-only kurtosis
measure can even account for the strong image dependence of the visual effects of
phase perturbation.

Of course, such simple measures could never be expected to provide a complete
description of human visual sensitivity to phase perturbationsöwe know there are
ways of processing images which will change phase-only skewness or kurtosis radically
without inducing visually salient image changes (and the converse is probably also
true)öand it may be that the behaviour of these statistical measures in this respect
could be improved easily through, for example, the introduction of spatial-frequency
selectivity. As stated earlier, however, it is not the aim of the present study to argue
that the visual system computes higher-order statistics. The rationale for the higher-
order-statistical approach is instead as follows: now that we know the human visual
system shows similar patterns of sensitivity under phase-related image changes to the
trends observed in analytically defined higher-order statistics, this similarity can be used
to place constraints simultaneously on (a) what type of analysers might be involved,
and (b) how the outputs of those analysers might be combined. To discover what those
constraints are, we need to define the class of visual mechanisms that are sensitive to speci-
fically those phase-domain image changes that also affect the phase-only image kurtosis.

For simplicity's sake, the following part of the discussion is restricted to the phase-
only kurtosis statistic, but arguments analogous to that set out below could be constructed
for any phase-only higher-order statistic. Fourth-order statistics are the lowest even-
higher-order statistics, and even-higher-order statistics are easier to relate to the proper-
ties of neural mechanisms (Thomson 1999a) than odd-higher-order statistics.

Recall that natural images always have positive phase-only kurtosis, whereas random-
phase images have phase-only kurtosis values close to zero. What sort of consistencies
in the phase spectra of natural images could give rise to this positive phase-only

(a) (b)

Figure 6. Thresholds set by the two human observers plotted against the corresponding thresh-
olds predicted by a model observer that computes (a) DsW and (b) DkW. The human-observer
data are those plotted in figure 5; the horizontal bars show �1 SEM of the distribution of
(a) DsW and (b) DkW over the 100 random seeds.
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kurtosis? The answer cannot lie in the absolute Fourier phases; these would be altered
by a simple translation, under which all higher-order moments are (by definition)
invariant. The key is to consider the properties of the phase-only kurtosis measure not
in the space domain, but in the Fourier domain. Since image kurtosis is a fourth-order
statistic, it must be formed from the sum of fourfold combinations of image data;
this is true not only in the spatial domain, but also in the Fourier domain, where
kurtosis is defined as the integral of fourfold combinations of frequency components
(Nikias and Petropulu 1993). The space of all these fourfold combinations is very large;
one way of simplifying it is to consider each combination of four frequency compo-
nents as two pairs of frequency components. This allows one to define the relative
phase of each pair as the difference in the absolute phases of its two members; and it
follows from the (frequency-domain) definition of kurtosis that positive phase-only
kurtosis will arise if the relative phase of one pair is, on average, positively correlated
with the relative phase of the other pair (Thomson 1999a). This phenomenonöpositive
correlations between relative spatial phasesöis indeed a property of natural images
(Field 1994; Summers and Thomson 1999), and this simple model of fourth-order
image structure suggests one way of constructing a simple encoder that would be
sensitive to changes in phase-only image kurtosis: operate a mechanism which corre-
lates the outputs of a bank of relative-phase-sensitive analysers.

As a property of visual cortical cells, sensitivity to relative rather than absolute
spatial phase is not a new concept; in fact, it accords well with existing physiological
evidence (eg Victor and Conte 1996). These relative-phase analysers are almost certainly
not the `front end' of the visual cortex; anatomical and physiological studies lead us to
believe that they are themselves formed from the outputs of translation-sensitive units.
Two different stages of the mechanism predicted here could thus be reconciled with the
notions of local-contrast (Tadmor and Tolhurst 1994) detectors (the translation-sensitive
units) and local-energy (Morrone and Burr 1988) detectors (the relative-phase analysers),
but it is the combinatorial aspects of the mechanism which are of greater interest hereö
not just the implied existence of correlator units, an idea which has received some
attention in the literature (see, for example, Field 1994), but also the notion that some
sort of spectral whitening might be necessary for the correlators to function efficiently.
A recent computational study (Summers and Thomson 1999) suggests that the limited
spectral whitening achieved by the retina (Atick and Redlich 1992) is probably inadequate
in this respect; far more important, probably, is the èffective whitening' achieved by
having spatial-frequency-selective cortical cells with approximately octave-wide spatial-
frequency bandwidths (Field 1987).

Finally, notice that an analyser sensitive to relative spatial phase, although trans-
lation-insensitive, has a fundamentally local sensitivity (Victor and Conte 1996); the
fact that local sensitivity is predicted by a global statistical approach refutes the
notion that global image models are only useful for describing global image-processing
phenomena.We expect that the higher-order statistical framework will continue to be useful
in computational and psychophysical studies of natural-image perception; indeed, one advan-
tage of the approach described here is that it may be taken one step further: to ask, for
example, out of the set of all possible relative-phase-sensitive units, which ones will process
the sort of relative-spatial-phase relationships found in natural images most efficiently?

8 Conclusions
The visual effects of quantising and randomising the Fourier phases of natural and
random-phase images have been illustrated by way of demonstrations and psychophysical
experimentation. The resulting percepts depend qualitatively not on the nature of the
phase perturbations themselves, but on the nature of the phase spectrum of each
individual image. These results are predictable from simple global higher-order statistical
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measuresöin particular, the phase-only image kurtosisöbut not from simple first-order
measures. This finding implies that the visual cortical mechanisms involved in processing
those structural image changes induced by phase perturbations could operate by correlat-
ing the outputs of banks of relative-phase-sensitive units.
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