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The perceived colors of reflecting surfaces generally remain stable
despite changes in the spectrum of the illuminating light. This color
constancy can be measured operationally by asking observers to
distinguish illuminant changes on a scene from changes in the
reflecting properties of the surfaces comprising it. It is shown here
that during fast illuminant changes, simultaneous changes in
spectral reflectance of one or more surfaces in an array of other
surfaces can be readily detected almost independent of the num-
bers of surfaces, suggesting a preattentive, spatially parallel pro-
cess. This process, which is perfect over a spatial window delimited
by the anatomical fovea, may form an early input to a multistage
analysis of surface color, providing the visual system with infor-
mation about a rapidly changing world in advance of the gener-
ation of a more elaborate and stable perceptual representation.

parallel processing u cone-excitation ratios u surface color u transient
chromatic signals

Changes of illumination on a scene occur naturally, as when
a cloud passes over the sun, or when a nearer object moves

in front of the light and casts a shadow. Given this variation, it
might be expected that the visual system would have evolved
mechanisms for extracting properties of surfaces that are invari-
ant under these changes. Color constancy is the effect whereby
the color of a surface is perceived as invariant despite differences
in the color of the illumination (1, 2). The effect is strongest when
the illumination remains steady and spatially uniform (3), but it
also holds across differently illuminated areas (4–8) and under
illumination that changes over time (9). Operationally, color
constancy can be measured by asking observers to distinguish
between changes in the spectral properties of the illumination on
a scene from changes in the spectral properties of the surfaces
comprising it (10). Such a task can be performed rapidly and
effortlessly (10) and is best with fast reflectance changes (11),
which probably generate a transient signal that is exploited by the
visual system (12). This ready capacity to detect violations of
color constancy during illuminant changes has some of the
properties of preattentive vision (13, 14) or vision with distrib-
uted attention (15), involving primarily the early stages of visual
processing (16–18). The stimulus element with the critical
feature or attribute exhibits ‘‘pop out’’ (14, 19–21). A charac-
teristic property of preattentive vision is that search or detection
performance is independent of the number of elements in the
scene; that is, the visual mechanisms concerned act spatially in
parallel over the visual field (21–26).

Are, then, violations of color constancy detected in parallel?
The question is important both for identifying those stimulus
properties that receive priority in the earliest stages of visual
processing and for elucidating how human surface-color per-
ception might proceed as a multistage process (8, 27). The
traditional way of addressing this question for stimulus attributes
such as shape or orientation has been to measure the time taken
to detect a ‘‘target’’ element in an array of ‘‘distractor’’ elements
as the number of distractor elements increases (22, 24), although

accuracy of detection has also sometimes been used as the
dependent measure (23). With a transient event such as an
illuminant or spectral-reflectance change, the accuracy of de-
tection rather than time taken to achieve it provides a more
natural measure of competence, emphasizing encoding-level
processes rather than decision-level processes (28).

In the work reported here, the stimuli were made up of images
of differently colored paper patches undergoing an abrupt
illuminant change. In the first experiment, the target patch,
which appeared in 50% of trials, was defined by a single
spectral-reflectance change that took place at the same time as
the overall illuminant change; the distractors were the remaining
patches, variable in number, undergoing just the illuminant
change. The probability of detecting the target was measured as
the number of distractors increased. This task is different from
detecting a colored target in an array of differently colored
distractors, for which detection is already known to be generally
parallel (14, 20, 29). In the present task, the target would have
been undetectable in the images preceding and following the
illuminant change: the target was defined only at the moment of
change. Target detectability decreased gradually as the number
of distractors increased from 1 to 24, and in a way predictable by
a simple probabilistic model of processing that was perfectly
parallel over a bell-shaped spatial window of width about 4°
visual angle.

Because this window may have covaried with the number of
distractors, a second experiment was performed in which target
detectability was measured as the number of targets increased
and number of distractors decreased so that their total number
was conserved. Two sizes of stimulus field were used. Target
detectability increased gradually as the number of targets in-
creased, but less rapidly with the smaller field than with the
larger field, both increases consistent with perfectly parallel
processing over a spatial window of about 4°. To test whether the
underlying signals might be restricted to a pure luminance
channel, performance was also measured with image changes
that were isoluminant. Window width was unaltered.

General Methods
Observers were presented with computer simulations of square
patches of illuminated colored papers, each of side 1.2° visual
angle, drawn randomly from 1,149 displayable samples of the
1,269 papers in the Munsell Book of Color (30), the spectral
reflectances of which were constructed from combinations of
eight spectral basis functions (31). (Subsequent references to
surfaces and illuminants apply to these computer simulations;
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little difference has been reported between levels of constancy
found with reflected and emitted light, e.g., ref. 7.) The patches
were positioned on the vertices of an imaginary 5 3 5 grid. The
resulting array appeared on a dark background and was limited
to either 6° 3 6° or 4.5° 3 4.5° visual angle at a viewing distance
of 150 cm. The array was uniformly illuminated by randomly
selected daylights, the spectra of which were constructed from
combinations of three spectral basis functions (32). (Basis func-
tions were used here for computational speed and have no
theoretical implications.) Daylights fall about a line on the CIE
1931 (x, y) chromaticity diagram slightly to the green side of the
Planckian locus and can therefore be labeled (but not specified)
by their x coordinates, which ranged from 0.25 to 0.37, cor-
responding to correlated color temperatures of 25,000 K to
4,300 K.

The stimuli were generated on the screen of a 19-inch, 1024 3
768 pixels, RGB color display monitor (Trinitron, model GDM-
2036S; Sony, Tokyo), controlled by a computer (type 3y160; Sun
Microsystems, Mountain View, CA) driving a special-purpose
RGB color-graphics system (4660 series; Ramtek, Hampshire,
U.K.) providing 10-bit intensity resolution per gun. The screen
refresh rate was about 60 Hz, and phosphor decay times were
each ,1 ms. A telespectroradiometer (SpectraColorimeter, PR-
650; Photo Research, Chatsworth, CA), previously calibrated by
the National Physical Laboratory, was used to regularly calibrate
the display system. Errors in the displayed CIE (x, y, Y) coor-
dinates of a white test patch were #0.005 in (x, y) and ,2% in
Y. The mean luminance of the patches was 16 cdzm22, but
individual luminances varied widely (SD 10 cdzm22).

In each trial, the array of papers was displayed for 1 s under
one randomly selected, spatially uniform daylight, and then for
1 s under a second randomly selected, spatially uniform daylight;
the change in illuminant was abrupt, and total display duration
was therefore 2 s. At the same time as this illuminant change, one
or more randomly selected papers underwent a spectral-
reflectance change, with probability 0.5. The size of the reflec-
tance change was conveniently quantified in CIE (x, y) coordi-
nates by an equivalent localized illuminant change that differed
from the spatially uniform illuminant change by an increment Dx
in x along the daylight locus (10, 33). The change is not
necessarily equivalent to shifting the CIE (x, y) coordinates of the
surface color by Dx but depends on the product of the illuminant
and surface-reflectance spectra. This shorthand method of
quantifying changes in spectral reflectance was used so that they
could be related directly to the changes in the x values of the
illuminants. It does not affect the data analysis or conclusions.
The x values of the uniform illuminant changes were drawn
randomly from the values 60.04 and 60.10; on the basis of pilot
estimates of detection thresholds, the increments Dx were drawn
randomly from the values 60.04 and 60.08 (or 60.06), subject
to the constraint that the total illuminant x value did not fall
below 0.25 or above 0.37.

The task in each trial was to determine whether a reflectance
change occurred. Viewing the screen binocularly, the observer
fixated a central fixation mark on the screen and, when ready,
initiated a trial by pressing a switch on a box connected to the
computer. The fixation mark disappeared, and then the array of
papers appeared under the two successive illuminants. The
observer responded by using the switch box, and, after a few
seconds, the fixation mark reappeared indicating that the next
trial could be initiated. Observers were encouraged to maintain
central fixation, although this proved difficult when there were
no patches at the center of the screen.

Different randomly selected surfaces and illuminants were
used in each trial. Depending on the experiment, each observer
performed, on average, 830–1,760 trials. There were five ob-
servers, three female and two male, aged 19–30 yr. Each had
normal color vision, verified by Rayleigh and Moreland anoma-

loscopy. All except observer K.A. (coauthor) were unaware of
the purpose of the experiment and unpracticed in making color
matches.

Target-detection performance was quantified by the discrim-
ination index d9 from signal-detection theory (34). In brief, let pH
be the hit rate, that is, the probability of a ‘‘reflectance’’ response
when a reflectance change occurred; let pF be the false-alarm
rate, that is, the probability of a ‘‘reflectance’’ response when a
reflectance change did not occur; and let z be the inverse of the
cumulative unit normal distribution. Then d9 5 z(pH) 2 z(pF). In
this way, d9 linearizes and combines responses to target and
nontarget arrays and eliminates observer bias (34). A zero value
of d9 corresponds to chance performance, and d9 increases
monotonically with the detectability of the target (in a two-
alternative forced-choice task, a value of d9 of 1.0 corresponds to
76% correct). Observers’ levels of performance were found to be
similar, and data were pooled. For the purposes of analysis, a
psychometric function was fitted to the graphs of d9 against
increment Dx and selected values read off. Standard errors were
estimated by resampling over observers (35).

One Target, Variable Geometry
In the first experiment, observers were presented with a variable
array of square patches of paper undergoing an abrupt illumi-
nant change, as illustrated in Fig. 1. Except for the largest array,
patches were grouped into pairs distributed randomly over the
field (a pair being the smallest stimulus unit providing the
required cue). If a spectral-reflectance change also occurred, it
affected only one randomly selected patch [in Fig. 1, it is the
patch with grid coordinates (2, 2) counting from bottom left].
The total number of patches present in any trial was 2, 4, 8, 16,
or 25. In the last, patches were unpaired and arranged in a 5 3
5 array to provide continuity with the second experiment (for
which an array with an odd number of patches was required). The
size of the field was 6° 3 6°, over which cone-photoreceptor
thresholds do not vary too rapidly with eccentricity (see ref. 36
and Discussion). Visual search for targets defined by color is
similar when targets and fields are both smaller and both larger
than the ones used here (29).

Fig. 2 shows target detectability (circles) plotted against the
number n of distractors in the array (squares refer to a control

Fig. 1. Example stimulus with variable geometry. The image consisted of an
array of randomly positioned square patches of randomly selected colored
papers (grouped into pairs) displayed for 1 s under one randomly selected
daylight and then for 1 s under another randomly selected daylight. The
illuminant change was abrupt. In a target trial, a simultaneous spectral-
reflectance change also occurred affecting only one randomly selected patch
[here, the patch with coordinates (2, 2), counting from bottom left]. The total
number of patches present in any trial varied from 2 to 25, and they were
constrained to fall within a field of 6° 3 6° visual angle (shown by the broken
lines).
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condition and curves to model predictions, both described later;
ordinate ranges were chosen to aid comparison with subsequent
plots). The upper and lower panels are for data obtained with the
different sizes of increments Dx of 0.04 and 0.08 quantifying the
target spectral-reflectance changes. With just two patches in the
array (n 5 1), the detectability of a single reflectance change was
well above chance (d9 5 0), but, as n increased, detectability
gradually decreased (the gradients in the upper and lower panels
were 20.028 and 20.055 per patch). It is not immediately clear,
however, if this decrease is as much as would be expected if
processing were serial. To resolve this question, one needs a
quantitative model of how the probability of detecting the target
varies with the number of patches.

A Probabilistic Model of Target Detection
Suppose, first, that processing were indeed serial. As each trial
provided a single transient cue, serial processing would amount
to processing just one of the pairs of patches present in the image.
As argued later, serial processing of other pairs of patches by
observers shifting fixation or focal attention seems unlikely,
owing to limitations on visual working memory. In a trial with
no more than one pair of patches, there would be no uncertainty
about which pair to fixate and process (given that observers did
not maintain central fixation). For such a trial, let pH(1) be the
probability of a hit (the ‘‘1’’ designating a single distractor), and
let pF(1) be the corresponding probability of a false alarm. These
two probabilities may be estimated by the observed hit and
false-alarm rates with a single distractor (together giving the
value of d9 at n 5 1, plotted in Fig. 2). Now consider a trial with
n distractors (n . 1). Let pH(n) be the corresponding probability
of a hit and pF(n) be the corresponding probability of a false

alarm. The probability pH(n) may be predicted from pH(1) and
pF(1) in the following way. By supposition, only one pair of
patches can be processed at a time. The total number of patches
in the array is n 1 1, and therefore the probability of fixating the
pair containing the target, if present, is 2y(n 1 1) and of not
fixating it is 1 – 2y(n 1 1). Hence, pH(n) 5 [2y(n 1 1)] pH(1)
1 [1 – 2y(n 1 1)] pF(1) (cf. ref. 23). Assume for the moment that
the observer’s false-alarm rate is constant with n; that is, pF(n) 5
pF(1). Predicted detection performance d9 as a function of n is,
by definition, then given by z[pH(n)] 2 z[pF(n)]. This function,
shown by the dotted curves in Fig. 2, fell significantly below
observed performance [x2(4) 5 39; P , 0.0001]. Processing was
clearly not serial. Assume now that the false-alarm rate pF(n)
varies with n, which is possible as observers could have shifted
their criterion while inspecting the array before and after the
illuminant change (in fact, the observed rate increased only
slightly with n). Because this criterion shift would have been
identical for target and nontarget arrays with the same n, the
value of d9 remains the same.

Suppose, next, that processing were parallel, but only within a
spatial window of width w, say, centered on the point of gaze.
Assume for simplicity that the window has a hard edge; that is,
patches within wy2 of the center are processed perfectly in
parallel, and beyond that, not at all. Let the maximum width of
the stimulus array be W. Consider a target trial with n distractors
(n . 1). The probability pH(n) of a hit is given by an expression
similar to that for serial processing, but containing terms
weighted by the probability (wyW)2 of the pair falling within the
window and 1 2 (wyW)2 of it not. As before, predicted detection
performance d9 as a function of n is given by z[pH(n)] 2 z[pF(n)].
This function was evaluated numerically with the window width
w ranging from 0 to W. The best-fitting function for this
hypothetical hard-edged window was obtained with w 5 4.3°.

More realistically, assume now that the window is spatially
graded, so that the degree of parallel processing declines
smoothly with distance, say r, of the patch from the center of the
window according to a Gaussian function exp[2r2y(2s2)] with
SD s. The full width at half-maximum, say w1/2, of this function
is 2.35 s. A Monte-Carlo simulation of the selection procedure
was performed, with w1/2 ranging from 0 to more than W, the full
width of the array. The best-fitting function for this graded
window was obtained with w1/2 5 4.0° and is shown by the
continuous curves in Fig. 2. In generating this best fit (and that
with the hard-edged window), the probabilities pH(1) and pF(1),
estimated by the observed hit and false-alarm rates for a single
pair of patches, were allowed to vary by no more than 1 SE, about
4%.

Although the model curves accounted well for the variance in
the data [x2(4) 5 2.1, P . 0.5], it is possible that the calculated
window merely represented an average of many different win-
dows whose size and shape fluctuated from trial to trial, de-
pending on the number and disposition of the patches in the
field. It is also possible that the small decline in detection
performance with increasing number of distractors may have had
less to do with a spatial limit on perfect parallel processing and
more with the perceived ‘‘objectness’’ of the image, that is, the
degree to which patches were seen as physical surfaces. This
perceptual effect, which could have increased with the total
number of patches in the image, might have offset a much
stronger underlying decline in detection performance with in-
creasing distractor number. These uncertainties could only be
satisfactorily resolved by fixing the geometry of the array. This
was done in the next experiment.

Multiple Targets, Fixed Geometry
In this second experiment, observers were presented with a fixed
6° 3 6° array of 25 abutting square patches of paper undergoing
an abrupt illuminant change, as illustrated in Fig. 3. If a

Fig. 2. Detectability of a single target (spectral-reflectance change) patch in
a variable number of distractor (illuminant change) patches, as in Fig. 1.
Discrimination index d9 (E) calculated over five observers is plotted as a
function of the number n of distractors. Vertical bars show 61 SE where
sufficiently large. The upper and lower panels are for data derived with
different sizes of increments Dx of 0.04 and 0.08 in CIE x-coordinate quanti-
fying the spectral-reflectance change. h, a control condition in which the
changes in the images were isoluminant. The continuous curves represent
predicted detection performance for perfectly parallel processing over a
Gaussian spatial window of width 4.0° visual angle. The dotted curves repre-
sent predicted detection performance for serial processing.
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simultaneous spectral-reflectance change also occurred, it af-
fected 1, 2, 4, 8, or 12 randomly selected patches [in Fig. 3, it is
the 4 patches with coordinates (1, 2), (1, 4), (1, 5), and (2, 3),
counting from bottom left]. Although the size and direction of
the spectral-reflectance change varied from trial to trial, within
a trial it affected all targets equally; that is, the equivalent
localized illuminant change with increment Dx in x along the
daylight locus was the same for each. The other conditions of the
experiment were unchanged. If, in a target trial with n patches
undergoing a spectral-reflectance change, visual processing were
parallel over the whole field, then, providing that the cues from
the targets were perfectly correlated, the probability of detection
with one target should be the same as with 12 targets (the
information available being the same).

Fig. 4 shows target detectability (circles) plotted against the
number n of targets in the array (squares refer to a control
condition and curves to model predictions, both described later).

With one target, the detectability of a reflectance change was
above chance and increased gradually as n increased (the
gradients in the upper and lower panels were 0.034 and 0.067 per
patch, respectively). These increases were statistically significant
and imply that processing was not perfectly parallel over the
whole field, or multiple targets were not perfectly correlated, or
both. A small departure from perfect correlation is to be
expected as the cue that each target provided depends on the
product of the illuminant and surface-reflectance spectra. In
terms of cone-photoreceptor activity, this product varied be-
tween pairs of patches with SD about 3.7% of the mean.
Although these fluctuations are very small (and typical, see ref.
37), they may have an effect when many targets are present (38).
For example, with n 5 2, the probability of one patch giving a
cue 10% larger than the mean for a single patch is about 0.007;
with n 5 12, this probability rises to 0.04. (For a single target, as
in the first experiment, the effect is immaterial. For distractors,
the effect in target arrays is negligible in comparison with the
target cue, and in nontarget arrays it is constant and may be
subsumed in the false-alarm rate.)

A Monte-Carlo simulation of the selection procedure that
incorporated these fluctuations was used to predict the proba-
bility pH(n) of a hit with n targets based on the probabilities pH(1)
and pF(1) of a hit and a false alarm for a single target, as the
width w1/2 of the Gaussian window ranged from 0 to more than
W, the full width of the array. As observers could maintain
central fixation with the 5 3 5 array, it was possible to estimate

the probability pH(1) by the observed hit rate for those trials in
which a single target fell centrally, where it would have coincided
with the center of the Gaussian window (possible with an
odd-numbered array). As nontarget arrays were of the same kind
for all n, the predicted probability pF(n) of a false alarm was
independent of n, so that pF(n) 5 pF(1), estimated by the
observed false-alarm rate over all nontarget trials.

As before, the predicted detection performance d9 as a
function of n is given by z[pH(n)] 2 z[pF(n)]. The best-fitting
function was obtained with a window width w1/2 5 4.3° and is
shown by the continuous curves in Fig. 4, which accounted well
for the variance in the data [x2(4) 5 3.3, P 5 0.5]. The width of
4.3° is close to that obtained in the first experiment with a single
target and variable number of distractors. Predicted detection
performance was also estimated for serial processing, again
based on the probabilities pH(1) and pF(1). It fell well below
observed performance [x2(4) 5 27; P , 0.0001]. Only if pH(1)
and pF(1) were allowed to take extreme values, close to unity and
zero, was it possible to fit performance at low n, but the fit then
failed at large n, as shown by the dotted curves in Fig. 4. As in
the first experiment with a single target and variable-geometry
field, processing was clearly not serial.

Given that parallel processing does take place, is the width w1/2
5 4.3° estimated for the Gaussian window an absolute spatial
limit? In other words, if the array were scaled down from 6° 3
6° to say 4.5° 3 4.5°, would the new window for parallel
processing remain the same or also scale down? It might be
argued that if the window were determined by physical factors,
for example, foveal anatomy, then w1/2 should remain the same;
alternatively, if it were determined by attentional factors, then,
in view of previous results (23, 29), it might scale with the array,
from 4.3° to 3.2° [5 4.3° 3 (4.5°y6°)]. (This inference does not
depend on the size of the cue, for the estimated window width

Fig. 3. Example stimulus with fixed geometry. The image consisted of a fixed
6° 3 6° array of 25 abutting square patches of randomly selected colored
papers displayed for 1 s under one randomly selected daylight and then for 1 s
under another randomly selected daylight. The illuminant change was abrupt.
In a target trial, a simultaneous spectral-reflectance change also occurred
affecting 1, 2, 4, 8, or 12 randomly selected patches [here, the four patches
with coordinates (1, 2), (1, 4), (1, 5), and (2, 3), counting from bottom left].

Fig. 4. Detectability of one or more target (spectral-reflectance change)
patches within a fixed 6° 3 6° array of distractor (illuminant change) patches,
as in Fig. 3. Discrimination index d9 (E) calculated over five observers is plotted
as a function of the number n of targets. The continuous curves represent
predicted detection performance for perfectly parallel processing over a
Gaussian spatial window of width 4.3° visual angle. The dotted curves repre-
sent predicted performance for serial processing optimized for best fit at low
n. Other details as for Fig. 2.
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was the same with small and large increments Dx quantifying the
target spectral-reflectance changes.) To address this question,
the experiment was repeated with the array of 25 abutting square
patches of paper scaled down to 4.5° 3 4.5°.

Fig. 5 shows target detectability (circles) plotted against the
number n of targets in the 4.5° 3 4.5° array. Predicted detection
performance d9 as a function of n was calculated exactly as for
the previous experiment. The best-fitting function was obtained
with a Gaussian window of width w1/2 5 4.3°, shown by the
continuous curves [x2(4) 5 0.2, P . 0.5]. This window width is
the same as that with the 6° 3 6° array. For comparison,
predicted detection performance is shown for the smaller win-
dow width w1/2 5 3.2° derived from the scaling assumption
(dashed curves) and for serial processing (dotted curves), with
pH(1) or pF(1) taking extreme values to fit performance at low
n. Both fits were poor.

Isoluminant Changes
Previous tests of the detectability of relatively slow ‘‘contrary’’
chromatic changes in Mondrian-like stimuli (33) have suggested
that processing is parallel only as a consequence of luminance
cues. But, as has been shown elsewhere (39), fast illuminant and
spectral-reflectance changes can be discriminated in isoluminant
images, which offer no luminance cues, as well as in achromatic
images, which offer no chromatic cues. Thus, the detection of
violations of color constancy in isoluminant images might still be
parallel if image changes were fast. The first and second exper-
iments were accordingly repeated with the images modified so
that the luminance of each patch remained constant during
illuminant and spectral-reflectance changes. In this way, al-
though the images were not isoluminant, the changes in them
were.

Target detectability with these modified images is shown by
the squares in Figs. 2 and 4. Performance was almost the same
as with the original, chromatically unconstrained images (mean
difference in d9 , 0.1). Violations of color constancy seem to be
detected in parallel in the absence of luminance cues.

Discussion
Color constancy represents a natural accommodation by the
visual system to the invariance of surface spectral reflectance in
the environment. When violations of this constancy occur, they
appear to be detected by visual mechanisms acting in parallel
over the central visual field. Such processing may be thought of
as a second-order form (e.g., ref. 40) of the parallel processing
involved in simple color discriminations, in which, for example,
a green patch can be rapidly and effortlessly detected within an
array of red and black patches (14, 20, 29). In first-order
processing, what pops out is a difference in color; in second-
order processing, a difference in color change, the one some-
times preempting the other (41).

The spatial window for parallel processing of color-constancy
violations appears to be limited to about 4° visual angle. The
coincidence of this window with the anatomical fovea is consis-
tent with physical factors constraining performance. Beyond the
fovea, cone-photoreceptor sensitivity declines rapidly (36), but
within the fovea, sensitivity varies rather less, except when
determined by short-wavelength-sensitive cones, which contrib-
ute little to the present task (38). Except for small f luctuations,
the signals from distractors were spatially correlated, as were
signals from multiple targets. Therefore, as long as patches fell
within the fovea and their sizes exceeded the summation area for
detection, signal-to-noise ratios should have been fairly constant,
which may account for the invariance of the window with the
scale of the array (23, 29). Whether performance can also be
constrained by attentional factors in extrafoveal arrays with
various geometries remains to be determined.

As already noted, parallel processing of constancy violations
is best when changes in surface spectral reflectance are fast,
within about 200 ms (11, 12). If spectral-reflectance changes are
made gradually, over intervals much greater than 200 ms,
performance becomes markedly worse, even though there is no
temporal gap between the images or other interruption, as in
change-blindness measurements (42–44). Performance is also
worse if refixations are made a natural part of the task, as when
the two images are presented continuously side-by-side, requir-
ing the observer to look from one to the other (45). The transient
nature of the cue and its failure to persist over refixations suggest
that visual working memory contributes little, if at all, to
performance (46, 47).

What is the origin of the cue? One possibility is that it is a
low-level signal based on the computation of spatial ratios of
cone excitations or of combinations of cone excitations arising
from light reflected from pairs of surfaces in the image (cf. ref.
2). Under illuminant changes, these ratios are preserved almost
exactly for pigmented surfaces and for surfaces with random
spectral reflectances (37). They provide compelling evidence to
observers: deviations in ratios are interpreted as being due to
changes in surface reflectance even when they are actually due
to changes in illuminant (38). Ratios also predict the variation in
discrimination performance with the size of spectral-reflectance
change over a wide range of conditions, for example, in isolu-
minant, achromatic, and colorimetrically unconstrained images
of surfaces undergoing illuminant changes (39), for which per-
formance levels may be closely similar, as was observed here with
isoluminant and colorimetrically unconstrained image changes.
Ratios may also predict the perceived transparency of colored
filters placed over illuminated scenes (48).

Such signals, which do not require adaptation to the illumi-
nated scene or knowledge of the illuminant, could be generated

Fig. 5. Detectability of one or more target (spectral-reflectance change)
patches within a fixed 4.5° 3 4.5° array of distractor (illuminant change)
patches. The continuous curves represent predicted detection performance
for perfectly parallel processing within a Gaussian spatial window of width
4.3° visual angle. The dashed curves represent the corresponding performance
for a 3.2° window, based on scaling performance with the 6° 3 6° array (Fig.
4), and the dotted curves represent the performance for serial processing;
both curves are optimized for best fit at low n. Other details as for Fig. 2.
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early in the visual pathway, perhaps within the eye itself (49, 50),
but as illuminant changes can be discriminated moderately well
from spectral-reflectance changes with dichoptically viewed
images, cone-excitation ratios might also be computed more
centrally, as part of a multistage analysis of surface color (27, 51,
52). They cannot, of course, account completely for color
constancy, which requires a spectral reference to anchor cone-
ratio information (53, 54). Color appearance also depends on the
prevailing levels of light (3) and contrast adaptation (55, 56) and
on the geometry of the scene (57, 58). The task of the parallel

process described here may therefore be to provide the visual
system with information about a rapidly changing world as a
prerequisite to establishing a more elaborate and stable percep-
tual representation.
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