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Abstract. It is proposed that any cue for the visual 
discrimination of shape, in particular the discrimination 
of curved contours, should be such that the perceptual 
relationships defined by the cue are invariant under chan- 
ges in observer viewpoint. Such relationships may be 
quantified by the Weber fraction; that is, the ratio Ac/c, 
where, for any particular value c of the cue, Ac is the 
smallest difference in c that can be detected. Eight geo- 
metric attributes of curved contours having one sym- 
metry axis and parallel chords (a standard stimulus 
configuration) were examined for invariance of the 
Weber fraction under symmetry-preserving affine trans- 
formations of the image plane (changes in viewpoint are 
well approximated by affine transformations when depth 
is small relative to viewing distance). The attributes, each 
investigated in previous psychophysical studies, were 
equivalent-curvature, radius-of-curvature, turning-angle, 
arc-length-divided-by-chord-length, arc-length, maximum- 
deviation (sag), area, and mean-deviation. Three of the 
attributes, namely sag, area, and mean-deviation, satis- 
fied the viewpoint-invariance condition; the remainder 
failed. These results are considered in relation to pre- 
viously published empirical data on the Weber fraction 
for contour-curvature discrimination. 

1 Introduction 

The visual system is acutely sensitive to differences in the 
curvature of edges and of contours in an image (Ogilvie 
and Daicar 1967; Watt and Andrews 1982; Wilson 1985; 
Fahle 1986, 1991; Foster et al. 1993), an ability that 
reflects the importance of contour curvature in determin- 
ing the perception of two- and three-dimensional phys- 
ical objects (Attneave 1954; Koenderink and van Doorn 
1982; Richards et al. 1986; Lehky and Sejnowski 1988; 
Link and Zucker 1988). Several experimental analyses 
have attempted to determine the geometrical attributes 
of curved lines that might be used in contour-curvature 
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discrimination (e.g. Ogilvie and Daicar 1967; Watt and 
Andrews 1982; Watt 1984; Wilson 1985; Fahle 1986; 
Wilson and Richards 1989; Foster et al. 1993; Kramer 
and Fahle 1993). Attributes considered as candidate cues 
have included curvature itself, the radius of curvature, the 
angle turned through by a tangent moving along the 
curve, the maximum deviation from linearity of the curve 
(or "sag"), the mean deviation, the area enclosed by the 
curve, the arc-length of the curve, and the quotient of arc- 
length by chord-length. 

Although the question of the identity of the cue for 
contour-curvature discrimination is ultimately an em- 
pirical one, the number of candidate cues can be reduced 
by the imposition of certain general constraints on the 
visual comparison of shapes in natural viewing condi- 
tions. In Sect. 2, it is argued that, in general, the perceived 
relationships of shapes, and in particular their dis- 
criminability as represented by the Weber fraction, 
should reflect the corresponding invariances of relation- 
ships in an image as the viewpoint of the observer 
changes in relation to the object or surface. In Sect. 3, 
changes in observer viewpoint and some viewpoint-invari- 
ant properties of surfaces are expressed in terms of the 
group of affine, symmetry-preserving transformations of 
the image plane. In Sect. 4, the eight aforementioned 
candidate cues for contour-curvature discrimination are 
formally defined, and the effect of each affine transforma- 
tion on the Weber fraction for each cue is determined. 
Only three of the candidate cues, namely, sag, area, and 
mean-deviation, satisfied the viewpoint-invariance condi- 
tion; the other attributes, including equivalent-curvature, 
all failed. In Sect. 5, some of these attributes are considered 
in relation to previously published empirical data on the 
Weber fraction for contour-curvature discrimination. 

2 Weber's law and viewpoint invariance 

Some motivation for the present approach comes from 
consideration of visual discrimination in the one-dimen- 
sional (achromatic) luminance domain. The discrimin- 
ability of two lights (self-luminous or reflected) may be 
summarized by the size of the smallest detectable difference 
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A L = L' - - L  between their luminances L, L', as a func- 
tion of L, for some criterion level of performance. [The 
quantity AL is the increment or difference threshold; see 
Falmagne (1985, p 197); Laming (1986, pp 67-69).] Since 
the criterion level of performance may be chosen arbit- 
rarily, the increment AL need not be small in relation to 
L. Weber's law (Weber 1834) asserts that the increment 
AL in L depends linearly on L; that is, the Weber fraction 
A L / L  is constant, or, equivalently, L ' / L  is constant. In 
practice Weber's law holds over a large part of the 
luminance domain (e.g. Leshowitz et al. 1968). Weber's law 
is of course not restricted to discriminations of luminance 
and holds approximately over the greater part of the 
operating range of many sensory attributes (Laming 1986), 
and it has been used as a criterion for the acceptability of 
models of discrimination performance (Falmagne 1985). 

Consider a spatially non-uniform surface viewed un- 
der a spatially uniform illuminant with illuminance E. If 
E varies (from time to time), the luminance L of the light 
reflected from the surface also varies, but the relationship 
between E and L at a given point on the surface remains 
fixed, determined by the reflection coefficient r (for given 
directions of incidence and of view at that point); that is, 
L = rE/~. Although the luminance L of the surface is not 
invariant under E, the ratio of the luminances from 
different regions of the surface is. Explicitly, if L, L'  are 
the luminances of regions with reflection coefficients r, r '  
respectively, the ratio L ' /L  is (r'E/rQ/(rE/rc) = r'/r, which 
is a property of the surface, namely the spatial contrast. 
Therefore, as a visual cue, luminance (the variable L as 
opposed, for example, to log L or L 2) has the property 
that the perceived relationship of two regions, as repres- 
ented by the Weber fraction for reflected luminance, is 
invariant under changes in illuminance. Explicitly, 
~ I # I ~  = ( I /  - I~) /  L = ( r ' E  / ~  - r g / ~ ) / ( r E / ~ ) =  (r '  - r ) / r .  

This property - that an invariant perceptual relation- 
ship corresponds to an invariant physical ratio - may be 
applied in the analysis of discriminations in the shape 
domain. Thus consider how two regions of a surface, or, 
more specifically, two curved contours on the surface, 
may be related perceptually in terms of some arbitrary 
shape attribute. Suppose that from a particular view- 
point the values of this attribute are c,c '  and that these 
values are discriminable at some (unspecified) criterion 
level of performance. As noted earlier, the difference 
Ac = c ' - - c  in the values c,c' depends on the criterion 
level of performance, but this level, like other non-geo- 
metrical factors, may be assumed to be constant across 
experimental conditions. The natural changes in the im- 
age arise from changes in relative viewpoint of the ob- 
server, through changes in position and orientation of the 
object, or observer, or both. As with luminance, the shape 
attribute - if it is to provide a cue for shape discrimina- 
tion rather than a cue just for changes in relative position 
- should be matched to these natural image changes. 
More formally, any candidate cue for shape discrimina- 
tion should satisfy the following invariance condition. 

Condition 1. The perceptual relationship of two shapes, 
expressed by the Weber fraction for the cue, should be 
invariant under changes in relative viewpoint. 

It is assumed that the viewpoint changes are not so 
extreme that the stimulus becomes too small to be seen or 
so large that it passes outside the visual field. In some 
contexts, Condition 1 would be reformulated by saying 
that the cue should be a relative invariant rather than 
an absolute invariant, since it involves the ratios of 
attribute values (Mundy and Zisserman 1992, Sect. 1.1.4). 
Although Condition 1 is a constraint on candidate cues, 
it is not sufficient to determine uniqueness, as is shown 
explicitly later (Sect. 5). 

The next section describes how changes in relative 
viewpoint may be represented as spatial transformations 
of the image. 

3 Afline transformations and afline invariants 

Assume that the curved contours are drawn on an 
approximately planar surface, positioned and oriented 
arbitrarily (but not end-on) in three-dimensional space. 
Assume also that the surface is sufficiently distant from 
the eye that the depth of the contours is relatively small 
so that perspective effects may be ignored (a common 
assumption in modelling the effects of viewing objects in 
three-dimensional space, see e.g. Thompson and Mundy 
1987; Lamdan et al. 1988; Hopcroft et al. 1992; Wage- 
mans 1993; also Mundy and Zisserman 1992, Sect. 23.10). 
Changes in viewpoint may then be represented by affine 
transformations of the fronto-parallel image plane; that 
is, in the usual Cartesian coordinates, by transformations 

T: (x, y) ~ (alx + bly + cl,  azx + b2y + C2), 

where, to avoid singularities, the determinant det(T) 
= a l b 2 -  a2bl ~ 0 (the constants cl,c2 should not be 
confused with the shape-attribute variable c). In general, 
under an affine transformation T: 

Property 1. Parallel line segments in the plane are map- 
ped onto parallel line segments, and the ratio of their 
lengths is preserved. 

Property 2. Areas of regions in the plane are each scaled 
by the factor det(T), and the ratio of any two areas is 
preserved. 

In the previous section, it was proposed (Condition 1) 
that the Weber fraction Ac/c for any candidate cue 
should be invariant under changes in relative viewpoint. 
The candidate cues considered here are limited to those 
which have been investigated in previous psychophysical 
studies of contour-curvature discrimination (other con- 
tour-curvature attributes which have been of theoretical 
or computational interest, and which exhibit invariance 
under affine transformations, have been described in e.g. 
Mundy and Zisserman 1992; Pauwels et al. 1993). Some 
of the candidate cues can be treated as having either 
Property 1 or Property 2, and therefore automatically 
yield Weber fractions that are invariant under affine 
transformations. For those candidate cues that do not 
have Property 1 or 2, the effect of affine transformations 
must be considered explicitly. 
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Fig. 1. a Standard stimulus configuration. Only one of the curved 
lines need be present at a time, and the whole stimulus display may be 
rotated through 90 deg. b Curved-contour parameters: l, half chord- 
length; s, height; 02 - 01, turning angle. Computational formulas are 
given in the text (Sect. 4) 

Figure la abstracts the standard stimulus configura- 
tions of previous psychophysical studies (Della Valle 
et al. 1956; Ogilvie and Daicar 1967; Watt  and Andrews 
1982; Watt 1984; Wilson 1985; Fahle 1986; Link and 
Zucker 1988; Wilson and Richards 1989; Foster et al. 
1993; Kramer and Fahle 1993), and includes those in- 
stances when the curved lines were presented sequentially 
for comparison, and when there was just one curved line 
compared with an imaginary straight line. [In the experi- 
ments by Wilson (1985), Wilson and Richards (1989), and 
Link and Zucker (1988) the curved lines had straight-line 
extensions.] In those studies, the curved lines had one 
symmetry axis and were positioned with chords parallel 
to some axis, which, without loss in generality, may be 
assumed here to be the x- or y-axis. Because of this 
arrangement, it is sufficient to restrict attention to those 
transformations that are combinations of enlarge- 
ments (or reductions) ( x , y ) ~  (kx, ky), with k > 0, and 
simple elongations (or compressions) ( x , y ) ~ ( x ,  ky) 
or (x, y) --* (kx, y); that is, transformations T of the form 

T:(x,y)--~(ax, by), (1) 

where the scale factors a, b > 0. Skew transformations, 
which do not preserve the symmetry of the curved lines 
(and which have been investigated in more general 
studies of form perception; see Wagemans (1992, 1993)), 
are not included. The transformations of interest are 
therefore a proper subgroup of the group of affine trans- 
formations. (In principle, the spatial separation of the 
curved lines could also be transformed, but it was either 
kept fixed or varied randomly in the previously cited 
experiments.) 

The next section considers the effects of these trans- 
formations on each of the candidate cues and the ratios 
of their values. 

In Fig. lb, let the arc have the equation y = f (x ) ,  
- l ~< x ~ l, in the Cartesian coordinate system shown 
(the endpoints of the arc fall on the x-axis). Let the 
variable height be s. For  each candidate cue, it is suffi- 
cient to evaluate the effect of each transformation T given 
by (1) on the ratio c'/c of any two cue values c, c' (c r c', 
c r 0): if the transformed ratio T(c')/T(c) is independent 
of T, then, since the Weber fraction at each value c is 
given by ( c ' - c ) / c  for some c', the Weber fraction 
(T(c') - T(c))/T(c) for the transformed curves is also in- 
dependent of T. With an abuse of notation, T(c) is used to 
represent the value c of the cue after T has been applied 
to the curve. The arcs are assumed initially to be circular. 

4.1 Equivalent-curvature and radius-of-curvature 

Euclidean curvature has often been used to quantify 
thresholds in measurements of contour-curvature dis- 
crimination (Della Valle et al. 1956; Ogilvie and Daicar 
1967; Watt 1984; Wilson 1985), and has been analysed 
empirically in relation to other cues (Watt and Andrews 
1982; Watt 1984; Foster et al. 1993). In general, at each 
point (x,f(x)) on a curve (Fig. lb), Euclidean curvature 
(as distinct from affine curvature; Guggenheimer 1977) is 
defined by 

If"(x) l 
(I + (f'(x))Z) 3/z' 

(2) 

wheref ' (x)  andf f (x)  are the first and second derivatives 
of f a t  x. If the curve is a circular arc, Euclidean curvature 
(2) is constant along the locus and equal to the reciprocal 
of the radius of the corresponding circle. Application of 
each transformation (1), however, yields a non-circular 
ellipse, the Euclidean curvature of which varies continu- 
ously along its locus. One solution is to assign to the 
transformed curve an "equivalent" curvature, such as the 
Euclidean curvature of a circular arc with the same chord 
and sag as the transformed curve (Foster et al. 1993). For  
curves of 120-deg turning angle (Sect. 4.2), the differences 
between transformed curves for a ~> 1 and b ~< 1 in (1) are 
small: in the worst case, the maximum deviation in the 
y-direction is not more than 3% of the height of the 
best-fitting circular arc (Foster et al. 1993). Thus the cue 
value c is given by 1 

c = (1/l) sin(2 arctan(s/l)). 

Under each transformation T(1), this value transforms to 

T(c) = (1/(al)) sin(2 arctan(bs/(al))) 

= (1/(al)) sin(2 arctan((b/a) tan(arcsin(Ic)/2))). 

1 It is also given by c = 2s/(l 2 + s 2) (the chord theorem), but this 
formula is less convenient for manipulation 
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The ratio c'/e of two cue values c, c' transforms to 

T(c')  sin(2arctan((b/a)tan(arcsin(tc')/2))) 
(3) 

T(c) sin(2 arctan((b/a) tan(arcsin(lc)/2))) '  

which depends on a and b, the scale factors in the x- and 
y-directions respectively (1). 

Radius of curvature of a circular arc has also been 
used to quantify thresholds (e.g. Della Valle et al. 1956; 
Ogilvie and Daicar 1967). Since it is the reciprocal of 
equivalent-curvature, the ratio c'/c of two cue values c, c' 
for radius-of-curvature is not preserved under affine 
transformations T (1). 

4.2 Turning-angle 

The angle turned through by a tangent moving along the 
curve, that is, the turning-angle or "orientation-range", 
was considered as a possible factor in determining thresh- 
olds by Watt (1984), Link and Zucker (1988), Foster 
et al. (1993), and Kramer  and Fahle (1993). It is defined 
formally by 

a r c t a n ( f ' ( l ) ) -  arctan(f ' (  - l)), 

that is, 02 - 01 in Fig. lb. The cue value c for a circular 
arc is given by 

c = 4 arctan(s/l). 

Under each transformation T(1), this value transforms to 

T(e) = 2 arctan((b/a) tan(2 arctan(s/l))) 

= 2 arctan((b/a) tan(c/2)). 

The ratio c'/c of two cue values c, c' transforms to 

T(c ')  arctan((b/a) tan(c ' /2))  
T ( c ~ -  arc tan( (b /a) tan(e /2) ) '  (4) 

which depends on a and b. 

4.3 Arc-length-divided-by-chord-length, and arc-length 

The quotient of arc-length by chord-length and arc- 
length alone were each considered as candidate cues by 
Foster et al. (1993). Arc-length-divided-by-chord-length 
is defined by 

(1 + (f '(x))2) 1/2 dx. 
- I  

The cue value c for a circular arc is given by 

2 arctan (s/l) 
c = sin(2 arctan(s/l))" (5) 

Under each transformation T(1), this value transforms to 

E(2 arctan(s/l), 1 --  bZ/a 2) 
T(e) = 

sin(2 arctan(s/l) ) 

where E(q~, m) is an elliptic integral of the second kind, 
E(q~, m) = So~(1 - m sinE0) 1/2 dO, and s is given implicitly 

by (5). The ratio c'/c of two cue values c, c' transforms to 

T(c')  sin(2 arctan(s/l))E(2 arctan(s'/l), 1 - b2/a 2) 
T(c) sin(2 arctan(s' / l))E(2 arctan(s/l), 1 - b2/a2) ' 

(6) 
where s, s' are given by (5) for c = c, c' respectively. The 
ratio T(c ' ) /T(c)  depends on a and b. The same trans- 
formed ratio (6) is obtained for arc-length alone. 

4.4 Sag 

Threshold measurements based on the perpendicular dis- 
tance from the midpoint of the curve to the chord joining 
its ends were made by Della Valle et al. (1956), Ogilvie 
and Daicar (1967), Andrews et al. (1973), Watt and An- 
drews (1982), Foster (1983), Ferraro and Foster (1986), 
Fahle (1986, 1991), and Foster et al. (1993). This attribute 
has been given several names: "sagitta ''z (Della Valle 
et al. 1956) (and commonly "sag"); "height", for a hori- 
zontal curved line (Watt and Andrews 1982); and "arc- 
chord distance" (Phillips and Rosenfeld 1987). In Fig. lb, 
the sag of the curve is s, and the cue value c is defined by 

C ~ - S .  

Since the curves under comparison have the same ori- 
entation in the plane, by Property 1 of Sect. 3 the ratio 
c'/c of two cue values c, c' is invariant under each trans- 
formation T (1). Explicitly, 

T(c') e' 
- ( 7 )  

T(c) c' 

which is independent of a and b. 

4.5 Area and mean-deviation 

The area enclosed by the curve and the chord joining its 
ends was suggested by Ogilvie and Daicar (1967) as an 
appropriate measure for curvature acuity. It was also 
considered by Foster et al. (1993). With respect to Fig. Ib, 
it is defined by 

1 

I f ( x )  dx. 
- l  

The cue value c for a circular arc is given by 

/2(4 arctan(s/l) - sin(4 arctan(s/l) )) 
c = 2 sin 2 (2 arctan (s/t)) (8) 

By Property 2 of Sect. 3, the ratio c'/c of two cue values 
c, c' is invariant under each transformation T (1). 
Explicitly, 

T(e') 
T(c) 

sin 2(2 arctan (s/l)) (4 arctan (s'/l) - sin (4 arctan (s'/l))) 
sin2(2 arctan(s'/t)) (4 arctan(s/l) - sin(4 arctan(s/l)))'  

(9) 

2 From the Latin for arrow 



where s, s' are given implicitly by (8) for c = c, c' respec- 
tively. The ratio T(c')/T(c) is independent of a and b. 

The mean-deviation of the curve is the quotient of 
area by chord-length, and is defined by 

1 I 
"_ ~ f(x) dx. 

The same transformed ratio (9) is obtained for mean- 
deviation. 

5 Discussion 

Since none of the transformed Weber fractions contained 
either of the transformation scale factors a, b of (1) except 
as a ratio b/a, all of the curved-line attributes yielded 
Weber fractions (3), (4), (6), (7), (9) that were invariant 
under enlargements and reductions, (x , y )~  (kx, ky), of 
the image. Five of the attributes yielded Weber fractions 
that were not invariant under combinations of enlarge- 
ments or reductions and simple elongations or compres- 
sions: (x, y ) ~  (x, ky) and (x, y ) ~  (kx, y); these attributes 
were equivalent-curvature (3), radius-of-curvature, turn- 
ing-angle (4), arc-length-divided-by-chord-length (6), and 
arc-length. Sag (7), area (9), and mean-deviation were all 
invariant under elongations and compressions. 

How consistent with empirical data on contour-cur- 
vature discrimination is this set of cues? Several previous 
studies have established critical limits on discrimination 
performance, but have not determined unambiguously 
the identity of the cue (or possible cues) for contour- 
curvature discrimination (Ogilvie and Daicar 1967; Watt  
and Andrews 1982; Watt 1984; Wilson 1985; Koenderink 
and Richards 1988; Wilson and Richards 1989; Kramer 
and Fahle 1993). 

One information-theoretically oriented approach to 
this problem has been to determine for each geometric 
attribute of interest a "relative efficiency" with respect to 
an ideal observer. This observer was assumed to be 
subject to several implicit errors, of which one of the most 
important was the error in its knowledge of each light 
receptor's position; these errors were assumed to be 
normally distributed and independent of each other (An- 
drews et al. 1973). The ideal observer was, however, 
assumed to know that the stimulus was a circular arc. 
The task was then simply to determine the value of the 
selected attribute that gave the best-fitting arc to the data 
points sampled by the retina (Watt and Andrews 1982). It 
was found that under some conditions increasing curva- 
ture led to increasing relative efficiency, and it was sug- 
gested (Watt 1984) that the mechanism involved in dis- 
criminating curves operates by calculating curvature; 
other attributes, including turning-angle, sag, and chord- 
length, were all rejected. 

Another approach, more operationally oriented, has 
been to consider the problem as one of statistical estima- 
tion theory (Fisher 1992; Stuart and Ord 1991); that is, to 
determine which of a set of curved-line attributes gave 
the best estimate of increment threshold Ac (and of the 
standard deviation of increment threshold) as a function 
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of cue value c (Foster et al. 1993). The best estimator in 
the sense of statistical estimation theory is the most 
efficient one, that is, the one associated with the smallest 
variance in the data. Notice that this notion of efficiency 
concerns the predictability of the data, whereas the rela- 
tive efficiency notion used by Watt and Andrews (1982) 
concerns the relationship of the data to those obtainable 
by a particular detector. 

In a series of experiments (Foster et al. 1993), seven of 
the eight geometric attributes considered here were as- 
sessed: equivalent-curvature, turning-angle, arc-length, 
arc-length-divided-by-chord-length, sag, area, and mean- 
deviation. The experiments each required the discrimi- 
nation of two simultaneously presented, 1-s-duration, 
curved-line stimuli with parallel chords, whose chord- 
lengths ranged from 12 arcmin to 48 arcmin visual angle 
and whose curvatures ranged from 0 arcmin-1 to 0.13 
arcmin- 1. For  each candidate cue, the increment thresh- 
old Ac was determined as a function of c under combina- 
tions of enlargements or reductions and simple elonga- 
tions or compressions of the curved lines. Figure 2 shows 
a set of data from one of the experiments (Foster et al. 
1993, Fig. 2), with corresponding data - previously un- 
published - for radius-of-curvature (for which infinite 
values, at zero equivalent-curvature, have been sup- 
pressed). Estimates of Ac are plotted as a function of c for 
the eight curved-line attributes. The different symbols 
correspond to different enlargements of the curved lines, 
as indicated in the legend to the figure. For  each of the 
curved-line attributes, the data were subjected to an 
analysis of variance with repeated measures and an ana- 
lysis of linear and higher-order (up to quartic) trends with 
respect to c (Winer 1971). The broken lines in Fig. 2 show 
only linear least-squares regressions. 

For  this data set and others (Foster et al. 1993), sag 
and its approximation, mean-deviation, accounted well 
for the variance in the data; sag was the best predictor, 
and its increment-threshold function satisfied Weber's 
law (Fig. 2f) over almost all of the stimulus range. Area, 
despite its theoretical admissibility in the present context 
and its empirical acceptability for curved-line enlarge- 
ments (Fig. 2g), failed significantly to account for the 
variance in some other experimental conditions (Foster 
et al. 1993, Figs 3g, 4g of that study). Notice, however, 
that unlike area, sag fails to yield a relative invariant 
when the curved lines do not have parallel chords (Prop- 
erty 1, Sect. 3); that is, in the non-standard stimulus 
arrangement, the ratio of two sag values is not constant 
under affine transformation. A further experimental test 
might thus entail determining discrimination thresholds 
for pairs of curved lines with chords at different relative 
orientations: if sag is indeed the preferred cue, then the 
variance of the thresholds should increase in the non- 
parallel condition. Some data consistent with this predic- 
tion have been reported in experiments on curved-line 
texture segmentation, but using short display durations 
(Simmons and Foster 1992). 

Display duration is an important factor in influencing 
the form of the dependence of Ac on c. With short- 
duration (100-ms) displays, followed by a random-dot  
mask, discrimination performance has been found to 
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Fig. 2a--h. Increment-threshold functions for curved-line discrimination [adapted from Fig. 2, Foster et al. (1993), with previously unpublished data 
for radius of curvature]. For each of the specified curved-line attributes, estimates of increment threshold Ac are plotted against reference value c for 
four chord lengths: O, 0.2 deg; E3, 0.4 deg; �9 0.6 deg; and A, 0.8 deg. Each data point is the weighted mean over five subjects, and the vertical bars 
show + 1 SEM. Broken lines are least-squares linear regressions. Sag, mean-deviation and area if--h) all accounted well for the variance in the data 
[F(26, 108) ~< 1.04]; curvature and arc-length (a, d) both failed highly significantly [F(26, 108) >/7.06], as did radius-of-curvature (b) despite the 
suppression of infinite values [F(22, 92) = 2.57]. When other experimental conditions were included, turning-angle (c) and arc-length-divided-by- 
chord-length (e) also failed highly significantly [F(26, 81) >~ 2.95], and only sag and mean-deviation provided acceptable fits overall (Foster et al. 1993) 

vary rapidly and non-monoton ica l ly  with sag. In one 
study (Foster  1983), two peaks were obtained, the one at 
sag 0.87 arcmin and the other  at sag 1.81 arcmin, and 
were considered to relate to two (possibly three) discrete 
mechanisms for curved-line coding. As stimulus durat ion 
was increased (from 60 ms to 2 s), discrimination perfor- 
mance was found to become progressively flatter; and at 
stimulus durat ions  of  1-2 s linear performance was ob- 
tained (Ferraro and Foster  1986; Foster  and C o o k  1989). 
A two-layer neuronal  model  of  the underlying processes 
was proposed  by Cos ta  and Ferraro  (1993). It success- 
fully accounted for discrete and cont inuous modes of 
curved-line discrimination performance as display dura- 
tion was varied. 

In applications where curved lines m a y  extend to the 
limits of  the visual field, the domain  of  definition of  sag, 
mean-deviat ion,  and area must  be constrained�9 For  
curved contours  of  non-cons tan t  curvature, points of  

inflexion and local curvature extrema may  be used com- 
putat ionally to define the effective extent of a contour  
segment (but notice that local curvature extrema are not  
themselves affine invariant). Sag has been used in ma- 
chine-vision applications to part i t ion and approximate  
curves. Thus, points may  be selected at which the dis- 
tance of the curve from one or  more  chords has a local 
maximum (e.g. Phillips and Rosenfeld 1987); or  the curve 
may  be approximated by a polygon with a given number  
of  vertices such that  the max imum distance of  the curve 
from the polygon satisfies some goodness-of-fit  criterion 
(e.g. Ramer  1972). In the design of  psychophysical  experi- 
ments, sag has been used to parameterize transforma- 
t ionally uniform families of  stimuli; that  is, families of 
stimuli in which equal increments in the parameter  cor- 
respond to stimulus changes that  in some sense are equal 
(Foster 1980). Formally,  t ransformational  uniformity is 
achieved by requiring that the family of  stimuli should be 
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generated by a local one-parameter  group of local t rans-  
formations.  Transformat iona l ly  uniform scales have been 
exploited in studies of pa t te rn  d iscr iminat ion  (e.g. 
Cermak  1977; Foster  1980, 1983; Fer ra ro  and  Foster  
1986); pat tern  match ing  in two or three d imens ions  
(Wagemans  1993); and  visual apparen t  mot ion  (Foster 
1975, 1978; Farrel l  and  Shepard 1981). 

The present  analysis identifying sag, mean-devia t ion ,  
and  area as at t r ibutes  that  yield invar ian t  con tour -curva-  
ture d iscr iminat ion does no t  of course imply that  perfor- 
mance  must  always be determined by one of these cues. 
Clearly, if curves have the same sag values and  suffi- 
ciently different chord-lengths,  or arc-lengths, they may  
still be discriminated.  Nor  does this analysis imply that  
there are no other at t r ibutes  that  might  be used for 
invar ian t  con tour -curva tu re  discr iminat ion.  There are 
trivial combina t ions  of, for example, sag and  mean-devi-  
a t ion that  yield v iewpoin t - invar ian t  Weber  fractions. 
More  fundamenta l ly ,  there are several at t r ibutes of cur- 
ved contours  involving first- and  higher-order  derivatives 
that  give absolute  or relative invar iants  under  affine or 
projective t ransformat ions  (Weiss 1992; Moons  et al. 
1993; Pauwels  et al. 1993). These differential and  semi- 
differential invar iants  automat ica l ly  satisfy Cond i t ion  1. 
Fo r  their candidacy as cues for con tour -curva tu re  dis- 
c r imina t ion  to be evaluated further, some other measure 
would  need to be introduced,  for example, the statistical 
efficiencies of the at t r ibutes  in relat ion to empirical in- 
crement- threshold functions,  as was done in Foster  et al. 
(1993) for the at t r ibutes considered here. 
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