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Repeated loess is a nonparametric procedure that uses progressive smoothing and differencing to de-
compose data consisting of sums of curves. Smoothing is by locally weighted polynomial regression.
Here the procedure was developed so that the decomposition into components was controlled automat-
ically by the number of maxima in each component. The level of smoothing of each component was
chosen to maximize the estimated probability of the observed number of maxima. No assumptions
were made about the periodicity of components and only very weak assumptions about their shapes.
The automatic procedure was applied to simulated data and to experimental data on human visual
sensitivity to line orientation.
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1. Introduction

Many biological processes give rise to sequential data that may
be treated as sums of oscillatory curves, where the independent
variable might be time, distance, orientation, or some other or-
dered quantity. Although a variety of methods of analysis are
potentially available from the time-series and spectral-analysis
literature, there is a particular problem in dealing with data in
which the component curves have an unknown shape and pe-
riodicity, and which may vary systematically from sample to
sample. An example comes from data on human and animal
spatial vision, the early stages of which depend on the eye de-
tecting lines and edges of different orientation in the stimulus
scene. From psychophysical measurements, it is known that de-
tection performance varies with line orientation in a complex
way (Regan and Price 1986, Wolfe et al. 1992). These varia-
tions almost certainly reflect the activity in the brain of neurons
or groups of neurons with different orientation sensitivities (De
Valois et al. 1982, Celebrini et al. 1993), but how the responses
of such neurons are combined to form an overall behavioral
response is not well understood. It would be useful to be able
to decompose a behavioral response into components at differ-
ent orientation scales, which might eventually be related to the

orientation sensitivity of individual neurons or groups of neu-
rons. This decomposition problem was the subject of the present
work.

An analysis of sequential data of the kind just described could
be made in terms of global (e.g. Fourier) or local (e.g. wavelet)
basis functions, but such representations do not always allow
one to readily distinguish the components underlying the process
(e.g. Diggle 1990, Sections 4.10 and 4.11). Critically, each rep-
resentation depends on the choice of basis function (Macaulay
1931, Farge 1992). If the form and periodicity of the underly-
ing components were known in advance, then an appropriately
matched basis could be contrived, but without this information
a more general, nonparametric approach is required.

A method of analyzing sequential data that does not involve
assumptions about the underlying components was proposed by
Cleveland (1993). This method, called “repeated loess fitting”,
is a nonparametric statistical filtering procedure that decom-
poses a set of data into several components by a process of
progressive smoothing and differencing. Smoothing is achieved
by locally weighted polynomial regression (i.e. loess, Cleveland
1979, Cleveland and Devlin 1988), in which the polynomial is
typically linear or quadratic and the neighborhood over which
each local fit takes place is characterized by a bandwidth h. In
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the repeated-loess procedure, the slowest-varying component is
initially fitted with bandwidth h1 say. This component is then
subtracted from the data to form residuals. The slowest-varying
component of the residuals is then fitted, with bandwidth h2 say,
where h2 < h1. This new component is then subtracted from
the residuals to form new residuals, and so on. Further passes
through the data may be performed in which each component
is fitted again, but in a different order to assess whether the
allocation of variance over the different components has been
stabilized.

When the periodicities are known in advance, an elaborated
version of repeated loess (“seasonal loess”, Cleveland et al.
1990) is available in which loess fitting is applied to each cycle
subseries. From knowledge of the series and with the aid of di-
agnostic methods, one can make estimates of the most suitable
bandwidths (Cleveland et al. 1990, Sections 4 and 5). When the
periodicities are not known in advance, it is less obvious how
to proceed: in Cleveland (1993), the bandwidths for the com-
ponents were obtained by experimenting with different values.
Nevertheless, it might be useful to have a method that did not
require user intervention. In the version of repeated loess pro-
posed here, the decomposition is controlled automatically by a
characteristic property of the components, namely, the number
of maxima that each contains. The bandwidth for each com-
ponent is chosen to maximize the estimated probability of the
observed number of maxima.

This nonparametric procedure should be distinguished from
related but more general approaches to discovering features in
sequential data by automatic smoothing techniques. For exam-
ple, Silverman’s (1986) “bump-hunting” procedure provides a
test for a unimodal or multimodal density by critically smoothing
the data and using centiles of the bootstrap distribution from this
critical smooth. The graphical device, SiZer, due to Chaudhuri
and Marron (1999), displays the significance of features in a set
of sequential data with respect to both their location and scale
defined by the smoother bandwidth. Without denying the use-
fulness of these approaches, neither was intended to provide a
solution to the decomposition problem.

The objective, then, of the present work was to formulate an
automatic version of repeated loess and to illustrate its applica-
tion to the analysis of data on visual sensitivity to line orientation.
The description of the application is limited to this illustrative
role; consequently, no attempt is made to construct an explicit
statistical model of subjects’ performance (this would properly
involve detailed assumptions about the underlying neurophysi-
ological processes, which would be out of place here).

The organization of this article is as follows. First, some gen-
eral background to the decomposition problem is reviewed in
Section 2. The automatic version of repeated loess is then set
out in Section 3. The results of testing it on some simulated
data are described in Section 4, together with the results of
Fourier analyses for comparison. The results of applying it to
experimental orientation-sensitivity data are then presented: the
decompositions are described in Section 5 and some derived
density estimates are described in Section 6, together with the

results of a principal component analysis and an independent
component analysis for comparison. Finally, some advantages
and disadvantages of automatic repeated loess are considered in
Section 7.

2. The decomposition problem

Suppose that the data consist of a sequence of I observations
Y1, . . . , YI at fixed design points x1, . . . , xI , where x1 < x2 <

· · · < xI , and suppose that the data can be modeled by a function
f defined on the closed interval [x1, xI ], thus

Yi = f (xi ) + εi , i = 1, . . . , I, (1)

where the error terms εi are independent random variables repre-
senting noise, with E(εi ) = 0 and Var(εi ) = σ 2

i . (In the present
application, the assumption of independence was appropriate,
and the σi were, in general, nonconstant). Assume that the func-
tion f consists of a sum of J component curves c j defined over
a neighborhood of the interval [x1, xI ], so that

f (x) =
J∑

j=1

c j (x), x1 ≤ x ≤ xI , (2)

where each c j is oscillatory in having at least one maximum in
the open interval (x1, xI ); each c j is locally simple; and each c j

is coarser (has fewer oscillations) than ck for all k > j . More
precisely, assume that the c j satisfy the following conditions,
the rationale for which is set out afterwards.

(a) Each component c j , where 1 ≤ j ≤ J , has continuous
derivatives up to at least the third order over the interval
[x1, xI ] and has n j maxima (n j > 0) in the interior (x1, xI ).
(Any monotonic trend component, providing it is not too
large, can be merged into the coarsest component c1; see
Section 7.1.)

(b) If at a point x0 in the interval [x1, xI ], the first derivative
c′

j (x0) of component c j is zero, then its second derivative
c′′

j (x0) is non-zero. The c j have therefore only nondegenerate
critical points.

(c) At each point x0 in the interval [x1, xI ], each component
c j may be adequately approximated by its 2nd-order Taylor
polynomial within a neighborhood of x0; that is, at each x0

there is a number d(x0) > 0 such that for all x in [x1, xI ]
with |x − x0| < d(x0)/2,

c j (x) ≈ c j (x0) + c′
j (x0)(x − x0) + c′′

j (x0)

2
(x − x0)2. (3)

The set of all such open intervals (x0 − d(x0)/2, x0 +
d(x0)/2) necessarily contains a finite subcover of the closed
interval [x1, xI ]. Let d min

j be the width of the smallest inter-
val in this subcover, and let d j be the least upper bound on
the d min

j over all such subcovers for component c j . Over all
c j , the d j are ordered so that d1 > d2 > · · · > dJ .

(d) The numbers n j of maxima in the components c j are ordered
so that n1 < n2 < · · · < n J .
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Condition (a) is basic. Condition (b) ensures that maxima (and
minima) in c j are strict; that is, if c j has a maximum (resp. mini-
mum) at x = x0, then c j (x) < c j (x0) (resp. c j (x) > c j (x0)) for all
x �= x0 in some neighborhood of x0. Between neighboring max-
ima and minima, components are strictly monotonic increasing
or strictly monotonic decreasing. As a consequence, arbitrar-
ily small perturbations in c j will not generate new maxima and
minima. Condition (c) limits the sharpness of the maxima and
minima in each c j (by defining the minimum distance between
neighboring points of inflexion) and therefore the maximum
number of maxima; that is, n j is less than or approximately
equal to (xI − x1)/(2d j ). But (c) does not limit the minimum
number of maxima in c j , and condition (d) sets the weakest con-
straint on that number. The last two conditions are important,
for they help characterize components in terms of the different
numbers of maxima in each. No other assumption was made
about the periodicity or shape of components.

Smoothing was effected by locally weighted quadratic fitting,
which produces less bias in regions of high curvature (Cleveland
et al. 1990).

How is one particular component, ck say, estimated from
the Yi ? Suppose that all other components c j , with j �= k,
are known. Let C−k be the sum of the c j with ck omitted;
that is, C−k(x) = ∑J

j=1, j �=k c j (x), and let ei denote the resid-
uals Yi − C−k(xi ), for i = 1, . . . , I . The aim is to smooth
the ei to obtain an estimate sk of ck . As in Fan and Gijbels
(1996), suppose that the kernel function Kh is defined by a sym-
metric unimodal density function with bandwidth h = hk (so
Kah(x) = Kh(x/a)/a for a > 0). For each point x0 in the inter-
val [x1, xI ], find values of coefficients γ0, γ1, γ2 that minimize

I∑

i=1

(ei − γ0 − γ1(xi − x0) − γ2(xi − x0)2)2 Kh(xi − x0). (4)

If γ̂0, γ̂1, γ̂2 is the solution to this weighted least-squares problem,
then comparison of (4) with (3) suggests that, for ν = 0, 1, 2,
the product ν! γ̂ν is an estimate of the νth derivative c(ν)

k (x0). Set
sk(x0) = γ̂0. The entire smooth sk is obtained by solving the
least-squares problem at all points x0. (In practice, s might be
calculated only at the points x1, . . . , xI , and interpolation used
elsewhere.)

It is clear that there is a close relationship between the band-
width h = hk in (4) and the least upper bound d j on the intervals
defined in condition (c) for j = k. The problem, as noted by
Cleveland (1993) and others, is that hk is difficult to determine
independently for each estimate sk : if hk is too large, then sk will
be biased and some of the variation in sk will leak into sk+1; and
if hk is too small, then sk will be noisy and will absorb some of
the variation in sk+1.

As indicated earlier, in the automatic version of repeated loess
described here, this problem was addressed by finding the value
of the bandwidth hk that maximized the estimated probability of
the observed number nk of maxima in sk . This probability was
estimated with a bootstrap. With the use of a criterion based on
the numbers of maxima in a curve and a bootstrap to determine an

optimum bandwidth, there are parallels with Silverman’s (1986)
bump-hunting procedure mentioned in the Introduction.

Whatever the method of decomposition, the closeness to the
data Yi of the sum of the smooths, S = ∑J

j=1 s j , needs to be
quantified, in order, as shown later, to decide when the decom-
position procedure should be terminated. Goodness of fit can be
measured in several standard ways (e.g. Hart 1997). A measure
such as the residual sum of squares

∑I
i=1(Yi −S(xi ))2 is insensi-

tive to the nonhomogeneity of the error variance (1), which may
be large (see Section 5). The residuals could be standardized to
form the quantity

X2 =
I∑

i=1

(Yi − S(xi ))2

σ̂ 2
i

, (5)

where σ̂ 2
i is some estimate of σ 2

i , possibly derived from repli-
cations of the original measurements. If replications are not
available, then pseudo-residuals (Gasser et al. 1986) such as
Yi − Yi−1 might be used to estimate a common variance:
σ̂ 2 = ∑I

i=2(Yi − Yi−1)2/(2(I − 1)). Under the assumption that
the εi are normally distributed, values of X2 in (5) may be com-
pared with a χ2 distribution on I − p d.f., where p is the d.f.
associated with the hat matrix yielding S. Caution should be
exercised in assessing the nominally significant values of X2, as
the upper tail of the distribution of X2 will tend to be inflated.
The emphasis here, however, is not on accepting or rejecting the
overall fit, which, in the present context, might be better decided
with resampling methods, but simply in establishing a numerical
stopping criterion.

3. Automatic repeated loess

There are two stages to the automatic repeated-loess procedure.
In the first stage, the numbers of maxima in a set of candidate
components are estimated. In the second stage, an optimum set
of components with these maxima are estimated and fitted to the
experimental data.

Assume for the present that the number J of components to be
estimated is known or can plausibly be estimated. (The procedure
may, in some applications, be applied without knowing J ; see
Sections 4 and 7.2.) If the numbers n1, . . . , n J of maxima in the
J components are also known, then Stage 1 may be omitted.

3.1. Stage 1. Estimate numbers of maxima
in candidate components

In this stage, the data Y1, . . . , YI are decomposed into L candi-
date components with maxima m1, . . . , mL . This set of maxima
is then reduced to J values n1, . . . , n J , which are used as inputs
to Stage 2 (assume for the moment that J ≤ L). For brevity, let
#max(s) denote the number of maxima in a smooth s.

1. Oversmooth the data Yi , i = 1, . . . , I , by setting the smoother
bandwidth h to a value h0 say for which the corresponding
smooth s0 has no maxima over the interval (x1, xI ).
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2. Progressively reduce the amount of smoothing by decre-
menting h until a critical value, hcrit

1 say, is reached when
the number of maxima in the corresponding smooth scrit

1
first exceeds zero (so hcrit

1 = max{h | #max(s) > 0}). Set
m1 = #max(scrit

1 ).
3. Subtract the smooth scrit

1 from the data Yi to obtain residuals
ei .

4. Oversmooth the residuals ei and then progressively reduce the
amount of smoothing by decrementing h until a new critical
value, hcrit

2 say, is reached when the number of maxima in
the corresponding smooth scrit

2 first exceeds m1 (so hcrit
2 =

max{h | #max(s) > m1}).
In this way, a family of smooths is obtained over the band-

width interval (hcrit
2 , hcrit

1 ] such that for each s in this family
the number #max(s) of maxima equals m1 (possible lapses
in this equality due to the nonmonotonicity of #max(s) with
h are discussed in Appendix 1). The next step is to find an
optimum value hopt

1 of h in (hcrit
2 , hcrit

1 ] which, as explained
earlier, is neither so large that the variation in the correspond-
ing smooth s opt

1 leaks into the estimate of the next component
nor so small that sopt

1 absorbs variation from the estimate of
the next component. In the present context, where compo-
nents are characterized by numbers of maxima, the loss or
gain of variation may be interpreted as a tendency to lose or
gain maxima: if an estimate ĥopt

1 of hopt
1 is too large, then the

corresponding smooth, ŝopt
1 say, is more likely to lose maxima;

if ĥopt
1 is too small, then ŝopt

1 is more likely to gain maxima.
Accordingly, hopt

1 is assumed to be that value of ĥopt
1 which

maximizes the estimated probability of the number of max-
ima in ŝopt

1 coinciding with the observed number m1. This
optimum value hopt

1 is calculated as follows.
5. Generate a bootstrap sample e∗

i from the residuals ei , for
i = 1, . . . , I . Specifically, if the errors εi in (1) are each
normally distributed, then sample from the normal distribu-
tions N (ei , σ̂

2
i ), where the σ̂ 2

i are assumed to be derived from
replications of the original measurements. Alternatively, the
bootstrap sample may be generated directly from the empir-
ical distribution of the replications, or, if replications are not
available, then from pseudo-residuals. Smooth the bootstrap
residuals e∗

i at the estimated bandwidth ĥopt
1 to obtain a boot-

strap smooth s∗
1 say. Repeat the sampling and smoothing a

further B −1 times to obtain B bootstrap smooths s∗
1 (b), with

b = 1, . . . , B. Each s∗
1 (b) has say m∗

1(b) maxima, which may
or may not coincide with the observed value m1. Let P(ĥopt

1 )
be the proportion of the s∗

1 (b) that do have m1 maxima (see
Appendix 1); that is,

P
(
ĥopt

1

) = #{s∗
1 (b) | #max(s∗

1 (b)) = m1}/B. (6)

Set hopt
1 to the smallest value of ĥopt

1 in (hcrit
2 , hcrit

1 ] at which
P(ĥopt

1 ) is maximum, and let sopt
1 be the corresponding

smooth.
6. Subtract this optimum smooth sopt

1 from the residuals ei to
obtain new residuals e(1)

i say.

7. Starting now with the residuals e(1)
i , apply steps 4–6 to obtain

a second optimum smooth sopt
2 with m2 maxima. Repeat this

process a further L − 2 times to obtain, in all, L optimum
smooths sopt

1 , . . . , sopt
L with, respectively, m1, . . . , mL max-

ima, the process terminating at a limiting bandwidth hcrit
L+1,

the smallest compatible with the sampling interval defined by
the design points x1, . . . , xI . If, for any l ′ with 1 ≤ l ′ < L ,
the residuals are random, that is, the smooth sopt

l ′ fits the resid-
uals e(l ′−1)

i according to (5) (or an equivalent measure), then
set sopt

l to zero for all l such that l ′ < l ≤ L .

Rank the smooths sopt
1 , . . . , sopt

L in order of decreasing am-
plitude (or probability) and take the top J smooths, that is,
sopt
β(1), . . . , sopt

β(J ), where β is the corresponding permutation (re-
call that the number J of components to be estimated is assumed
known at this point; if L < J , set J = L). The corresponding
numbers mβ(1), . . . , mβ(J ) of maxima, reranked in ascending or-
der, n1, . . . , n J say, are used as inputs to the next stage.

3.2. Stage 2. Estimate components

In this stage, the data Y1, . . . , YI are decomposed into J new op-
timum smooths sopt

1 , . . . , sopt
J with, respectively, the given num-

bers n1, . . . , n J of maxima.

1. Starting with the original data set Yi , repeat the smoothing,
differencing, and optimizing operations of Stage 1, but extract
new optimum smooths sopt

1 , . . . , sopt
J only where the corre-

sponding numbers m1, . . . , m J of maxima coincide with the
given numbers n1, . . . , n J .

2. If the sum S of the optimum smooths sopt
1 , . . . , sopt

J does not
fit the data Yi according to (5) or an equivalent measure, then
reduce the smoothing associated with sopt

J until it does (the
larger the variance σ 2

i of the εi , the fewer the components
estimated).

3. If, for any J ′ with 1 ≤ J ′ < J , the partial sum
∑J ′

j=1 sopt
j

fits the Yi , then set the remaining curves sopt
j to zero for all j

such that J ′ < j ≤ J .

The whole procedure, comprising Stages 1 and 2, was fully
automated. It was implemented in S-Plus (MathSoft, Inc., Seat-
tle, U.S.A), and, in a preliminary version, partially in GLIM
(Numerical Algorithms Group, Oxford, U.K.).

4. Testing with simulated data

To establish that the automatic repeated-loess procedure op-
erated correctly with well-behaved functions, it was tested on
trigonometric and smoothed sawtooth functions with added
noise of varying amplitude. Robust fitting or outlier suppres-
sion, part of the original loess procedure, was not incorporated.
The kernel function Kh was the usual tricube.

Results of an automatic repeated-loess analysis of a set of
trigonometric data are shown in the left panels of Fig. 1. The
test data Yi are shown by the circles in (a), with small vertical
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Fig. 1. Trigonometric test data, their decomposition into components, and corresponding Fourier spectra. In the left panels, the model function,
its components, and added noise are shown by dotted curves and their estimates obtained by automatic repeated loess are shown by continuous
curves. The model function in (a) is the sum of an exponential function (b) and a sinecurve with a sinusoidal envelope (c). This sum, along with the
model noise in (d), formed the test data (open symbols in (a)), with the vertical bars indicating ±1 estimated SE. In the right panels, the vertical
bars in (e)–(h) show, respectively, the Fourier amplitude spectra of the test data in (a), the model components in (b) and (c), and the residuals in
(d). In each spectrum, the amplitude at 0 cycles was set to zero

bars indicating ±1 estimated SE, in general calculated from the
data but here assumed known and given identically by a model
value σ , defined shortly. The model function and its constituent
curves (2) in the panels below are shown by the dotted lines. The
model function (a) consisted of the sum of an exponential func-
tion (b) and a sinecurve with a sinusoidal envelope (c). The test
data were formed from the model function (see (1)) by adding
model noise (d) drawn from the normal distributions N (0, σ 2

i )
with σi = σ = 1.0. For this first demonstration, although the
xi were drawn from the range 0◦, 5◦, . . . , 175◦, it was assumed
that the design was not axial; that is, x36 = 175◦ was not ad-
jacent to x1 = 0◦ (this decision only affects smoothing over
2–3 points at the ends of the range). The automatic repeated-
loess estimates of the components (b) and (c) are shown by
the continuous curves and were derived with the number J of
components assumed to be 2 (without this constraint, a spuri-
ous component appeared with 2 maxima and amplitude 3% of
the next largest component (c)). The continuous curve in (a) is
the sum of the estimated components in (b) and (c), and the
continuous curve in (d) shows the residuals; that is, the differ-

ence between the sum of the estimated components in (a) and
the test data. Overall, the components were well estimated by
the procedure, although there was a slight oversmoothing of the
data.

Results of a Fourier analysis of both this set of trigonometric
data and its decomposition are shown in the right panels of Fig. 1.
Phase spectra have been omitted. The vertical bars in (e)–(h)
indicate, respectively, the amplitude spectra of the test data in
(a) and of the model components in (b) and (c) (dotted curves),
and of the residuals of the estimates in (d) (continuous curve).
The spectrum of the model noise in (d) (dotted curve) is, on
average, constant, and is not shown. A priori, it is not obvious
how the data spectrum in (e) would be partitioned to obtain the
component spectra in (f) and (g), which greatly overlap.

Results of an automatic repeated-loess analysis of a set of
smoothed sawtooth data are shown in the left panels of Fig. 2.
As in Fig. 1, the test data Yi are shown by the circles in (a), with
small vertical bars indicating ±1 estimated SE given by model
values σi . The model function and its constituent curves in the
panels below are shown by the dotted lines. The model function
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Fig. 2. Sawtooth test data, their decomposition into components, and corresponding Fourier spectra. In the left panels, the model function, its
components, and added noise are shown by dotted curves and their estimates obtained by automatic repeated loess are shown by continuous curves.
The model function in (a) is the sum of a smoothed ramp function (b) and two smoothed sawtooth functions with varying periods (c) and (d). This
sum, along with the model noise in (e), formed the test data (open symbols in (a)), with the vertical bars indicating ±1 estimated SE. In the right
panels, the vertical bars in (f)–(j) show, respectively, the Fourier amplitude spectra of the test data in (a), the model components in (b)–(d), and
the residuals in (e). In each spectrum, the amplitude at 0 cycles was set to zero

(a) consisted of the sum of a smoothed ramp function (b) and two
smoothed sawtooth functions with varying periods (c) and (d)
(because of the size of the sampling interval, the smoothing in the
last is not apparent). The test data were formed from the model
function by adding model noise (e) drawn from the normal dis-
tributions N (0, σ 2

i ) in which, to reflect their nonconstancy, the
σ 2

i were sampled from one of the sets of estimates reported in
Section 5. For this demonstration, it was assumed that the de-
sign was axial; the data to be smoothed were extended by the

periodicity relation Yi+36q = Yi , where q is integer; smoothing
was then applied to the extended set; and the smooth was then
restricted to the original domain. Smoothing was not weighted
locally by the σ 2

i (see Section 5). The automatic repeated-loess
estimates of the components (b)–(d) are shown by the continu-
ous curves and were derived with the number J of components
assumed to be 3 (without this constraint, a spurious component
appeared with 5 maxima and amplitude 25% of the next largest
component (c)). The continuous curve in (a) is the sum of the
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estimated components in (b)–(d), and the continuous curve in
(e) shows the residuals.

Given the increased level of noise in this data set and the
closeness of the mean periodicity of the third component (d)
to the sampling interval defined by the design points xi , the
components were reasonably well estimated by the procedure.
The estimates might have been improved further if the kernel
function, the tricube, did not have bounded support (so that the
fit did not become degenerate at small bandwidths).

Results of a Fourier analysis of both this set of smoothed
sawtooth data and its decomposition are shown in the right pan-
els of Fig. 2. The vertical bars in (f)–(j) indicate, respectively,
the amplitude spectra of the test data in (a) and of the model
components in (b)–(d) (dotted curves), and of the residuals of
the estimates in (e) (continuous curve). Notice that, unlike the
residuals spectrum in Fig. 1(h), the spectrum in (j) is attenuated
at low-to-medium frequencies. The component spectra in (g),
(h), and (i) overlap moderately.

5. Application to psychophysical data

An automatic repeated-loess analysis was applied to data from a
psychophysical experiment (Foster and Westland 1998) on hu-
man visual sensitivity to differences in line orientation. Each
subject was presented briefly with a stimulus consisting of an
array of identical lines, all with the same orientation except for
one, a “target” line, which appeared within the array with prob-
ability 0.5. In each such trial, the subject had to indicate whether
the target was present. The orientations of the target and the
other “background” lines in the array varied randomly from trial
to trial. Ten subjects participated, each performing, on average,
13,000 trials over a period of several months. Experimental de-
tails are given in Foster and Westland (1998). From these data,
a curve was derived for each subject showing the smallest de-
tectable difference in orientation of target and background lines
as a function of the orientation of the background lines, some-
times referred to as an orientation increment-threshold function.
The derivation is summarized in Appendix 2. As suggested in
the Introduction, these increment-threshold functions appear to
represent the sum of several oscillatory components of unknown
form and periodicity. The task was to decompose the functions
obtained from individual subjects into orientation components
that might, in turn, be related to the activity of orientation-
sensitive mechanisms within the human visual system.

The curves in Fig. 3 show, superposed, the orientation
increment-threshold functions for the 10 subjects. There is a
rapid oscillation of threshold orientation with background ori-
entation, which varies markedly from subject to subject, along
with a more general underlying slow variation with a period of
about 90◦.

Results of an automatic repeated-loess analysis of the data
from an individual subject are shown in the left panels of Fig. 4.
The increment-threshold function is shown by the circles in (a),
with small vertical bars indicating ±1 estimated SE, obtained
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Fig. 3. Orientation increment-threshold functions for 10 subjects. The
continuous curves show the smallest detectable difference in orientation
of target and background lines as a function of the orientation of the
background lines. (An orientation of 0 ◦ corresponds to the vertical in
the frontoparallel plane)

from the experimental data by a bootstrap. The variation in the
estimated SEs is evident (and more so in a second example to
follow). They were mildly correlated with the threshold values:
averaged over all subjects, the sample correlation coefficient
was about 0.4. The repeated-loess procedure was applied as in
the second example in Section 4, for axial data. Although the
estimated SEs entered the goodness-of-fit measure (5), they were
not used to weight the smoothing locally, as this would then
have biased the fits downwards. (Apart from the local scaling
effect of the threshold value, the most important other cause
of the nonhomogeneous variance was probably variation in the
shape of the local curve relating target-detection performance
to orientation difference between target and background lines at
each background-line orientation; see Appendix 2.) The number
J of components to be estimated was fixed so that their statistics
could more easily be summarized over subjects. On the basis of
exploratory analyses, J was set to 3; the effect of allowing J to
vary is considered in Sections 6.1 and 7.2.

The components estimated from the data in Fig. 4(a) are shown
by the continuous curves in (b)–(d). The continuous curve in (a)
is the sum of these orientation components. The residuals are
shown in (e).

In the light of the results with the test data in Section 4, a
Fourier analysis was not expected to be especially revealing.
Nevertheless, for completeness, results are shown in the right
panels of Fig. 4. The vertical bars in (f)–(i) indicate, respectively,
the amplitude spectra obtained from the (smoothed) increment-
threshold function in (a) (continuous curve) and from the es-
timated components in (b)–(d). There is no obvious partition
of the spectrum in (f) that would yield the spectra in (g)–(i),
which, as with the test data, overlap considerably. The spec-
trum in (j) of the residuals contained high-frequency components
only.
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Fig. 4. Orientation increment-threshold function for subject S.W., its decomposition into orientation components, and corresponding Fourier
spectra. In the left panels, the increment-threshold function is shown by the circles in (a), with small vertical bars indicating ±1 estimated SE, and
the first, second, and third components estimated by automatic repeated loess are shown by the continuous curves in (b)–(d). The residuals are
shown in (e). The continuous curve in (a) is the sum of the orientation components in (b)–(d). Values of the bandwidth h and number n of maxima
associated with each component are indicated. In the right panels, the vertical bars in (f)–(j) show, respectively, the Fourier amplitude spectra of
the test data in (a), the estimated components in (b)–(d), and the residuals in (e). In each spectrum, the amplitude at 0 cycles was set to zero

Results of an automatic repeated-loess analysis and corre-
sponding Fourier analysis of data from a second subject are
shown, respectively, in the left and right panels of Fig. 5. Al-
though a partition of the amplitude spectrum in (f) might be
based on the minima at frequencies of 3 and 6 cycles per 180◦,
the overlap of the spectra in (g) and (h) and in (h) and (i) would
be lost.

In both Figs. 4 and 5, the mean periodicity of the third
estimated component in (d) is close to the sampling inter-
val, which may contribute to its appearance of randomness
(as with the estimated component in (d) for the smoothed

sawtooth data, Fig. 2), but its spectrum in (i) is different from
the residuals spectrum in (j). Further discussion of the non-
randomness and reproducibility of these fine components may
be found in Foster and Westland (1998, Appendix B, available
at http://www.pubs.royalsoc.ac.uk).

There are clear similarities both in the first and in the second
estimated components for the two subjects, and the results of
automatic repeated-loess analyses of data from the remaining
eight subjects were also similar. Averaged over all ten subjects,
the mean periodicity of the first estimated component was 89◦,
of the second one 41◦, and of the third 19◦. In the next section,



Automatic repeated-loess decomposition 347

0

10

20

30

40

(°
)

ta
rg

et
 th

re
sh

ol
d

(a)

 estimate

10

20

30

va
lu

e 
(°

)
co

m
po

ne
nt

 1

(b) h = 0.58,  n = 2

−10

0

10

va
lu

e 
(°

)
co

m
po

ne
nt

 2

(c) h = 0.43,  n = 4

−10

0

10

va
lu

e 
(°

)
co

m
po

ne
nt

 3

(d) h = 0.17,  n = 10

−10

0

10

(°
)

re
si

du
al

0 45 90 135 180

background orientation (°)

(e)

0

2.5

5.0

7.5

10.0
(f)

amplitude spectrum

0

2.5

5.0

(g)

0

2.5

5.0 (h)

0

2.5

5.0 (i)

0

2.5

5.0

0 5 10 15 20

number of cycles (180° −1)

(j)

Fig. 5. Orientation increment-threshold function for subject A.C., its decomposition into orientation components, and corresponding Fourier
spectra. Other details as for Fig. 4

some distributional properties of the components are considered
in relation to possible underlying mechanisms.

6. Statistics of components

6.1. Subcomponent analysis

This application of automatic repeated loess may be taken a
little further while maintaining the generality of a nonpara-
metric approach. For descriptive purposes, then, the results
of the automatic repeated-loess analyses for the 10 subjects
were summarized in terms of the estimated densities of the
subcomponents making up each component: subcomponents
were defined by segmenting a component at its minima, a

process that yielded a set of individual bump-shaped curves.
Each of these subcomponents may be thought of as the result
of an interaction between signals from individual orientation-
sensitive visual mechanisms with adjacent preferred orienta-
tions (Foster and Ward 1991). The angular width of each sub-
component would then correspond to the angle between the
preferred orientations of these mechanisms, that is, their ori-
entation spacing. For each component (first, second, third)
a histogram was constructed by counting at each angular
width the number of subcomponents with that width, over all
subjects.

For a uniform distribution of subcomponent widths, the num-
ber of counts for a small subcomponent width is greater than
for a large subcomponent width; so, to make departures from
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Fig. 6. Histograms of subcomponent widths. Mean normalized subcom-
ponent counts at each subcomponent width for (a) the first, (b) the sec-
ond, and (c) the third components estimated in automatic repeated-loess
decompositions of all ten subjects’ data (illustrated for two subjects in
Figs. 4 and 5). The histogram in (d) is replotted from an approximate
analysis (Foster and Westland 1998, Fig. 4a). The shaded regions mark
5–95% pointwise confidence intervals. The data were normalized to
reveal departures from uniformity over subcomponent widths

uniformity clearer, the recorded number of counts at each spac-
ing, T say, was multiplied by T/90◦.

Figure 6 shows this normalized subcomponent count, aver-
aged over the 10 subjects, plotted against subcomponent width
for (a) the first, (b) the second, and (c) the third component. The
shaded regions mark 5–95% pointwise confidence intervals, es-
timated by the bootstrap percentile method.

Despite the variations present in the individual decomposi-
tions in Figs. 4 and 5, the histograms of the subcomponent widths
showed three well-defined modes. For the first component, the
mode is at 90◦ (Fig. 6(a)); for the second component, it is at
45◦ (Fig. 6(b)) and for the third component, it is at 15◦–20◦

(Fig. 6(c)).
If the number J of components to be estimated had not been

fixed, it would have been difficult to pool the partitioned sub-
component counts over different subjects. But it seems unlikely
that these three estimated densities are an artifact of setting J to
3. In an earlier approximate analysis (Foster and Westland 1998;
see Section 7.2 here), J was given a maximum value of 5 for

each subject, and the same three modes emerged in a histogram
of subcomponent widths derived from the set of all components,
replotted here in Fig. 6(d). The total number of counts in (d) is
a little higher than the sum of the totals in (a)–(c), by the mode
at 90◦ in (d) is sharper than in (a).

6.2. Principal component analysis and independent
component analysis

An examination (Foster and Westland 1998) of the relative
phases of the subcomponents suggested that coarse and interme-
diate components were relatively stable over subjects, whereas
fine subcomponents varied from subject to subject. A principal
component analysis (PCA) of the increment-threshold functions
over subjects should therefore identify only the fine orienta-
tion components of the automatic repeated-loess analysis. As
in other applications (Grambsch et al. 1995, see also Ramsay
and Dalzell 1991, Rice and Silverman 1991), the PCA was ap-
plied to the smoothed increment-threshold functions from each
of the 10 subjects (for the two subjects in Figs. 4 and 5, the con-
tinuous curves in (a)). The four leading principal components,
accounting for 94% of the variance in the data, were each found
to oscillate rapidly, with periods 14◦–23◦. As anticipated, this
range contained the main mode at 15◦–20◦ characterizing the
fine orientation subcomponents of the automatic repeated-loess
analysis (Fig. 6(c)). PCA was not informative about the coarse
and intermediate components of the automatic repeated-loess
analysis.

An independent component analysis (ICA) was also under-
taken (Bell and Sejnowski 1995, Comon 1994). ICA is similar to
PCA, but is designed to obtain components that are maximally
independent, not merely decorrelated. It was, however, no more
informative than PCA.

6.3. Comparison with other experimental data

At present, only broad comparisons can be made between the
properties of the estimated subcomponent densities of Fig. 6
and data from the primate neurophysiological literature, pri-
marily because of the different ways in which responses are
measured. Thus, electrical recordings are normally made from
single cells rather than from groups of cells; the recorded ori-
entation characteristics of individual cells depend on which
layers of the cortex are sampled (e.g. De Valois et al. 1982,
Henry et al. 1994) and on the size of the stimuli (Schiller
et al. 1976), and these characteristics may vary with time af-
ter the onset of the stimulus (Ringach et al. 1997). Even so,
population data from some single-cell recordings show a 90◦

anisotropy, with more cells tuned to vertical and horizontal than
to oblique directions (De Valois et al. 1982). The orientation-
tuning bandwidths of cells, which might be related to subcompo-
nent widths, is large: full-width half-height values range from
about 8◦ to more than 100◦ (De Valois et al. 1982, see also
Celebrini et al. 1993). And, albeit less reliably, the estimated
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densities of orientation bandwidths have modes variously at
about 20◦, 30◦–40◦, and 90◦–180◦, depending on retinal-input
location and cell type (De Valois, Yund and Hepler 1982, see
also Vogels and Orban 1990).

Comparisons with other psychophysical data are more
straightforward, and have been reviewed elsewhere (Foster and
Ward 1991, Baddeley and Hancock 1991, Foster and Westland
1998). In brief, evidence is available for 90◦ periodicities
(Marendaz 1998, Regan and Price 1986, see also the general lit-
erature on the “oblique effect”, Appelle 1972, Gentaz and Ballaz
2000), for 45◦ periodicities (Regan and Price 1986, Stivalet et al.
1995), and for the possibility of smaller periodicities still (Wolfe
et al. 1992, Regan and Price 1986).

7. Discussion

7.1. Advantages and disadvantages

Automatic repeated loess has several advantages as a procedure
for decomposing data consisting of sums of oscillatory curves.

1. Based on repeated loess, it is nonparametric. No assumptions
need be made about the periodicity of components and only
very weak assumptions about their shapes. It can incorporate
robust fitting; deal routinely with missing values; and provide
an immediate graphical interpretation.

2. It retains the particular advantages of locally weighted
quadratic fitting in minimizing bias.

3. It is automatic, and does not require user intervention to de-
termine bandwidths.

The success of the procedure depends on what is meant by
a component, but the interpretation adopted here, based on the
number of maxima in a curve and the range over which the curve
can be approximated adequately by a 2nd-order Taylor polyno-
mial, seems sufficiently general to capture many biological (and
physical) processes.

The disadvantages of the procedure stem mainly from its non-
parametric foundations.

1. It may fail to decompose satisfactorily sums of curves with
large-amplitude noise that produces significant additional
maxima or hides existing maxima. It may also fail to de-
tect small-amplitude components in the presence of a large-
amplitude trend. For example, if the model function f in
(2) is defined by the sum f (x) = a1x + a2 sin ωx , with
x1 ≤ x ≤ xI , and the constants a1, a2, ω are such that
a1 > a2ω, then f has no maxima in (x1, xI ).

2. Subcomponents may be split over adjacent components, for
example, where maxima coincide. As a test for splitting, a
histogram of the number of subcomponents at each subcom-
ponent width may be compared with a plot of the summed
subcomponent amplitudes at each subcomponent width. (By
this measure, there was little subcomponent splitting in the
psychophysical data; see Foster and Westland 1998.)

3. Occasional spurious interaction components may be gener-
ated by closely similar components. With the test data, it was
found that the amplitudes of the interaction components were
smaller than those of the true components (see Section 4).

Unlike some other decomposition procedures such as inde-
pendent component analysis, there is no constraint that compo-
nents estimated by automatic repeated loess should be indepen-
dent. This requirement could, if desired, be introduced during the
optimization of the smoother bandwidths in Stage 1 and Stage
2 of the procedure (Section 3).

7.2. Efficiency considerations

A large part of the computational burden of the procedure came
from the optimizing smoother bandwidths. In the optimizations,
the value of the smoother bandwidth h producing a constant
number of maxima in an estimated component was decremented
in multiplicative steps of 0.95, and, at each of these values, B
bootstrap replications were performed. A value of B = 50 was
found to be just acceptable. To reduce the time spent on optimiza-
tion, the size of the decrement in h might have been increased,
but it would then have been necessary to make B larger. Alterna-
tively, the accuracy of the estimated optimum bandwidth could
be improved by smoothing the estimated probability P(h) in (6)
with respect to h.

For any particular application, it is possible to reduce com-
putation time by using model data to guide the choice of band-
widths. This approach was used in an approximate analysis re-
ferred to earlier (Foster and Westland 1998). Thus, for a given
bandwidth interval (hcrit

l+1, hcrit
l ] producing a constant number of

maxima in an estimated component, an approximately optimum
bandwidth hl was selected by multiplying hcrit

l+1 by a factor κ ,
where κ was the largest value between 1.0 and 1.5 for which
hl ≤ hcrit

l . The limit of 1.5 was found by experimenting with
several sets of model data thought likely to be similar in struc-
ture to the experimental data. The number J of components to
be estimated was not fixed, but given a maximum value of 5.
This reduced procedure produced decompositions broadly simi-
lar to those obtained here, as already noted in the analysis of the
subcomponent distributions (Fig. 6). Over the 10 subjects, the
number of components estimated varied from 2 to 4. Although in
its application this procedure was still controlled by the number
of maxima obtained in each component, it was not fully optimal,
and, in requiring preliminary user intervention, it was closer in
spirit to Cleveland’s original repeated-loess procedure.

Appendix 1: Monotonicity of numbers
of maxima

Silverman’s (1981) proof of the monotonic decrease in the num-
ber of modes with increasing bandwidth of the smoother depends
on the use of a normal density function as a kernel smoother
(see Chaudhuri and Marron 2000, for discussion). With the
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locally weighted quadratic smoother used here, this monotonic-
ity property held only approximately. By construction of the
bandwidth intervals (hcrit

l+1, hcrit
l ], it follows that for each s in

the corresponding family of smooths {s | hcrit
l+1 < h ≤ hcrit

l }
the number of maxima #max(s) does not exceed #max(s crit

l ),
where s crit

l is the smooth corresponding to hcrit
l . For the present

data, equality was found to hold over 93–94% of the bandwidth
range, with #max(s) equal to #max(s crit

l ) − 1 over the remain-
der. As the estimated probability P(h) at h in (6) was calculated
only for smooths in which the number of maxima was equal to
#max(s crit

l ), lapses were automatically excluded.

Appendix 2: Derivation of
increment-threshold functions

In the psychophysical experiment, the orientation θ of the back-
ground lines varied over the range 0◦, 5◦, . . . , 175◦, and the dif-
ference δθ in orientation between target and background lines
varied over the range 5◦, 10◦, . . . , 40◦. Target detection at each
combination of θ and δθ was summarized by the discrimina-
tion index, denoted by d ′, from signal-detection theory (Green
and Swets 1966). Thus, if HR is the detection hit rate, FAR the
false-alarm rate, and �−1 the inverse of the (cumulative) unit
normal distribution, then d ′ = �−1(HR) − �−1(FAR). Hence,
d ′ linearizes and combines responses to trials with and without
targets.

For each θ , a graph of d ′ against δθ was obtained, from which
a threshold value �θ of δθ was derived, in the following way.
As some graphs had both concave and convex sections, a cubic
curve g was fitted, which accounted adequately for the variance
in the data (maximum χ2 = 196, d.f. = 180). Fitting was by
weighted least-squares, constrained so that g(0) = 0. For a se-
lected criterion level d ′

0 of d ′ (e.g. d ′
0 = 0.5), the corresponding

threshold value �θ of δθ was calculated as the (positive) value of
δθ nearest zero such that g(δθ ) = d ′

0 (such a value could always
be found). The curve of �θ against θ defined the increment-
threshold function. At each value of θ the standard deviation of
�θ was estimated with a bootstrap. The choice of criterion level
d ′

0 was constrained by two requirements: that the �θ should be
stable and that the shape of the curve of �θ against θ should be
invariant under modest changes in d ′

0. For values of d ′
0 greater

than about 0.8 one or other of these requirements was not sat-
isfied (Foster and Ward 1991). Further details of methodology
are given in Foster and Westland (1998).
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