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Classical and Fuzzy Differential Methods in 
Shape Analysis* 

David H. Foster 

Department of Communication and Neuroscience, Keele University, 
Staffordshire ST5 5BG, UK 

Abstract. This study considers four means of defining differential operators 
for extracting local aspects of shape in ill-specified environments: fuzzy differ
entiation as kernel smoothing; differentiation in the sense of weak or general
ized derivatives; differentiation for fuzzy functions between normed spaces; and 
fuzzy differentiation for mappings between fuzzy manifolds. More consideration 
is given to the last, norm-free approach, which involves the notions of an abstract 
fuzzy topological vector space, fuzzy differentiation between fuzzy topological 
vector spaces, fuzzy atlases, and tangent vectors of fuzzy manifolds. 

Keywords: shape description, differential geometry, fuzzy set, fuzzy derivative, 
fuzzy topological vector space, fuzzy manifold, tangent vector, tangent space. 

1 Introduction 

A common technique for characterizing shape in an image is to use some kind of 
differential operator to extract the critical local variations in the light distribu
tion. For images of two-dimensional objects, and their boundaries in particular, 
one might determine the positions of curvature extrema (1, 38, 9]; and, for images 
of three-dimensional objects, the positions of extrema in, for example, principal 
curvatures (17]. 

Yet in real vision systems, whether machine or human, imprecisions are in
herent in the spatial and intensity characterization of the image. At the low
est, most immediate levels of image representation, there are effects of noise 
in sensory transduction and of limits on sampling frequency, both spatial and 
temporal. At higher, more removed levels of image representation (13], there are 
more general imprecisions to do with the specification of image qualities (40]. For 
the human observer it is unclear what geometrical framework is used to form 
the representation, and indeed whether a metric structure or the structure of 

* I am grateful to P. Fletcher, R. Kopperman, S.R. Pratt, and M.G.A. Thomson for 
critically reading the manuscript and to J.J. Koenderink for comments on Sect. 2. 
This work was supported by ESPRIT Basic Research Action No. 6448 (VIVA). 



320 Foster 

a normed space is part of it [11, 14]. How then should differential operators be 
defined for these ill-specified environments? 

The approaches to this problem have differed in the restrictions they have 
placed on the class of admissible image characterizations and on the analytic 
machinery assumed to be available at each processing stage. Four of the main 
approaches may be summarized as follows. 

1. Assume a Euclidean framework and smooth the low-level image representa
tion. The classical differential methods of real analysis may then be applied 
straightforwardly. 

2. Assume that the low-level representation is important only in the way that 
it "interacts" with certain other functions. For a sufficiently large set of 
such functions, this interaction defines an operator which is differentiable, in 
the sense of generalized derivatives, and which can be used in place of the 
representation. 

3. Assume that the image representation is "fuzzy" but constrained in such a 
way that it may be isometrically embedded in a normed space, which then 
allows classical differential methods to be applied. 

4. Assume that the image representation is fuzzy and introduce a natural fuzzy 
topological vector space structure-or more generally the structure of a fuzzy 
differentiable manifold-so that the notion of fuzzy differentiation follows 
naturally without the imposition of a norm. 

This article reviews briefly methods { 1 )-( 3), and then more fully method { 4), 
which involves some relatively unfamiliar topological-geometrical notions. The 
treatment is not complete: topological [19, 23, 24] and graph-based [22] digital
topological approaches are not considered, nor are synthetic methods [20]. 

It is assumed, with little loss in generality, that the images of interest are 
monochromatic, viewed monocularly. 

2 Fuzzy Differentiation as Kernel Smoothing 

Suppose that the image is represented by some luminance distribution I(x), 
where x ranges over the real plane lR?, and suppose that I is non-smooth in 
some way, that is, I or its first or second derivative is discontinuous in the 
standard differential structure on IR 2 . There are various ways of smoothing the 
data defined by I. A kernel smoother uses an explicit set of local weights, defined 
by the kernel K, to produce the smoothed estimate j of I at each x [42, 16]; 
thus 

j(x) = j K(x- x') I(x') dx'. 

If I is obtained by discrete sampling, that is, determined only on a finite subset 
{xi}1<i<n of points in IR2 , the integral is replaced by a summation over i [16]. 

In -g~neral the kernel takes the form 

K(x) = (co/u) d(llxll/u), 
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where d is a decreasing function; II · II is a norm; a is the window-width or 
bandwidth; and co is a normalizing constant. There are several criteria for the 
choice of kernel (31]; in the present context a natural candidate for d is the 
standard Gaussian function [42]. 

For functions of IR 2 , and for luminance distributions in particular, a definition 
of a fuzzy derivative has been been proposed [21] that may be viewed as a kernel 
smoother, the kernel being the derivative of a Gaussian function; that is: 

Definition 1. The nth (partial) fuzzy derivative at x E IR is the kernel 

where a = v'4S sets the scale parameter. 

The functions <Pn have a ready physical and physiological interpretation [21], 
and show a concatenation property such that the higher-order derivatives are ob
tained at lower spatial "resolutions", the resolution corresponding to the inverse 
of the scale parameter value a. A discretized version of this scale-space approach 
has been described in (27, 28], where a discrete analogue of the Gaussian kernel 
is used. 

There is, however, a fundamental problem of deciding how appropriately the 
fitted surface represents the original surface [10, 4]. A critical question, for ex
ample, is whether Gaussian smoothing leads to robust derivatives. As has been 
noted elsewhere [ 43], there are two conflicting requirements: accuracy (correct 
derivatives should be obtained, at least for low orders), and smoothing (the ef
fects of noise and discretization should be minimized). Gaussian kernels can lead 
to "over-smoothing" errors, but other kernels can be derived that achieve a bet
ter compromise between these two requirements (43]. The technique of adaptive 
kernel estimation has been reviewed in [42]. 

The approach summarized in Definition 1 and developed in [21] differs from 
some others in that it does not assume necessarily that an "original" surface 
exists, other than that which can be observed through the kernels (see Sect. 3). 
This foundational issue has been circumvented in an approach (4] that uses 
a statistical covariance technique (26] for surface descriptors. By analogy with 
classical differential methods, the technique yields, for discretely sampled data, 
definitions of the first and second fundamental forms for a surface in IR 3 , and 
the Weingarten equations, which relate the rate of change of the unit normal 
vector and the corresponding chosen direction of a curve on the tangent plane 
(4]. 

The next section considers more generally the notion of derivatives as oper
ators. 

3 Generalized Derivatives 

Suppose that the image luminance distribution J(x), x E IR2 , is such that it 
can be associated formally with an operator on a set of "test" functions on IR 2 . 
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(The association may be through convolution, as in the preceding section; the 
test functions are defined shortly, after a natural topology for them is intro
duced.) Although derivatives of the representation may not be defined in the 
ordinary way, derivatives of this operator may be defined, providing that certain 
conditions are satisfied. 

The set of test functions is given a topology based on a family of seminorms. 
A semi norm on a vector space E is a mapping p : E ---> [ 0, oo) such that: 

1. p(~ + 17) :::; p(~) + p(ry), for all~' 17 E E. 
2. p(a~) = lal p(~), for all~ E E, a E <D (or lR). 

A family {p1 },Er of seminorms separates points if 

3. p,(~) = 0 for all 1 E T implies~ = 0. 

The natural topology on a vector space with a family {p1 },Er of seminorms 
separating points is the weakest topology in which all the p1 are continuous and 
in which the operation of addition is continuous. 

The set of test functions on lR 2 (or, more generally, lR n) is the set S of 
functions of rapid decrease; that is, the set of infinitely differentiable functions 
¢ on lR 2 for which 

(1) 

for all non-negative integers al,a2,f31,/J2. The functions inS are thus those 
that together with their derivatives fall off more rapidly than the inverse of any 
polynomial. The quantity on the left-hand side of (1) defines a seminorm ll·lla,,B 
on S. These seminorms give S the natural topology. 

The space of operators can now be defined as the (topological) dual of S; that 
is, the set of all continuous linear functions ( "functionals") on S. It is denoted 
by S' and called the space of tempered distributions [41]. The derivative of a 
tempered distribution is defined as follows. 

Definition 2. Let T be a tempered distribution. The weak or generalized deriva
tive D(<>t,<> 2)T (or the derivative in the sense of distributions) is given by 

for all¢ E S. 

There is a natural way to associate a certain class of functions f on lR 2 with 
tempered distributions T1 such that if Tt = T9 then f = g almost everywhere. 
For an image luminance distribution that falls into this class, its derivative may 
thus be defined as the derivative of the corresponding tempered distribution. 
The connection between this approach to the differentiation of image functions 
and the smoothing approach of Sect. 2 is discussed in [10]. 



Classical and Fuzzy Differential Methods 323 

4 N ormed Spaces of Fuzzy Sets 

Suppose, now, that the sampling of the image is less precisely specified. For 
example, consider a function that assigns to each point x in lR 2 with luminance 
I(x) some measure of the "goodness" of this characterization of the image at 
that point, or, more generally, consider a function that assigns to each element of 
some set X of image attributes, possibly including an estimate of spatial position, 
a number that specifies the extent to which that attribute is associated with the 
image or part of the image. Both of these functions are examples of "fuzzy 
sets", the formal notion of which was introduced by Zadeh [44]. Thus, given an 
arbitrary set X, a fuzzy set (or fuzzy subset) in X is a function A : X --+ [ 0, 1] 
such that the value A( x) of A at the point x E X gives the "grade of membership" 
of x in A. (Fuzzy set theory should not be confused with probability theory; for 
discussion of this and related issues, see [45, 33, 34].) For a classical set the 
grade of membership would be either 0 or 1 (and A would then coincide with its 
characteristic function). The grade of membership of a fuzzy set may be taken in 
a complete lattice [15]-that is, a lattice in which every subset has a supremum 
and an infimum-rather than in the unit interval [ 0, 1]; see [33] for examples. 
A kind of fuzziness for which there is no greatest element has been considered 
in [32], but this weaker structure limits the definition of a topology (Sect. 6). 

The set F(X) of all fuzzy sets in X is a complete distributive lattice. For 
any fuzzy set A and any number a E [ 0, 1], the a-cut A a of A is the set 
{ x EX I A(x) ~a}. If X is a vector space, a convex fuzzy set A in F(X) has 
the property that 

for every x 1 , x2 in X, and .\ in [ 0, 1]. 
The next section considers the differentiation of a "fuzzy" function from a 

normed vector space into a set of fuzzy sets in a reflexive Banach space Y with 
norm II ·II· It is possible to introduce a norm on a subset of F(Y), the set of all 
fuzzy sets in Y. Recall that the Hausdorff distance dH(P, Q) between non-empty 
bounded (classical) subsets P, Q of Y is given by 

dH(P, Q) =max {sup inf liP- qll, sup inf liP- qll} . 
pEP qEQ qEQ pEP 

This distance can be extended to the subset Fo(Y) of F(Y) containing those 
fuzzy sets A with the following properties [36]: 

1. A is upper semicontinuous; 
2. A is convex; 
3. Aa is compact for every a. 

For A, BE F 0 (Y), define the distance d(A, B) between A and B by 

d(A, B)= sup{dH(Aa, Ba)}. 
a>O 
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Then it can be shown (36] that (Fo(Y), d) is a complete metric space. 
The subset Fo(Y) can be given a linear structure in the following way [36]. 

For A, B E Fo(Y), the sum C = A+ B of A, B (sometimes denoted by A EBB) 
is the fuzzy set in Y defined by 

C(y) = sup {a I y E (Aa + Ba) }, for ally E Y, 
aE(O,l] 

where Aa + Ba is the (classical) subset { z E Y I z =a+ b, a E Aa, bE Ba }. 
For any scalar a E lR, the scalar product aA of a and A is the fuzzy set in Y 
defined by 

{ 
A(y/a), 

(aA)(y) = 0, 
SUPzEY A(z), 

if a -:f. 0, 
if a = 0 and y -:f. 0, 
if a = 0 and y = 0. 

Although Fo(Y) is not a vector space with this sum and product (37, 36], the 
embedding theorem of Radstrom (37] may be used to embed F0 (Y) isometrically 
in a normed vector space. Let Y be this normed space and let j : Fo(Y) ___, Y 
denote the embedding. 

5 Differentiation of a Fuzzy Function between N ormed 
Spaces 

One definition (36] of a fuzzy function f from an arbitrary set X to an arbitrary 
set Y is that it is a set-valued mapping or multifunction (3] that assigns to each 
point x EX a fuzzy set f(x) E F(Y) (but see e.g. [33] for other interpretations). 
Suppose that X is a normed vector space; U a (classical) open subset of X; Y 
a reflexive Banach space, as in Sect. 4; and f a fuzzy function from U into Y 
such that f(x) E Fo(Y); that is, for each x E X, the fuzzy set f(x) has the 
properties (1)-(3) of Sect. 4. Then the differentiability off at a point in U may 
be defined (36] by the differentiability of its composition with the embedding j 
in the normed vector spaceY; thus: 

Definition 3. The fuzzy function f : U ___, Fo(Y) is differentiable at a point 
x 0 E U if the composition j = j o f is differentiable at x0 ; that is, if there exists 
a linear bounded mapping }' ( xo) from X into Y such that 

lim { ll}(x)- }(xo)- }'(xo)(x- xo)ll} = 0 . 
:z:-+:z:o llx- xoll 

Further details are given in (36, 3], where the Hukuhara differential is also dis
cussed. 

By definition [46, 30], a type 2 fuzzy set A in a set X is a fuzzy set char
acterized by a fuzzy membership function whose values are each fuzzy sets 
in the unit interval ( 0, 1]; that is, for each x E X, the grade of membership 
A(x): J ___, (0,1], where J C (0,1]. Type 2 fuzzy sets are a special case of 
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the fuzzy functions just defined. An application of Definition 3 might thus be to 
those image characterizations that form type 2 fuzzy sets; that is, as in Sect. 4, 
where each point x in IR2 of the image is associated with a fuzzy estimate f(x) 
of (normalized) luminance. 

6 Fuzzy Topology and Fuzzy Topological Vector Spaces 

Consider, next, fuzzy sets in a set X where there is no norm. As will become 
clear later, all that is needed for a basic definition of differentiation is that X 
should be equipped with an appropriately fuzzy version of the structure of a 
topological vector space. 

Note. In fact an even simpler framework is possible. R. Kopperman has consid
ered (1992, personal communication) the equivalent definition: f'(x) is a deriva
tive for f at x if f(y) = f(x) + m(x, y)(y- x) and limy--+x m(x, y) = f'(x), 
with m(x, y), the slope of f between x and y, defined for x, y E Dom(f). 
This definition extends easily to any category of topological abelian groups 
such that if X, Y are topological abelian groups, then Hom(X, Y) is also a 
topological abelian group and [(f,x) --+ f(x)] : Hom(X, Y) X X --+ Y and 
[(!,g)--+ fog] :Hom( X, Y) X Hom(Z, X)--+ Hom(Z, Y) are jointly continuous. 
In this situation, functions are continuous at points of differentiability and the 
chain rule and sum rule hold; further, theorems on partial derivatives and the 
inverse and implicit function theorems, among others, can be formulated and 
shown in natural settings (see Sect. 8). 

For the sake of completeness, some elementary properties of fuzzy sets are 
briefly recalled [44, 33, 35, 7]. For each c E [ 0, 1], let kc denote the constant 
fuzzy set in X, that is, kc(x) = c for all x EX; and let Xc denote the fuzzy point 
in X, where 

Xc(Y) = { ~', for y = x; 
otherwise. 

For a fuzzy set A in X, one writes Xc E A when c ~ A(x). The set X is 
identified with the constant fuzzy set k1 and the empty set is identified with k0 . 

The inclusion, intersection, union, and complement of two arbitrary fuzzy sets 
are defined in an obvious fashion [44, 7]; for example, for fuzzy sets A, Bin X, 
the intersection An B is given by (An B)(x) = min{A(x), B(x)}, for all x EX. 

Let f be a mapping from a set X to a set Y. Let B be a fuzzy set in Y. Then 
the inverse image f- 1 [B] of B is the fuzzy set in X defined by j-1 [B](x) = 
B(f(x)), for all x E X. Conversely, let A be a fuzzy set in X. Then the image 
![A] of A is the fuzzy set in Y defined by 

f[A](y) = { supzEj-l(y) A(z), 
0, 

if r 1 (y) is nonempty, 
otherwise. 

Notice that although f takes fuzzy sets into fuzzy sets, it is not a set-valued 
mapping in the sense of Sect. 5, where (classical) points are taken into fuzzy 
sets. 
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The following definition of a fuzzy topological space is due to Lowen [29]. 
A fuzzy topology on a set X is a family T of fuzzy sets in X that satisfies the 
following conditions: 

1. For all c E [ 0, 1], kc E T. 
2. If A, B E T, then An B E T. 
3. If Aj E T for all j E J (J some index set), then UjEJ Aj E T. 

In the definition of a fuzzy topology due to Chang [5], the condition (1) is 

1'. k0 , k1 E T. 

The inclusion in T of all fuzzy sets that are constant functions on X is required 
for the fuzzy continuity of the constant functions from X to any other set Y 
equipped with a fuzzy topology (fuzzy continuity is defined shortly). A fuzzy 
topology that satisfies condition (1) is called a proper fuzzy topology. The pair 
(X, T) is called a fuzzy topological space. An open fuzzy set A in X is one which 
is in T, and a closed fuzzy set is one whose complement A = 1- A is in T. A 
fuzzy set B is a neighbourhood of a fuzzy point Xc in X if there is a fuzzy set A 
in T such that Xc E A C B. A fuzzy topological space is called a fuzzy T1 space 
if every fuzzy point is a closed fuzzy set. 

Let (X, T), (Y, V) be two fuzzy topological spaces. A mapping f of (X, T) 
into (Y, V) is fuzzy continuous if for each open fuzzy set V in V the inverse image 
f- 1 [V] is in T. Conversely, f is fuzzy open if for each open fuzzy set U in T, the 
image f[U] is in V. For related properties, including the notions of an induced 
fuzzy topology on a fuzzy set, and relatively fuzzy continous and relatively fuzzy 
open mappings, see [12]. 

Suppose that E is a vector space over IK (the real field IR or complex field 
<D). Let A, B be fuzzy sets in E. The definitions of the sum and scalar product 
(Sect. 4) may be reformulated thus. The sum C = A+ B of A, B is the fuzzy set 
in E defined by 

C(x) = sup min{ A( a), B(b)}, for all x E E; 
a+b=x 

and, for any scalar a E IK, the scalar product aA of a and A is the fuzzy set in 
E defined by 

(aA)(x) = { A(x/a), 
Oc(x), 

for a f= 0, 
otherwise, 

for all x E E, where Oc is the fuzzy point at 0 in E with c = supyEE A(y). 
Suppose that E is equipped with a fuzzy topology T and that IK is equipped 

with the usual topology K. A fuzzy topological vector space (ftvs) is a vector 
space E over IK such that [18] the two mappings 

1. (x, y) f-> x + y of (E, T) x (E, T) into (E, T), 
2. (a,x) f-..> ax of (IK,K) X (E, T) into (E, T), 

are fuzzy continuous. Notice that the fuzzy topological vector space E may be 
proper or improper, but IK is a special case of an improper fuzzy topological 
vector space. In the sequel, E denotes a ftvs with scalar field IK. 
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7 Fuzzy Differentiation Between Fuzzy Topological Vector 
Spaces 

The following definition of a fuzzy derivative is a generalization of the classical 
definition for topological vector spaces [25]. Let E, F be two fuzzy ftvs's and let 
¢be a mapping from E into F. Let o(t) be any function of a real variable t such 
that limt ..... o o(t)jt = 0. Then¢ is tangent to 0 if given a neighbourhood W of 00 

in F, 0 < 6 ::; 1, there exists a neighbourhood V of 0~ in E, 0 < .X < 6, such 
that 

¢[tV] c o(t)W, 

for some function o(t). If both V, Ware classical sets and E, Fare normed, then 
this amounts [25] to the usual condition 

ll¢(x)ll ::; llxll'l/l(x), 
where limllzii->O .,P(x) = 0. 

Let E, F be two ftvs's, each endowed with a fuzzy T1 topology. Let f: E---+ F 
be fuzzy continuous. The fuzzy differentiability of f at a point in E may be 
defined [6] thus: 

Definition 4. The mapping f : E ---+ F is fuzzy differentiable at a point x E E 
if there exists a linear fuzzy continuous mapping f' ( x) of E into F such that 

f(x + y) = f(x) + f'(x)(y) + ¢(y), for ally E E, 

where ¢ is tangent to 0. 

The mapping f'(x) is the fuzzy derivative of f at x; it is an element of 
L(E, F), the set of all linear fuzzy continuous mappings of E into F. The map
ping f is fuzzy differentiable if it is fuzzy differentiable at every point of E. That 
f'(x) is unique depends [6] on the fuzzy topology being fuzzy T1. 

An application of Definition 4 might be to those image characterizations 
which associate with each image point x in IR. 2 , say, a fuzzy estimate of location 
(Sect. 4), and with each point f(x) in IR., say, a fuzzy estimate of an attribute 
value such as contour curvature. 

The next section considers a generalization of this notion of differentiation 
to spaces which are only locally like fuzzy topological vector spaces. 

8 Fuzzy Differentiation Between Fuzzy Manifolds 

Let E, F, G be ftvs's. It may be shown [6] that the composition go f of two fuzzy 
differentiable mappings f : E ---+ F, g : F ---+ G is fuzzy differentiable, and that 
the fuzzy derivative of go fat x E E is g'(f(x)) o f'(x). It may also be shown [6] 
that if f, g are two fuzzy continuous mappings of E into F that are· each fuzzy 
differentiable at x E E, then f + g is fuzzy differentiable and so is a.f for all 
a. E IK. A bijection f of E onto F is a fuzzy diffeomorphism of class C1 if f and 
its inverse f- 1 are fuzzy differentiable, and !' and u-1 )' are fuzzy continuous. 
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Classically, one can glue together the open subsets of a topological vector 
space (more commonly a Banach space) to form a manifold. Fuzzy differentiable 
manifolds can be defined in the same way; the glue is a family of (local) fuzzy 
diffeomorphisms between fuzzy topological vector spaces. 

Let X be a set. A fuzzy atlas A of class C 1 on X is a collection of pairs 
(Ai, <Pi) (here and subsequently j ranges in some index set) that satisfies the 
following conditions: 

1. Each Ai is a fuzzy set in X and supi Ai(x) = 1, for all x EX. 
2. Each <Pi is a bijection, defined on the support of Ai, which maps Ai onto 

an open fuzzy set <Pi [Ail in some ftvs Ei, and, for each l in the index set, 
<Pi[Ai n Ad is an open fuzzy set in Ei. 

3. For each l in the index set, the mapping ¢1 o ¢j1 , which maps <Pi [Ai n Ad 
onto ¢1[Ai n Ad, is a C 1 fuzzy diffeomorphism. 

Each pair ( Ai, <Pi) is a fuzzy chart of the fuzzy atlas. If a point x E X lies in the 
support of Ai then (Ai, <Pi) is a fuzzy chart at x. 

It is then possible to show [8] that given a C 1 fuzzy atlas A on a set X, the 
set X may be endowed with a fuzzy topology such that each Ai in A is an open 
fuzzy set and each <Pi is fuzzy continuous. In fact, the family {Ai} of fuzzy sets 
forms a base for a proper fuzzy topology on X and in this topology the <Pi are 
fuzzy continuous. 

Let (X, T) be a fuzzy topological space. Suppose that A is an open fuzzy 
set in X and that ¢ is a fuzzy continuous bijective mapping which is defined 
on the support of A and which maps A onto an open fuzzy set V in some ftvs 
E. The pair (A,¢) is compatible with the C 1 atlas {( Ai, <Pi)} if each mapping 
<Pi o ¢-1 of ¢[An Aj] onto <Pi[A n Aj] is a fuzzy diffeomorphism of class C 1 . Two 
C 1 fuzzy atlases are compatible if each fuzzy chart of one atlas is compatible 
with each fuzzy chart of the other atlas. Compatibility between C 1 fuzzy atlases 
is obviously an equivalence relation. An equivalence class of C 1 fuzzy atlases on 
X defines a C 1 fuzzy manifold on X. In the following, reference is made simply 
to fuzzy manifolds. 

Suppose that X, Yare fuzzy manifolds and that f is a mapping of X into Y. 
The fuzzy differentiability of f at a point x in X may be defined [8] by its fuzzy 
differentiability in fuzzy charts at x and f(x); that is: 

Definition 5. The mapping f : X ---+ Y is fuzzy differentiable at a point x E X 
if there is a fuzzy chart (U, ¢) at x E X and a fuzzy chart (V, ,P) at f(x) E Y 
such that the mapping ,Po f o ¢-1, which maps ¢[U n f- 1 [V]] into ,P[V], is fuzzy 
differentiable at ¢( x). 

It is obvious that this definition does not depend on the choice of fuzzy chart 
at x and f(x). The mapping f is fuzzy differentiable if it is fuzzy differentiable 
at every point of X; it is a C 1 fuzzy diffeomorphism if it is a bijection and both 
it and its inverse f- 1 are fuzzy differentiable. 

Let X, Y, Z be fuzzy manifolds. The composition g o f of two fuzzy differ
entiable mappings f : X ---+ Y, g : Y ---+ Z is fuzzy differentiable, and, as a 
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corollary, if /, g are 0 1 fuzzy diffeomorphisms, then the composition g 0 f is a 
0 1 fuzzy diffeomorphism [8]. 

9 Tangent Vectors in a Fuzzy Manifold 

The notion of a directional derivative in Euclidean (or affine) space leads to the 
classical notion of a tangent vector of a differentiable manifold. A tangent vector 
of a fuzzy manifold may be defined as follows. Let X be a fuzzy manifold and 
let x be a (classical) point in X. Consider triples (U, ¢, V>.), where (U, ¢) is a 
fuzzy chart at x and V>. is a fuzzy point of the ftvs in which ¢[U]lies. Two such 
triples (U, ¢, V>.), (V, '¢, W>.) are related, written (U, ¢, V>.) "' (V, '¢, W>.), if the 
fuzzy derivative of'¢ o ¢-1 at ¢(x) maps V>. into W>.; that is, 

('¢ o ¢-1)'(¢(x))v>. = W>.. 

It is straightforward to show that the relation (U, ¢, V>.) "' (V, '¢, W>.) is an equiv
alence relation. The equivalence class of triples (U, ¢, V>.) constitutes a tangent 
vector of the fuzzy manifold X at x. The tangent space T.,(X) at x is the set of 
all tangent vectors at x. 

The set T.,(X) can be given the structure of a vector space. Define the sum 
of two tangent vectors at x E X as 

and the product of a tangent vector with a scalar a as 

These two operations do not depend on the choice of fuzzy chart [8]; thus if 
(U1, ¢1, vu) "' (V1, '¢1> wu) and (U2, ¢2, v2-y) "' (V2, '¢2, w2-y ), then (U1, ¢1, vu)+ 
(U2,¢2,v2-y)"" (V1,'¢I.wv.) + (V2,'1/J2,w2-y); and if (U,¢,v>.) "'(V,'I/J,w>.), then 
a· (U, ¢, V>.) "'a· (V, '¢, W>.)· 

10 Conclusion 

Of the possible approaches to defining differential operators in ill-specified en
vironments, the four considered here vary, necessarily, in the directness of their 
application to image representations. The definitions of differentiation based on 
convolving image luminance distributions have an immediate applicability, but 
they may be less suited to the analysis of higher-level image representations. 
The definitions of differentiation based on fuzzy sets make weaker assumptions 
about the nature of image representations and the extent of the analytic ma
chinery available; but, for practical applications, they require the construction of 
an explicit relationship between the physically measurable properties of images 
and the fuzzy sets that, at some processing level, represent them. 

The last issue may be addressed with the aid of a fuzzy location; that is, the 
kind offuzzy set that, as introduced in Sect. 4, associates with each point x in :rn? 
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with luminance J(x) a measure of the adequacy of that characterization of the 

image at that point. At least one experimental procedure has been described [2] 

for estimating the reliability of visual positional sense, and this procedure could 

be used to determine a fuzzy location. Based on the notion of fuzzy location 

and fuzzy orientation, the elements of a fuzzy geometry for visual space have 

been set out in [7] (see also [39]), where the notions of fuzzy locations for lines 

and curves have been introduced, and some of the fuzzy relations among them, 

including fuzzy collinearity, straightness, and tangency. 
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