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Abstract—Estimates of the accuracy of a threshold obtained from a psychometric function are often based
on asymptotic theory. When the number of trials is small, however, these estimates may be untrustworthy.
A computer program is described that uses a more reliable bootstrap approach to obtaining estimates of
the standard deviation and confidence limits of a threshold and of the slope and spread of the psychometric
function, for any criterion level of performance.

1. STATISTICAL ACCURACY OF THRESHOLDS

It is common practice in psychophysical experiments to obtain a set of data in the
form of proportions of responses of a particular type, typically successes in some
task, as a function of stimulus level. By fitting a model psychometric function to this
empirical data set, one can estimate a threshold level of the stimulus corresponding to
a particular standard or criterion level of performance, for example, 50% or 75% rate
of success.! In some circumstances the slope or spread of the psychometric function
at that criterion level may be of more interest.

Although the problems of choosing a model psychometric function and optimally
sampling stimulus levels have received some attention in the literature, there has been
less concern with the problem of determining the statistical accuracy of the threshold
estimate or of other properties of the psychometric function. It may, of course, be
possible to repeat the experiment and obtain several estimates of the threshold, in
which case an estimate of statistical accuracy such as the standard deviation can be
obtained in the usual way.
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Yet repetition is not always possible, or practicable. Whether it is or not, an esti-
mate of the standard deviation of a single threshold estimate or some other measure
of its statistical accuracy can be important for several reasons: (1) The standard-
deviation estimate can be used to determine whether the threshold estimate is sig-
nificantly different from that obtained from a different observer or under different
experimental conditions. (2) In the course of a sequential testing procedure, where
a threshold estimate is continuously improved as the number of trials increases, the
current standard-deviation estimate can be used to define the point at which testing
should stop. (3) More generally, when there are several possible psychometric func-
tions available to fit the data, each yielding a threshold estimate, the corresponding
standard-deviation estimates can be used to decide which psychometric function is
the best, in the sense of yielding the threshold with the greatest statistical accuracy.
(4) Even when repetition of the experiment is possible, standard-deviation estimates
of individual threshold estimates can still be useful in forming the best estimate of
the threshold, namely, the one obtained by weighting the individual estimates by the
reciprocals of the squares of the estimated standard deviations.

One of the most popular ways for obtaining an estimate of a threshold and its
standard deviation from an empirical data set is by probit analysis (Finney, 1952).
In this method, the proportion of successes at each stimulus level is transformed
by the inverse of a normal cumulative distribution function; a straight line is fitted
by weighted linear regression; and estimates of the threshold and of its standard
deviation are calculated from the probit-analysis formulae. (The principle of the probit
method may itself be traced back to Fechner, 1860.) The probit-analysis formula for
the standard deviation, however, is derived from classical asymptotic theory, and its
trustworthiness is uncertain when the number of trials is not large (Finney, 1952,
pp. 250-251, 1971, p. 57); thus, examples of substantial errors have been reported
(McKee et al., 1985; Foster and Bischof, 1987, 1991) with numbers of trials of the
order of those often used in practice.

2. THE BOOTSTRAP

An alternative to classical asymptotic theory is offered by the bootstrap (Efron, 1982;
Efron and Tibshirani, 1993). The bootstrap is a Monte-Carlo resampling technique,
which, as Efron (1982) has emphasized, depends on replacing traditional theoretical
analysis by computational effort. One of the advantages of the bootstrap in the present
context is its potential accuracy with small numbers of trials (Hinkley, 1988).

In brief, the bootstrap approach proceeds as follows. Suppose the empirical data
set consists of / proportions yi, y»,..., y;, at stimulus levels x|, xo, ..., x;. Each
proportion y; is given by the number r; of successes in n; trials; that is, y; = ri/ni,
for i = 1,2,...,1. A ‘bootstrap’ data set yi.¥3, ...,y is generated by taking
a random sample of size /, drawn with replacement, from the empirical data set
Y1, y2, ..., yr (the star notation indicates that ¥l ¥3. ..., y; is not the actual data set
Yis Y2, ..., yi, but a randomized, or resampled, version of it). How this sampling is
done is explained later. Next fit the model psychometric function to the bootstrap
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data set. Then calculate a bootstrap estimate {* of the unknown threshold 7. Repeat
this procedure a large number of times, say B B times, to obtain estimates tl s t,, .. tB
of the threshold. The bootstrap estimate SDBooT of the standard deviation is then
simply given (Efron, 1982) by the sample standard deviation of the B replications

2

B

1/
SDsoor = l:Z (& — f.*)z/(B - l):l ,

bh=1

where 7* is the mean, 7* = 37| 7*/B.

This estimate has been compared (Foster and Bischof, 1991) with estimates obtained
by two other methods: an incremental method, which depends on forming a Taylor
series approximation (Foster, 1986); and the original asymptotic method from probit
analysis. The comparison was based on 12 kinds of psychometric function, for each
of which 1000 data sets were generated by Monte-Carlo simulation. The quality of
the estimates from the three methods was assessed by two measures. The first was the
percentage bias, that is, the difference between the average of the estimate SD taken
over the 1000 samples and the true standard deviation Sd, expressed as a a_percentage
of the true standard dev1at10n for example, for the bootstrap estimate SDBOOT, the
percentage bias was {[Ave(SDBooT) Sd]/Sd}-100. The second quality measure was
the relative efficiency, that is, the inverse ratio of the variance of the corresponding
estimates (the lower the variance, the higher the efficiency); so, for the bootstrap
estimate SDBOOT, the relatlve efficiency with respect to the probit estimate SDPROB[T
was Var(SDpROB,T) /Var(SDBOOT) The bootstrap was found to be superior to the
other two methods, especially with small numbers of trials. For further details, see
Foster and Bischof (1987, 1991). For an application of the bootstrap to psychometric
functions based on the Weibull cumulative distribution function rather than on the
normal cumulative distribution function, see Maloney (1990).

3. A BOOTSTRAP PROBIT PROGRAM

A computer program that uses the bootstrap approach to estimating the accuracy of
a threshold obtained by probit analysis is available from the authors. Some details
relevant to its implementation are as follows.

Suppose, as before, that the empirical data set consists of [ proportions y;, ya, ..., y,
at stimulus levels xy, x2, ..., x;. Suppose that the number of trials performed at level
x; is n;, where i = 1,2,...,1. The program fits by weighted linear regression a

normal cumulative distribution function to this data set. Any lack of fit is indicated
by the value of a chi-squared statistic. (This statistic, which should not be confused
with the popular chi-squared test, is computed after transformation of the data by
the empirical logistic transform, which is more appropriate than the ‘crude’ logistic
transform when there are few trials; see Cox, 1970, Chapt. 3.) For a given criterion
level of observer performance, the program gives an estimate of the threshold and
of the slope and spread of the fitted function, and, for each of these quantities, an
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estimate of their standard deviations and of their 90% and 95% confidence limits.
The bootstrap data sets from which these accuracy measures are calculated are based
not on the original proportions y;, but on their smoothed values y;. These smoothed
values are simply the values of the fitted function at the stimulus levels x;. Making
this substitution ensures that none of the y; is O or 1. Such extreme values are likely
to occur with small numbers of trials and they contribute nothing to the standard-
deviation estimate.

To generate each of the bootstrap data sets y{, y3, ..., y/, rescaled binomial random-
number generators Bi{n;, y;)/n; are assigned to the stimulus levels x;. Thus, on each
bootstrap replication, a sequence of proportions is generated: y} = r{/n;, y; =
ry/na, ...,y = rf/n;, where r} is the number of successes in n; bootstrap trials
at level x; for which the probability of success in a single trial is y;, the smoothed
value mentioned earlier. Notice that the n; (which are the same as in the original
data set) may each be as small as 1, and that there is no need for the n; to be the
same or for the x; to be evenly spaced. The number B of bootstrap replications is
chosen to lie typically between 200 and 1000. In the sense that specific assumptions
are made about the probability distributions underlying the observed data (a normal
integral psychometric function with binomial generators), the bootstrap should here
be referred to as the parametric bootstrap (Efron and Tibshirani, 1993, Sect. 6.5). A
good parametric analysis, when appropriate, can be far more efficient that its non-
parametric counterpart (Efron and Gong, 1983).

The source code of the program is written in ANSI C. It is freely available, with
some additional documentation and two sets of test data, from the authors’ web sites
or by E-mail.
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NOTE

1. Some scquential testing procedures. such as staircase methods and PEST (Taylor and Creelman.
1967), provide a threshold without having to fit a psychometric function.
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