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Success in visually searching for a small object or target in a natural scene depends on many factors, including the
spatial structure of the scene and the pattern of observers’ eye movements. The aim of this study was to determine
to what extent local color properties of natural scenes can account for target-detection performance. A computer-
controlled high-resolution color monitor was used to present images of natural scenes containing a small,
randomly located, shaded gray sphere, which served as the target. Observers’ gaze position was simultaneously
monitored with an infrared video eye-tracker. About 60% of the adjusted variance in observers’ detection per-
formance was accounted for by local color properties, namely, lightness and the red-green and blue-yellow com-
ponents of chroma. A similar level of variance was accounted for by observers’ fixations. These results suggest
that local color can be as influential as gaze position in determining observers’ search performance in natural
scenes. © 2012 Optical Society of America

OCIS codes: 330.1720, 330.2210, 330.1880.

1. INTRODUCTION
Looking for an object in the world around us is a common part
of everyday experience [1,2]. Success or otherwise in this task
depends on many factors, including the structure of the envi-
ronment or scene being searched, the nature of the object
being sought, and the task itself [3–8]. Evidence for the con-
tribution of physical factors in determining visual search, such
as the spatial-frequency and orientation content of the scene
and of the object, has, however, come largely from experi-
ments with simple abstract geometric patterns containing a
target in a background of distractor elements [9–11]. Color
has been found to be important in determining search in such
experiments, but primarily as a way of defining differences
between the target and the background [9,10,12–14]. Rather
less is known about visual search in natural scenes, with most
work concentrating on the separate question of eye move-
ments and visual saliency [2,7,15–17].

Studies of free viewing, i.e., not involving search, have con-
centrated on the role of achromatic spatial contrast [18–20].
One such analysis [21] with natural scenes suggested that only
edge density was a significant predictor of observers’ fixa-
tions, compared with other gray-level image properties
such as extrema in contrast and in luminance and high spatial-
frequency content. Another study [22] concluded that higher-
order statistical properties associated with a bispectral
analysis was a significant factor for saccadic selection. More
generally, local features in gray-level images have been
deduced [23] to account at best for about 60% of the variance
in point of gaze.

Yet color does seem to be relevant. Again with free viewing,
different patterns of fixations have been reported [24,25] with
colored and gray-level versions of the same natural scenes.
Nevertheless, the influence of local color properties on search
performance remains unclear [cf., 26,27]. The aim of this
study, therefore, was to determine explicitly to what extent

local color properties of natural scenes can account for per-
formance in search for and detection of a target.

To this end, observers were presented with images of
natural scenes rendered on a color monitor. The target was
a small, shaded, gray sphere embedded in the scene and
matched in mean luminance to its local surround to avoid pro-
ducing accidental chromatic or luminance contrast cues to de-
tection. To provide an alternative spatial account of detection
performance [cf., 23], observers’ gaze position was simulta-
neously monitored with an infrared video eye-tracker. The ac-
curacy of predictions based on the spatial distribution of local
color properties was then compared with those based on the
spatial distribution of observers’ fixations.

It was found that 57%–60% of the variance in observers’
detection performance over scenes could be explained by lo-
cal color properties, namely, lightness, and the red-green and
blue-yellow components of chroma, a level closely similar
to that explained by the distribution of observers’ fixations.
Despite a general assumption that spatial factors such as con-
trast and edges dominate visual search and gaze behavior
[e.g., 18–20,21,22], the present results suggest that local color
information can be as important as gaze position in determin-
ing observers’ ability to search for and detect a target in
natural scenes.

2. METHODS
A. Apparatus
Images of natural scenes were presented on the screen of a
20-inch RGB CRT color monitor (GDM-F520, Sony Corp.,
Tokyo, Japan) controlled by a graphics system (Fuel, Silicon
Graphics Inc., California, USA) with spatial resolution 1600 ×
1200 pixels, refresh rate approximately 60 Hz, and intensity
resolution 10 bits on each R, G, and B channel. The colori-
metric accuracy of the display system was regularly calibrated
and tested with a telespectroradiometer (SpectraColorimeter
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PR-650, Photo Research Inc., Chatsworth, California, USA)
and photometer (LMT, L1003, Lichtmesstechnik GmbH,
Berlin, Germany) whose accuracy was verified against other
calibrated instruments. Errors in a colored test patch were
<0.005 in CIE 1931 �x; y� chromaticity coordinates and
<5% in luminance.

Observers’ eye-movements were recorded with an infrared
monocular video eye-tracker (High Speed Video Eyetracker
Toolbox mk2, Cambridge Research Systems Ltd., Kent,
UK), with a temporal sampling frequency of 250 Hz, connected
to a computer that recorded and analyzed the output signals.

B. Stimuli
Twenty natural scenes were taken from a set of hyperspectral
images [28] to allow accurate calculation of the local colori-
metric properties under the chosen scene illumination, an
average daylight of correlated color temperature 6500 K [29].
The images rendered on the monitor screen subtended ap-
proximately 17 × 13 deg of visual angle at the viewing dis-
tance of 1 m. The mean luminance of the images on the
screen was 3.6 cdm−2 (range 0–61.4 cdm−2). Figure 1 (top
row) shows some example images. The target is indicated
by the arrow in the rightmost image in Fig. 1, top row, with
a close-up in the inset. Its surface was spectrally neutral (Mun-
sell N7) and it subtended approximately 0.25 deg of visual
angle in each of the 20 scenes. It appeared randomly in each
image at one of 130 possible locations, defined by an imagin-
ary 13 × 10 grid. The illumination and shading on the sphere
were consistent with that on the scene since the sphere was
embedded in the scene at the time of hyperspectral imaging.
As already mentioned, trivial brightness cues were eliminated
by matching the average luminance of the target at each loca-

tion to the average luminance of its local surround (<1.0 deg
extent). Because of their shading, targets were not always
isoluminant with their local surrounds. The relatively small
angular subtense of the target was chosen, as a result of pre-
liminary measurements, to encourage observers to inspect the
entire image and to avoid a strategy of “the best search is no
search at all” [30]. The difficulty of finding the target without
search should be evident from the example of Fig. 1, top right.

C. Procedure
In each trial, observers were presented with an image of a par-
ticular scene for 1 s, followed by a dark field. They had to in-
dicate whether or not they saw the target by pressing a
computer mouse button (a “yes/no” task). They were allowed
to move their eyes during the trial and had unlimited time to
respond. The next trial started approximately 0.7 s after that
response. No fixation point was presented either before or
during the trial to guide observers’ gaze position, which
was recorded continuously. Head movement was minimized
with a forehead rest and chinrest.

Each scene was tested in 260 trials, which constituted one
experimental block. Half of the trials, chosen at random, con-
tained the target, and the other half did not. Experimental
blocks were divided into four subblocks of 65 trials. Observers
performed a calibration of the eye-tracker at the start, in the
middle, and at the end of each subblock, and they were al-
lowed to take a short break between subblocks. In total each
observer performed 5200 trials (20 scenes × 260 trials), with
additional trials repeated if there was a failure with the
eye-tracker.

In each calibration of the eye-tracker, observers were pre-
sented with 20 calibration targets, consisting of black 0.25-deg

Fig. 1. (Color online) Examples of images, observers’ detection performance, and eye fixations. The top row shows four of the natural scenes
taken from the 20 used in the experiment. The location of the target in the rightmost image is indicated by the arrow, and the target itself is shown in
the inset. The middle row shows the spatial distributions of observers’ smoothed detection performance d0 for the corresponding scenes in the top
row. Higher values of d0 are indicated by darker contours. The bottom row shows the spatial distribution of smoothed fixations for each of the
corresponding scenes in the top row. Higher densities of fixations are indicated by darker contours. The loess smoothing bandwidth was 0.15.
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crosses arranged in a 5 × 4 grid on the screen at known posi-
tions, each of which they fixated in turn, signaling their fixa-
tion with a mouse button. Each of the 20 gaze positions was
averaged over the start and middle calibrations, and over
the middle and end calibrations. An affine transformation
was applied to these mean positions to fit the known screen
coordinates to give least-squares error. The resulting coeffi-
cients of the transformation were used to transform the
experimental gaze-positions in each subblock to screen
coordinates.

The root-mean-square error between the 20 calibration tar-
gets and the observer’s corresponding gaze-positions was
taken as the calibration error. Over observers and scenes,
based on 1120 measurements, the mean calibration error was
approximately 0.26 deg [standard deviation (SD) 0.06 deg].

D. Observers
Seven observers (four female, three male, aged 21–31 years)
took part in the experiment. All of them had normal binocular
visual acuity and normal color vision, verified with a series of
color vision tests (Farnsworth-Munsell 100-Hue test, Ishihara
pseudoisochromatic plates, Rayleigh and Moreland anomalo-
scopy with luminance test). All of the observers except one
(coauthor MSM) were unaware of the purpose of the experi-
ment. The procedure was approved by the University of Man-
chester Committee on the Ethics of Research on Human
Beings, which operated in accord with the principles of the
Declaration of Helsinki.

3. RESULTS
A. Target-Detection Performance
Detection performance at each of the 130 target locations
was quantified by the discrimination index d0 from signal-
detection theory [31], where if Φ is the normal cumulative
distribution function, HR is the hit rate, and FAR is the
false-alarm rate, then d0 � Φ−1�HR� −Φ−1�FAR�. The HR is
the relative frequency with which the target is reported as
being present when it is present, and the FAR is the relative
frequency with which the target is reported as being present
when it is not. The HR was recorded for each of the 130 tar-
get locations within each scene. Since the position of the tar-
get is not defined when the target is absent, the FAR is a
property of the scene itself rather than of any particular lo-
cation. For the purpose of calculating d0, therefore, the FAR
was treated as being uniform over each scene, although this
assumption has no physical correlate. The value of this FAR
varied from scene to scene.

Values of d0 for individual observers’ performance averaged
over the 20 scenes ranged from 0.7 to 1.8 (mean 1.18, SD 0.34),
but trends over scenes were coherent (e.g., all observers per-
formed less well with the same scenes). A one-way repeated-
measures ANOVA confirmed a significant effect of scenes
(F�19; 114� � 15.8, p < 0.05).

Because only one target-detection response was available
from each of the seven observers at each of the 130 locations
in each of the 20 scenes, it was necessary to pool responses to
estimate the raw HR. Even so, these estimates at each location
in each scene were based on only seven trials. To improve the
accuracy of the d0 estimates at each of the 130 locations and to
facilitate comparisons with other data (i.e., point-of-gaze data
and local color properties), the distribution of raw d0 values

over each scene was smoothed by a locally weighted quadra-
tic polynomial regression, loess [32,33]. The bandwidth of the
loess smooth was varied in 0.05 steps over the range 0.15–0.3,
although the precise choice had little effect on the regressions
considered later (Subsection 3.D). Figure 1, middle row,
shows the smoothed spatial distribution of d0 values for the
four example scenes of Fig. 1, top row. Higher values of d0 are
indicated by darker contours.

B. Point of Gaze
There were several algorithms available for classifying fixa-
tions from point-of-gaze data [27,34,35], and the method used
here was taken from [36], which had been found to produce
classifications similar to those based on a nonparametricmeth-
od [37]. Saccades were demarcated by a velocity-based, two-
step procedure, in which saccade detectionwas initiatedwhen
the gaze velocity first exceededahigher threshold, and then the
onset and offset of the saccade were set, respectively, by
the first samples where the velocity rose above and fell below
a lower threshold. The two velocity thresholds were adj-
usted for individual observers [38]. These higher and lower
thresholds ranged, respectively, over 94–140 deg s−1 and 20–
30 deg s−1 for the seven observers. This variation in thre-
sholds over observers is not unusual [38]. Intervals between
saccades were assumed to be fixations. All fixations up
to the fourth after the first saccade were included in the anal-
ysis of each trial. In all, approximately 95,000 fixations
were used.

For the same reasons that applied in estimating d0, the dis-
tributions of fixations over each scene were pooled over
observers and then smoothed by the same locally weighted
quadratic regression as in Subsection 3.A. Figure 1, bottom
row, shows the smoothed spatial distribution of fixations
for the four example scenes of Fig. 1, top row. Higher densities
of fixations are indicated by darker contours.

The relationship between the spatial distribution of fixa-
tions and d0 values is considered in Subsection 3.D.

C. Local Color Properties
The local color properties of each scene were quantified by
the CIE color appearance model CIECAM02 [39–41]. But it
is emphasized that this choice was based on computational
convenience, deriving from the approximate perceptual uni-
formity of CIECAM02, rather than for any particular appear-
ance attributes. The color space CIELAB [29] could have been
used instead, but it would have been necessary to incorporate
the color-difference formula CIEDE2000 [29,42] in the spatial
smoothing operation.

CIECAM02 provides among other quantities lightness (J),
chroma (C), and hue (h) in a polar coordinate system, or,
equivalently, lightness (J) and the red-green chroma compo-
nent (aC) and blue-yellow chroma component (bC) in a
Cartesian coordinate system. The parameters [41] of the CIE-
CAM02 model were set so that the white point was D65, the
luminance of the background 20% of the white level, and the
surround “average.”

The distributions of these three quantities J, aC , and bC
over each scene were smoothed by the same locally weighted
quadratic regression as in Subsections 3.A and 3.B. Figure 2
shows the smoothed spatial distributions of J, aC , and bC for
the four example scenes of Fig. 1. Higher values are indicated
by darker contours.

A196 J. Opt. Soc. Am. A / Vol. 29, No. 2 / February 2012 Amano et al.



The relationships between the spatial distributions of d0

values, observers’ fixations, and local color properties are
considered next.

D. Regression Analysis
To assess the dependence of target-detection performance on
local color properties, smoothed values of the discrimination
index d0 (as in Fig. 1, middle row) were regressed on
smoothed J, aC , and bC values (as in Fig. 2, top, middle,
and bottom rows, respectively) in each scene. Thus, if
d̂0�x; y�, Ĵ�x; y�, âC�x; y�, and b̂C�x; y� represent the smoothed
values of d0, J, aC , and bC , respectively, at location �x; y�, then
the full regression equation had the following form:

E�d̂0�x; y�� � β1Ĵ�x; y� � β2âC�x; y� � β3b̂C�x; y� � α; (1)

where E is the expectation, and β1, β2, β3, and α are scalars.
Goodness of fit was summarized by R2, the proportion of var-
iance accounted for. The value of R2 was adjusted for the loss
in degrees of freedom (d.f.) in smoothing [33] and in fitting the
regressor variables [43]. Thus, the adjusted value of R2 was
defined as 1 − �1 − R2��n − 1�∕�n − k�, where n is the d.f. of
the smooth [33] and k � 2 for the regression on, e.g., J and
k � 4 for the regression on J, aC , and bC . For comparison,
the same analysis was performed with smoothed d0 values re-
gressed on the smoothed distribution of fixation positions in
each scene.

Table 1 lists the adjusted R2 values, averaged over the 20
scenes, along with means and standard errors (SEMs), for
each of the color variables and their combination, and for fixa-
tion position.

The three color properties J, aC , and bC each accounted
for about the same amount of variance in detection perfor-
mance, namely, 29–35%, over the four values of the smoothing

bandwidth. Combining J with either aC or bC increased R2

to 45–49%. But all three properties together accounted for
57–60% of the variance, almost the same as that accounted
for by fixation position, namely, 53–60%. In fact, there was
no significant difference over scenes between the explanatory
power of the three color properties and fixation position
(t�34� ≤ 0.54, p ≥ 0.5).

Unsurprisingly, the sum of the R2 values from each of the
color properties was less than when they were combined, sug-
gesting some dependence between the properties in their con-
tribution to target-detection performance.

For comparison, when the smoothed distribution of obser-
vers’ fixations was regressed on smoothed J, aC , and bC val-
ues, exactly as in Eq. (1) for d0, it was found again that each
accounted for about the same amount of variance in detection
performance, namely, 17–22%, and all three properties to-
gether accounted for 36–40% (not shown in Table 1). These
values of R2 were lower than the corresponding values for
target-detection performance, but not significantly so
(t�37� ≥ 1.2, p ≤ 0.25).

4. DISCUSSION
The factors determining visual search in natural scenes are
relatively poorly understood, but it has been generally as-
sumed that local color properties are not strong determiners
of performance [24,25,44–46]. As has been shown here, how-
ever, local values of lightness and the two chroma compo-
nents can explain 57–60% of the variance in observers’
detection performance, averaged over scenes. This level is
high for any scene attribute, given that optimal nonparametric
models of eye movements in free viewing of natural scenes
have difficulty in explaining more than about 60% of perfor-
mance [23]. The fact that the proportion of variance ac-
counted for varied little with different values of the spatial

Fig. 2. Spatial distributions of color properties for each of the corresponding scenes in Fig. 1. The top row shows the smoothed lightness J; the
middle row, the smoothed red-green chroma component aC ; and the bottom row, the smoothed blue-yellow chroma component bC . Higher values
are indicated by darker contours. The loess smoothing bandwidth was 0.15.
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smoothing parameter suggests that this result is not due to an
accident of over- or under-smoothing.

Although the distribution of eye movements is known to be
different in search and in free viewing [16,27,47,48], it is re-
vealing in this analysis that observers’ fixations explained
53–60% of the variance in detection performance, again aver-
aged over scenes, not very different from the maximum esti-
mated for eye movements in free viewing [23]. Local color
information thus seems to be as effective as gaze position
in influencing observers’ detection performance.

A prerequisite for the present study was a wide range of
color variation across the stimulus images. The natural scenes
used here included the main vegetated and nonvegetated land-
cover classes, namely woodland, vegetation (e.g., grasses,
ferns, flowers), cultivated land, and urban residential and
commercial buildings. The variety of color properties is illu-
strated by the four example images of Fig. 1, top row, where
lightness J ranged over 3.7–35.1, chroma C over 3.3–39.2, and
hue h over 5.8–152.6 deg. More detailed analysis of these
color-image statistics has been reported elsewhere [49].

As might be expected from this variation in the composition
of natural scenes, the slopes of the regressions of detection
performance on local color properties varied from scene to
scene. In particular, the slope for lightness J was little differ-
ent from zero when averaged over scenes, although the aver-
aged slopes for the two chroma components were positive.
The implication of this is that the predictive capacity of local
color properties may be specific to individual scenes, or
classes of scenes. In other words, if detection performance
is known in one part of a scene, then it is possible to predict
detection performance in another part of that scene, but not
necessarily in other scenes.

One potential confound in describing observers’ gaze be-
havior is a well-established central bias with circumscribed
images of scenes. Thus, rather than being distributed uni-
formly, fixations tend to be directed toward the center of
the image, and it has been argued that the nature of the ex-
perimental task and the images themselves may facilitate such
a bias [21,27,46]. Yet it seems unlikely that such a bias could
account for the distributions of fixations and of target-
detection performance found in this study. As is evident in
Fig. 1, bottom row, the distributions were markedly scene-
dependent.

Target color and scene color are, of course, influential in a
range of tasks involving natural scenes, for example, in discri-
minating fruit and fresh foliage from more mature foliage
[50,51], in memorizing and recognizing scenes [52,53], and
in extracting the gist of a scene [54]. All these activities, how-
ever, are associated with specific tasks and goals, which affect
the observed pattern of visual performance. The use here of a
neutral target matched in average luminance to its local sur-
round allowed the low-level properties of natural scenes
themselves to be probed, thereby revealing the significant in-
fluence of color on detection performance. The nature of this
influence and of achromatic scene features mentioned earlier
presumably reflects the kind of representation afforded
to scenes during the early stages of vision. Such a representa-
tion might provide the default basis for visual search, on
which the requirements of more specific tasks and goals could
be superimposed.
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