
Turbulence Modelling in STREAM 
 
1. List of Turbulence Models 
 

Model Code Low-Re? 

One-equation models 

Wolfshtein (1969) WO  

Norris and Reynolds (1975) NR  

Linear k-ε models 

Launder and Spalding (1974) – Standard k-ε HR  

Yakhot et al. (1992) – RNG k-ε RG  

Shih, Liou et al. – realisable model (1995) RE  

Launder and Sharma (1974) LS  

Lam and Bremhorst (1981) LB  

Chien (1982) CH  

Lien and Leschziner (1993) LL  

Linear k-ω models 

Wilcox (1988) WX  

Wilcox (1994) W2  

Menter (1994) – Baseline model BL  

Menter (1994) – SST model FM  

Non-linear k-ε models 

Speziale (1987) SP  

Rubinstein and Barton (1992) RB  

Shih, Zhu and Lumley (1995) – quadratic realisable model SH  

Gatski and Speziale (1993) GS  

Lien, Chien and Leschziner (1996) CU  

Craft, Launder and Suga (1996) KS  

Apsley and Leschziner (1998) DA  

Differential stress models 

Gibson and Launder (1978) GL  

Craft and Launder (1992) CL  

Speziale, Sarkar and Gatski (1991) – SSG model SG  

Shima (1998) NS  

Hanjalić and Jakirlić (1995) HJ  

Wilcox (1988b) – multiscale k-ω model WM  

 

Most models have been tested only in incompressible flow. In compressible flow the Favre 

(density-weighted) average is assumed to replace the Reynolds average in the specifications 

that follow. 

  



2. Eddy-Viscosity Models (Linear and Non-Linear) 
 
2.1 Constitutive (Stress-Strain) Relationship 
 

For linear eddy-viscosity models the stress-strain relationship is 
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In the one-equation models in STREAM a transport equation is solved for k and the 

lengthscale lμ is specified algebraically. 

  

Between k-ε and k-ω models there is a rough correspondence: 

 
kCμ

ε
ω  ,          μ*α f ,          μμ*β fC  

 

For nonlinear eddy-viscosity models up to cubic order the stress-strain relationship in 

incompressible flow may be written in the following form: 

 

)(γ)}{}{(γ}){γ}{γ(

}){(β)(β}){(β

2

22

43
2222

3

2

2

2

1

2

3
12

32

2

3
12

1

μμ

wswsIwswswswswsws

wwswwsss

sa





 Cf

 

where the following general notation is used for second-rank tensors: 

 )( ijTT ,          kkTtrace  )(}{ TT ,          )( n

n traceT T ,          )δ( ijI  

 

The dimensional mean strain and mean vorticity tensors are denoted in upper case by 
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whilst dimensionless quantities – anisotropy a, mean strain s and mean vorticity w – are 

written in lower case and defined by 
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The turbulent timescale τ is given by 
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For compressible flows, Sij is replaced in constitutive relations by its deviatoric form 

 ijkkijij SSS δ*
3
1  

and for system rotation Ω, Wij is replaced by 

 kijkijij WW Ωε*   

 

The following dimensionless shear parameters may be defined: 

 222 ssss ijij  ,          )(22 2wwww ijij   

(Both reduce to )/)(ε/( yUk   in simple shear flow.) 

 

The rate of production of turbulent kinetic energy (per unit mass) by mean shear is 
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2.2 Transport Equations For Turbulence Variables 
 

k equation 

 )ε(ρ)
σ

μ
μ()ρ()ρ( )(

)(
DP

x

k

x
kU

x
k

t

k

j

k

t

j

j

j
































 

 

D is only non-zero for models which distinguish homogeneous and inhomogeneous 

dissipation rates. In many original references (but not here) ε is often written as ε~ . 

 

For other models ε is determined in the k equation by 
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ε equation 
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The additional source terms Sl and Sε are used to control the growth of the turbulent length 

scale and correct near-wall viscous sublayer behaviour, respectively. Sl can be also used to 

incorporate any non-conventional model for ε production, such as in the realisable model of 

Shih, Liou et al. (1995); in that model Cε1 is set to 0 and all production of ε put in Sl. 
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2.3 Viscosity-Dependent Parameters 
 

Relevant non-dimensional lengths are defined by 
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where yn denotes the distance to the nearest wall, ρ/ττ wu   and τw is wall stress.  

 

Turbulent Reynolds numbers are 
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2.4 Length Scales 
 

These are used directly in one-equation models and indirectly in some two-equation models. 

They are also used in a two-layer treatment of wall boundaries. 

 

Wolfshtein (1969): 
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Norris and Reynolds (1975): 
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The following values are assumed: 

 Cμ = 0.09,     κ = 0.41 

whilst in the k equation: 

 σ
(k)

 = 1.0 

 

 

  



2.5 Coefficients in Linear k-ε Models 
 

Stress-strain relationship and transport equations 

Model Code Cμ Cε1 Cε2 σ
(k) 

σ
(ε) 

Sl 

Launder and Spalding (1974) HR 0.09 1.44 1.92 1.0 1.3 0 

Yakhot el al. (1992) RG 0.085 1.42 1.68 0.719 0.719 0 

Shih, Liou et al. (1995) RE 
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Launder and Sharma (1974) LS 0.09 1.44 1.92 1.0 1.3 0 

Lam and Bremhorst (1981) LB 0.09 1.44 1.92 1.0 1.3 0 

Chien (1982) CH 0.09 1.35 1.80 1.0 1.3 0 

Lien and Leschziner (1993) LL 0.09 1.44 1.92 1.0 1.3 0 

 

 

Viscous terms 

Model Code fμ D f1 f2 Sε 
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Notes 

 

 The Lien and Leschziner (1993) model uses the one-equation model of Wolfshtein 

(1969) to supply lengthscales 
)1(

μl  and )1(

εl . The original model actually modifies f1 

rather than Sε, but the two formulations are equivalent. 

 

 In the Shih, Liou et al. (1995) realisable linear model, 0.40 A , the constant *sA , 

which is derived as the positive root of a cubic equation, is given by 
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*
 is 

  
2/1)(*σ ijijijij wwss   

 

 The unfamiliar ε production term has been transferred to Sl. 

 

 Also, although this is not strictly a low-Re model, the ε removal term in that model 

contains 
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 rather than the more common ε
2
/k. This is implemented in the common form by 

setting Cε2 as given in the table. 

  

  

  



2.6 Coefficients in Linear k-ω Models 
 

Model Code α* β* α β σ
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Notes 

 

Menter’s models are constructed as a blend of k-ω and k-ε models, phrased in k-ω form: 
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2.7 Coefficients in Non-Linear k-ω Models 
 

Non-linear stress-strain relationship 

Model Code Cμ (β1, β2, β3) (γ1, γ2, γ3, γ4) 

Speziale (1987) SP 0.09 (0.054, 0.054, 0) (0, 0, 0, 0) 

Rubinstein and 

Barton (1992) 

RB 0.085 (0.230, 0.047, 0.189) (0, 0, 0, 0) 

Shih, Zhu and 
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Turbulence transport equations 

Model Code Cε1 Cε2 σ
(k) 

σ
(ε) 

Sl 

Speziale (1987) SP 1.44 1.92 1.0 1.3 0 

Rubinstein and 

Barton (1992) 

RB 1.42 1.68 0.719 0.719 
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Shih, Zhu and 

Lumley (1995) 

SH 1.44 1.92 1.0 1.3 0 

Gatski and Speziale 
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Viscous Terms 

Model Code fμ D f1 f2 Sε 
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Notes 

 

 The original Speziale (1987) model included terms involving DSij/Dt. These have 

been found to provoke numerical instability and have, therefore, been omitted from 

the stress-strain relationship. 

 

 In the Shih, Zhu and Lumley (1995) quadratic model, 5.60 A , the constant *sA , 

which is derived as the positive root of a cubic equation, is given by 
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 In the Gatski and Speziale (1993) model, *iC  are shear-dependent terms based on the 

regularisation of the 2-d solution as given by Speziale and Xu (1996): 
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 The constants, which come from the SSG pressure-strain model, are 

  C1 = 6.8,    C2 = 0.36,     C3 = 1.25,     C4 = 0.40 

 

 Note also that, for system rotation in this model only, wij is alternatively defined by 
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 In the Craft et al. (1996) model, 
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 The Yap correction (Yap, 1987) in the dissipation equation is 
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 The low-Re terms in the Lien, Chen and Leschziner (1996) model are based on the 

one-equation model of Norris and Reynolds (1975) for the mixing and dissipation 

lengths near the wall. The original model actually modifies f1 rather than Sε, but the 

two formulations are equivalent. 

 



 In the Apsley and Leschziner (1998) model, fμ is incorporated naturally into Cμ. 
*

αβa  

and σ
*
 are curve fits to the three independent anisotropy components and shear 

parameter, respectively, from DNS data for plane channel flow: 
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 The constants β  and γ  are based on the values of the anisotropy components and 

shear parameter in the log-law region and are given by 
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 arise because, unlike the other non-linear models, the 

first two cubic terms do not cancel out in simple shear flow. The non-equilibrium 
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 The additional term in the dissipation equation is based upon a curve fit to DNS data 

for dissipation length: 
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 Additional Note 

 Some researchers (including Dr Apsley) have noted that numerical implementations 

of the model can become numerically unstable for extremely fine grids. The root 

cause appears to be as follows. 

 

 In simple shear, the model gives 

  













a

axx
a

k

uv

1

3
*

12 ,          where     2

3
12 βγ a ,     

*σ

σ
pfx   

 Unfortunately, 

  0











 





k

uv

x
          at          

a
x

3

1
  

 With standard values of β  and γ , this occurs at x = 0.947 and is uncomfortably close 

to the “preferred” equilibrium value x = 1. The proximity to a stationary point means 

that kuv /  doesn’t change much even when shear U/y does, resulting in large 

fluctuations in U(y) even for a shear stress fixed by the pressure gradient. 

 

 This can be eliminated by changing the values of β  and γ  – but that would damage 

the agreement with experimental results for boundary-layer anisotropy. A better 

solution (yet to be found!) would be a more stable numerical implementation.  



3. Differential Stress Models 
 

3.1 Transport Equations 
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Modelled terms are given below. Note that: 
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3.2 Diffusion 
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3.3 Pressure-Strain Correlation 
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Slow Pressure-Strain 
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or, for a non-linear extension: 
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Fast Pressure-Strain 
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The two expressions may be interconverted by: 
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Wall Reflection Terms 
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except, in the Craft-Launder (1992) model, where: 
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In all cases, the wall-distance parameter is 
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3.4 Dissipation 
 

Except in the Hanjalić and Jakirlić model, dissipation is modelled as isotropic: 
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3.5 Individual Models 
 

Gibson and Launder (1978) 

 

Diffusion: 

 Cs = 0.22,   Cε = 0.18 

 

Pressure-strain: 

 C1 = 1.8,   01 C  

 C2 = 0.6,    C3 = 0,   C4 = 0 

 5.0)(

1 wC ,   3.0)(

2 wC ,   5.2lC  

 

Dissipation equation: 

 Cε1 = 1.44,   Cε2 = 1.92,   Sl = 0 

 f1 = 1,   f2 = 1,   Sε = 0 

 

 

Speziale, Sarkar and Gatski (1991) – SSG Model 

 

Diffusion: not specified in the original paper; taken as 

 Cs = 0.22,   Cε = 0.18 

 

Pressure-strain: 
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 2/1

201 65.08.0 aC  ,   625.011 C ,   2.012 C  

 No separate wall-reflection 

 

Dissipation equation: not specified in the original paper; taken as 

 Cε1 = 1.44,   Cε2 = 1.83,   Sl = 0 

 f1 = 1,   f2 = 1,   Sε = 0 

 

 

Shima (1998) 

 

Diffusion: 

 Cs = 0.22,   Cε = 0.15 

 

Pressure-strain: 
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 No separate wall-reflection 

 

Dissipation equation: 

 Cε1 = 1.44 + β1 + β2,   Cε2 = 1.92,   Sl = 0 
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Hanjalić and Jakirlić (1995) 

 

Diffusion: 

 Cs = 0.22,   Cε = 0.18 

 

Pressure-strain: 
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Dissipation (anisotropic): 

 *

ε3
2

ε ε)1(εδε ijijij ff   

 

d

n

djinkikjkjkiji

ij

f
k

u

fnnunnuunnuuuu

k 2

2

*

2

3
1

)(ε
ε




  

  22/1

ε EAf  ,   
t

d
R

f
1.01

1


  

 

Dissipation equation: 

 Cε1 = 1.44,   Cε2 = 1.92,   Sl = 0 
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3.6 Wilcox (1988b) – Multiscale Model 
 

Wilcox’s multiscale model is built upon the premise that one can partition the energy 

spectrum into large-scale, energy-bearing eddies and small-scale, isotropic, dissipative 

eddies. The formulation is rather different from that of “traditional” Reynolds-stress transport 

models and consists of transport equations for k, ω and the upper-partition stress tensor 
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where e is the energy of the lower-partition eddies, plus a tensor describing the exchange of 

energy between upper and lower partitions. The most practical way of incorporating this into 

the STREAM code is to rewrite Wilcox’s equations in terms of equations for jiuu , ω and k
U
 

(the upper-partition turbulence energy). 
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Stress-Transport Equation 

 

Diffusion:  
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 No wall-reflection terms 

 

Dissipation: 
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ω-equation 

 

 σ
(ω)

 = 2,     
9

5
α  ,     

40

3
β   

 wS βωω   

  



4. Wall Boundary Conditions 
 

There are three approaches. 

 

(i) Low-Re treatment: 

 assume that behaviour is adequately resolved right to the boundary; 

 apply viscous modifications to turbulence equations and constitutive relations; 

 these viscous modifications are applied throughout the flow. 

 

(ii) Wall-function treatment: 

 if necessary, model what happens between the near-wall node and the boundary; 

 depending on variable, may set wall flux, cell-averaged source or fixed value at the 

near-wall node; 

 viscous effects are included only for the near-wall cell and boundary. 

 

(iii) Two-layer treatment (eddy-viscosity models only): 

 blend a high- or low-Re 2-equation model into a 1-equation model near a wall. 

 

 

4.1 Wall-Boundary Effects on Individual Transport Variables 
 

Variable Common Low-y
+
 Wall function (near-wall cell only)  

Ui Wall value = 0 Viscous modifications to νt, 

affecting fluxes. 

Wall flux via effective viscosity μw 

k Wall value = 0 

Wall flux = 0 

Viscous terms in transport 

equation. 

Cell-averaged production and 

dissipation. 

jiuu  Wall value = 0 

Wall flux = 0 

Viscous terms in transport 

equation 

Cell-averaged production and 

dissipation. 

ε (if D = 0) Wall flux = 0 
2

ν2
εε

P

P
Pw

y

k
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Viscous terms in transport 

equation. 

εw = εP = wall-function value at P 

ε (if D  0) Wall flux = 0 εw= 0 

Viscous terms in transport 

equation. 

N/A 

ω Wall flux = 0 
2

μ

ν2
ωωω

P

P
facPw
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k
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Viscous terms in transport 

equation 

ωw = ωP = wall-function value at P 

 

Notes 



 Subscript P refers to the near-wall node, subscript w to the value on the boundary. 

 Using the treatment suggested by Menter (1994), 800
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ω
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4.2 Wall-Function Approach 
 

4.2.1 Basic Profiles 
 

The wall-function formulae are deduced from the following basic assumptions which make a 

smooth transition from laminar viscous sublayer to fully-turbulent log layer. Here, y denotes 

the distance from the boundary, subscript P denotes the value of a variable at the near-wall 

node (centre of the near-wall cell) and Δ denotes the thickness of the near-wall cell. 

 

 Total stress constant and an effective total viscosity: 
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 The dissipation rate is given by: 
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 with εw determined so as to make ε continuous at yε. 

 

Note: 

 Profile points yν, yε and yd are defined below. 

 The definition of u0 is such that it would equal uτ in the log layer. 

 The implied equivalent one-equation model ( μ

2/14/1

μν lkCt  ) would have length scale 
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4.2.2 Derived Quantities 
 

Assumed Mean-Velocity Profile 

 

By integration: 
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Important: y~ here is based on u0 rather than uτ. 

 



 

Wall Stress and Effective Wall Viscosity 
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Cell-Averaged Production and Dissipation 
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Near-Wall Dissipation 

 

εP is given directly from the assumed ε profile at y = yP; i.e. 
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4.2.3 Matching Depths 
 

For smooth walls: 

 37.7ν 
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dy  

 

For arbitrarily-rough walls (Apsley, 2007) the viscous sublayer cutoff is given by: 
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Here, Bsmooth and Brough are constants in the fully-smooth and fully-rough logarithmic wall 

profiles, respectively: 
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STREAM assumes values κ = 0.41, Bsmooth = 5.2 and Brough = 8, whence C = 3.152. 

 

Similarly, the dissipation-related constants are given by: 
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The last has to be determined iteratively, but converges quickly. 

 

 

 

4.2.4 Other Variables 
 

Omega 

 

Where wall functions are used with the k-ω model, ε is deduced as above and the near-wall 

value of ω then determined by 

 
P

P
P

kCμ

ε
ω   

 

 

Reynolds stresses 

 

Where wall functions are used with differential-stress models, cell-averaged production is 

first expressed in a local coordinate system with tangential (t) and normal (n) velocities 

(relative to any wall velocity). Then: 
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Components of production are subsequently rotated to the global Cartesian system and the 

equations treated in similar fashion to the k equation (including cell-averaged dissipation). 

 

Note: 

 Earlier versions of STREAM set individual stresses at near-wall nodes rather than 

cell-averaged production. This, however, gave problems when the positive tangential 

direction could not be identified; for example, at impingement or separation points. 

This does not affect the production terms as they vanish here anyway. 

 

 Because only cell-averaged Pij is specified in this way (not Dij or Sij) all differential-

stress models using wall functions in STREAM revert to the standard return-to-

isotropy form for the fast pressure strain in the near-wall cell. This is not ideal! 

 

 

  



4.3 Two-Layer Approach (Two-Equation Eddy-Viscosity Models Only) 

 

A blending function fb is used to blend the eddy viscosity μt and dissipation rate ε between 

any two-equation eddy-viscosity model (high-Re or low-Re) and the one-equation model of 

Wolfshtein (1969) defined earlier. The blending function is here taken as 
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To blend the eddy viscosity: 
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To blend the dissipation rate within its discretised equation ( pFFPP baa  εε ), write 
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This rearranges as: 
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so that any under-relaxation step for ε is preceded by a modification of coefficients: 
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