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The analysis is applicable to a flat-plate boundary layer oy-fidieloped pipe or channel
flow. First consider smooth walls.

2.1 Shear Stress and Friction Velocity

The shear stress (= rate of transport of momentum per unit area in the poditection) is
ou —
T=p—— —puv 1)
ay

The viscous part varies from being the sole transporter of mameat the wall to a
negligible fraction of the total stress in the outer part of a turbulent boungary la

Fory < 0.15, t is approximately constant (why?) and equal to its value at the wall:

T=T,
This is theconstant-strestayer. Ast, has dimensions ofiensity x [velocity?, it is possible
to define an important velocity scale — fhietion velocity u, — by

1, =pu’ (2)
or
u, =41,/p 3)

2.2 Length and Velocity Scales

Wall Units A

Very close to the wall the most important scaling parameters are:
kinematic viscosity;
wall shear stresg,.

d
The characteristic velocity and length scales are: U(y)
friction velocity u, =4t,/p 4)
! U, /¢
viscous length scale 6, = — # __B) \
u ]

T
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From these we can form non-dimensional velocity and heighaihunits

._U . u,
ur==, yr=2=2) ©)
u ) 2%

T v

y" is a sort of local Reynolds number. Its value is a measutieeofelative importance of
viscous and turbulent transport at different distances from the wall.

Boundary-Layer Units

At largey’ the direct effect of viscosity on momentum transport is snmallreights can be
specified as a fraction of the boundary-layer dépth

_Y
=2 7
n=y (7)
The quantity
Re, = U _ 5 (8)
A%

is called thdriction Reynolds numbeand is a global parameter of the boundary layer.

Since fully-developed boundary-layer flow is completely spedibyU, vy, p, v, 6 andu,
dimensional analysis (6 variables, 3 independent dimensions) yigéldstaonal relationship
between 6 — 3 = 3 dimensionless groups, conveniently taken as

U_. vy
w6
ie.
U™ =f(y",m) 9)

Almost all boundary-layer analysis is based upon the smooth ovdrthp bmiting cases —
inner layer(n — 0) andouter layer(y” » 1).

2.3 Inner Layer (Prandtl, 1925)

Dimensional parametets, y, 1., p, v — butnotd.

Dimensional analysis (5 parameters, 3 independent dimensignsp independent
dimensionless groups, conveniently taketJds=U /u_andy” =u_y/v.

Then we have thiaw of the wall
U =1,(y) (10)
fw IS expected to be a universal function; i.e. independent of the external flow.

According to Pope (2000), the inner layer corresponds roughty do< 0.1, or the region
over which the shear stress is approximately constant.
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2.4 Outer Layer (Von Karman, 1930)
Dimensional parametets, y, 1., p, 6 — butnotv.

Dimensional analysis (5 parameters, 3 independent dimensignsp independent
dimensionless groups, conveniently taken as

U.-U _Yy
u. L
Then one has theelocity-defect law
u,-u
= f,(n) (11)

T

Unlike f,, which is expected to be universéi(n) will vary with the particular flow.

2.5 Overlap Layer — the Log Law

As noted by C.B. Millikan (1937) the inner and outgyers can only overlap smoothly if the
overlap-region velocity profile is logarithmic.

Outer layer: U; -U" =f_(n)
Inner layer: U* =f_(y")

Introducingd” = du, / v, so thaly" =n§", and adding:
Us (") =f,(m+f,(ns")

For a functionf,, of theproductns® to be the sum of separate functionsy@nds”, f,, must
be logarithmic. This can be proved formally by eifintiating successively with respect to
each variable, as follows.

Differentiate wrtd™:
U (87)=0+nf,(nd")
Differentiate wrtn:
0 =f,(md")+nd" f,(nd")
= fL(y ) +y fa(y")
d . df,

= &y (y dy+)

Hence,
L dfy, _
y i constant
This constant is conventionally written ag,Mherex (= 0.41), isvon Karman’s constant
af, 1
dy* - Ky”
which integrates to give

1 .
f,=—Iny” +B, B another constant.
K
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Hence we have theg-law velocity profile
U=ty +8 (12)
K
or, equivalently,

u*=tingy (13)
K

Notes
(1) There is some variation between sources, bpicdy values of the constants are
k= 0.41 (1% = 2.44) andB = 5.0 € = 7.76).

(2) Except in strong adverse pressure gradierdsifea diffuser) the logarithmic velocity
profile is a good approximation across much ofghear layer. This observation turns
out to extremely useful in deriving friction fornad — see Section 3.

3 In the log law region,
oU _u, you ,oU" _
— =t or —-— =Yy ——=constant
dy Ky u, oy oy
This is often used as an alternative startingtdointhe derivation of the log law.

2.6 Viscous Sublayer

Very close to the wall, turbulent fluctuations at@mped out and the wall shear stress is
almost entirely viscous:

ouU
w— =1, constant

oy
which yields a linear velocity profile:

U= T—Wy
il
Settingt,, = pu’ and rearranging,

Ur=y" (14)

Experiment shows that the linear viscous sublagaesponds roughly tg" < 5.

2.7 Limits of the Various Regions

Pope (2000) gives the following rough delimitipigandy/s values.
Inner layer(roughly y/s < 0.1) — velocity scales an andy”, but not orb.
Outer layer(roughlyy® > 50) — the direct effect of viscosity is negligib
Overlap region exists at sufficiently high Reynolds number.

In the overlap region the mean-velocity profile mibs logarithmic. In fact the log law is a
good approximation beyond the overlap region. Pyggests:
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Viscous sublayer y'<5 — linear velocity profile
Buffer layer 5<y"'<30
Log law region y">30,y/6<0.3 — logarithmic velocity profile

2.8 Velocity-Defect Layer: Coles’ Law of the Wake

In the outer layer the velocity profile deviategistly from the log law, particularly in non-
equilibrium boundary layers with a pressure gradi€oles (1956) noted that thdeviationor
excess velocity above the log law had a wake-Iiiaps relative to the free stream; i.e.

U= UIoglaw +AU f (%)
wheref is some S-shaped function wi®) = 0,f(1) = 1; popular forms are
f(n) =sin2 X
) N
f(n)=3n*-2n°
Then we have the Coles Law of the Wake:
u _ 1, . 211
—=ZIny" +B+=— f(yl5) (15)
u « K
where the deviation from the log law is quantifisdtheColes wake parametét.
Typical values are:
pipe flow or channel flow: m=0

zero-pressure-gradient flat-plate boundary layét:= 0.45

In general]l is a function of pressure gradient.

2.9 Effect of Roughness
The seminal experimental work was done by Pran&iB student Johann Nikuradse, who

measured the friction factor in pipes artificiallyughened with densely-packed sand grains
of sizeks. Therelative roughnesky/D varied from 1/30 to 1/1000.

The influence of wall roughness is characterisedkby u_k /v .

Hydraulically Smooth(k; <5; i.e. less than the viscous sublayer depth)
In this regime roughness has no effect on theidndiactor or mean-velocity profile.

Fully Rough (k] >70)

Transfer of momentum to the wall is predominantypibessure drag on roughness elements,
not viscous stresses, and wall friction becomesreisdly independent of Reynolds number
for sufficiently large Re. Dimensional analysis irep

ur=1mY+p,
k

K s

From experimental dat& = 8.5.
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Transitional Roughneg$ < k. < 70)
Both roughness and viscous effects operate.

(Thesek limits are those of Schlichting. White gives 4 &@@linstead, whilst Cebeci and
Bradshaw’s transition formula below uses 2.25 ahjl 9
An all-encompassing mean-velocity profile may bétem
u* =1 y* +B(k))
K
where

B -

(k. - 0;hydraulicdly smooth

S

B, —lln kI (ki - oo;fully rough
K

Suitable interpolation formulae are:
Cebeci and Bradshaw (1977):

0, k; < 225
I§:(1—a)B+a(Bk—1Ink;) , a =< sin z In(k, 1229 , 225<k; <90
K 2 In(90 /225)
1, k: >90
Apsley (2007):
B=B, - ZIn(k. +C), C = er®®
K

(Both authors used slightly different valuesBodindBy from those used in these Notes).

In practice, we are often more interested in tlseltegfriction law (see Section 3). For pipe
flow this is theColebrook-White formulaThe effect of surface roughness depends on its
form as well as its size. The work of Colebrook33Pand Moody (1944) helped to define
“equivalent sand roughness” for many commercia¢ praterials.

Geophysical Flows

Perhaps the ultimate in rough-wall boundary layetbe atmospheric boundary layer. In this
case the mean velocity profile is typically writtémith the meteorological convention of
for a vertical coordinate):

=% 0 ) (16)
K Z

7, is called theroughness lengthand comparison with the above formulae, fitting al
constants inside the natural logarithm and taBpg 8.5, givesz, =k, /30For typical rural

conditionszy, has a value of about 0.1 m.
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Examples

Question 1.

Consider airflow at 10 mi's over a flat plate. If the friction Reynolds numbisr 1200,
calculate (a) the friction velocity; (b) the walesar stress; (c) the depth of the boundary
layer. Assume a Coles wake paraméter 0.45.

Question 2.

Wind velocities over open fields were measured .89 f §* and 8.83 m¢ at heights of
2 m and 10 m respectively. Use this data to estim@) the roughness lengty (b) the

friction velocity u;; (c) the velocity at height 25 m; (d) the averagéocity over a depth of
25m.

Question 3. (From White, 1994)
J. Laufer’s (1954) pipe-flow experiments gave thibofving data at Rg= 5x10°

r'R 0.0 0.102| 0.206] 0.412 0.61f 0.784 0.846 0.907 0.p63

U/Uo 1.0 0.997| 0.988] 0.959 0.908 0.847 0.818 0.771 0.690

wherelU is the centreline velocity. Find the best-fit poviaen profile of the form
U n
- = (l)l/
U, R

wherey =R — ris the distance from the wall.

Answers

(1) @)u,=0.41ms
(b) 7w = 0.20 N m?
(c) 6 =44 mm

(2) (a)z=0.080 m
(b)u;=0.75m &
(c) Uz=25m)=10.5m3
(d)Usy=8.7m5s

3) n=9
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