Waves

2. Wave Transformation

Wave Transformation

- Refraction
- change of direction on moving into shallower water
- Shoaling
- change of height on moving into shallower water
- Breaking
- collapse of waves after steepening
- Diffraction
- spreading of waves into geometric shadow
- Reflection
- reversal of direction at boundary

Wave Transformation

2. WAVE TRANSFORMATION

2.1 Refraction
2.2 Shoaling
2.3 Breaking
2.4 Diffraction
2.5 Reflection

Refraction

As waves move into shallower water:

- period remains constant;
- speed decreases (because depth decreases).

Hence:

- for oblique waves, direction changes.

Refraction is the change in direction with wave speed. For water waves, this speed change is due to a change in depth.

The change in direction is governed by Snell's Law.

Snell's Law

$$
T=\frac{\text { distance }}{\text { speed }}=\frac{d \sin \theta_{1}}{c_{1}}=\frac{d \sin \theta_{2}}{c_{2}}
$$

$$
\frac{\sin \theta_{1}}{c_{1}}=\frac{\sin \theta_{2}}{c_{2}}
$$

$$
\frac{k_{1} \sin \theta_{1}}{\omega_{1}}=\frac{k_{2} \sin \theta_{2}}{\omega_{2}} \quad \omega_{1}=\omega_{2}
$$

$(k \sin \theta)_{1}=(k \sin \theta)_{2}$

Refraction

Example

A straight coastline borders a uniformly-sloping sea bed. Regular waves are observed to cross the 8 m depth contour at an angle of 14° to the coastline-normal, with wavelength 45 m . Find:
(a) the wave period;
(b) the wavelength in deep water;
(c) the direction in deep water.

A straight coastline borders a uniformly-sloping sea bed. Regular waves are observed to cross the 8 m depth contour at an angle of 14° to the coastline-normal, with wavelength 45 m . Find:
(a) the wave period;
(b) the wavelength in deep water;
(c) the direction in deep water.

Inshore:

$$
\begin{aligned}
& h=8 \mathrm{~m} \\
& \theta=14^{\circ} \\
& L=45 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& k=\frac{2 \pi}{L}=0.1396 \mathrm{~m}^{-1} \\
& \omega^{2}=g k \tanh k h \quad \omega=1.051 \mathrm{rad} \mathrm{~s}^{-1} \\
& T=\frac{2 \pi}{\omega}=\mathbf{5 . 9 7 8} \mathbf{~ s}
\end{aligned}
$$

Deep water:

$$
L_{0}=\frac{g T^{2}}{2 \pi}=\mathbf{5 5 . 8 0} \mathrm{m}
$$

Snell's Law:

$$
(k \sin \theta)_{0}=(k \sin \theta)_{8 \mathrm{~m}} \quad k_{0}=\frac{2 \pi}{L_{0}}=0.1126 \mathrm{~m}^{-1}
$$

$$
0.1126 \sin \theta_{0}=0.1396 \sin 14^{\circ}
$$

$$
\theta_{0}=17.45^{\circ}
$$

Wave Transformation

2. WAVE TRANSFORMATION

2.1 Refraction
2.2 Shoaling
2.3 Breaking
2.4 Diffraction
2.5 Reflection

Shoaling

If there is no energy dissipation:

- shoreward component of power remains constant; or
- power between orthogonals is constant.

$P \cos \theta=$ constant

Shoaling

$P \cos \theta=$ constant

$\begin{array}{ll}\text { Energy: } & E=\frac{1}{2} \rho g A^{2}=\frac{1}{8} \rho g H^{2} \\ \text { Power: } & P=E c_{g}=\left(\frac{1}{8} \rho g H^{2}\right)(n c)\end{array}$
(per unit area)
(per unit length of crest)
$\left(H^{2} n c \cos \theta\right)_{1}=\left(H^{2} n c \cos \theta\right)_{2}$

$$
n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]
$$

$$
c=\frac{\omega}{k}
$$

Shoaling

$$
\left(H^{2} n c \cos \theta\right)_{1}=\left(H^{2} n c \cos \theta\right)_{2}
$$

$$
H_{2}=H_{1} \underbrace{\left(\frac{\cos \theta_{1}}{\cos \theta_{2}}\right)^{1 / 2}}_{\begin{array}{c}
\text { refraction } \\
\text { coefficient } \\
K_{R}
\end{array}} \underbrace{\left(\frac{(n c)_{1}}{(n c)_{2}}\right)^{1 / 2}}_{\begin{array}{c}
\text { shoaling } \\
\text { coefficient } \\
K_{s}
\end{array}}
$$

Example

Waves propagate towards a long straight coastline that has a very gradual bed slope normal to the coast. In water depth of 20 m , regular waves propagate at heading $\theta=40^{\circ}$ relative to the bed slope.
(a) Sketch the shape of a wave ray from the 20 m depth contour to the 5 m depth contour for a wave that is of deep-water type in both depths and, separately, for a wave that is of shallow water type in both depths. Calculations are not required.
(b) For a wave with period $T=8 \mathrm{~s}$ and height 1.2 m at 20 m depth, calculate the wave heading and wave height at the 5 m depth contour.

Waves propagate towards a long straight coastline that has a very gradual bed slope normal to the coast. In water depth of 20 m , regular waves propagate at heading $\theta=40^{\circ}$ relative to the bed slope.
(a) Sketch the shape of a wave ray from the 20 m depth contour to the 5 m depth contour for a wave that is of deep-water type in both depths and, separately, for a wave that is of shallow water type in both depths. Calculations are not required.

Deep-water (or short-wavelength) waves, by definition, do not feel the effect of the bed. Hence they propagate undisturbed.

Shallow-water (or long-wavelength) waves, reduce in wavelength and slow down. Hence they bend toward the normal.

Waves propagate towards a long straight coastline that has a very gradual bed slope normal to the coast. In water depth of 20 m , regular waves propagate at heading $\theta=40^{\circ}$ relative to the bed slope.
(b) For a wave with period $T=8 \mathrm{~s}$ and height 1.2 m at 20 m depth, calculate the wave heading and wave height at the 5 m depth contour.

$$
\begin{aligned}
& T=8 \mathrm{~s} \quad \text { (both depths) } \\
& \omega=\frac{2 \pi}{T}=0.7854 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Dispersion:

$$
\omega^{2}=g k \tanh k h
$$

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

Refraction (Snell's Law):

$$
(k \sin \theta)_{5 \mathrm{~m}}=(k \sin \theta)_{20 \mathrm{~m}}
$$

Shoaling:

$$
\left(H^{2} n c \cos \theta\right)_{5 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{20 \mathrm{~m}}
$$

Waves propagate towards a long straight coastline that has a very gradual bed slope normal to the coast. In water depth of 20 m , regular waves propagate at heading $\theta=40^{\circ}$ relative to the bed slope.
(b) For a wave with period $T=8 \mathrm{~s}$ and height 1.2 m at 20 m depth, calculate the wave heading and wave height at the 5 m depth contour.
$\omega=0.7854 \mathrm{rad} \mathrm{s}^{-1}$

	$h=5 \mathrm{~m}$	$h=20 \mathrm{~m}$
$\omega^{2} h / g$	0.3144	1.258
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.3144}{\tanh k h}\right)$	$k h=\frac{1.258}{\tanh k h}$
$k h$	0.5918	1.416
k	$0.1184 \mathrm{~m}^{-1}$	$0.07080 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$6.633 \mathrm{~m} \mathrm{~s}^{-1}$	$11.09 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.8999	0.6674
θ	---	40°
H	---	1.2 m

Refraction: $(k \sin \theta)_{5 \mathrm{~m}}=(k \sin \theta)_{20 \mathrm{~m}}$

$$
0.1184 \sin \theta_{5 \mathrm{~m}}=0.07080 \sin 40^{\circ} \quad \boldsymbol{\theta}_{5 \mathrm{~m}}=\mathbf{2 2 . 6 0}{ }^{\circ}
$$

Shoaling: $\quad\left(H^{2} n c \cos \theta\right)_{5 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{20 \mathrm{~m}} \quad \boldsymbol{H}_{5 \mathrm{~m}}=\mathbf{1} .217$ $H_{5 \mathrm{~m}}^{2} \times 0.8999 \times 6.633 \times \cos 22.60^{\circ}=1.2^{2} \times 0.6674 \times 11.09 \times \cos 40^{\circ}$

Wave Transformation

2. WAVE TRANSFORMATION

2.1 Refraction
2.2 Shoaling
2.3 Breaking
2.4 Diffraction
2.5 Reflection

Breaking - Miche Criterion

$$
\left(\frac{H}{L}\right)_{b}=0.14 \tanh (k h)_{b}
$$

Idea: breaking occurs when $u_{\text {max }} / c$ exceeds a critical value

$$
\frac{u_{\max }}{c}=\frac{(A g k / \omega)}{(\omega / k)} \quad=\frac{A g k^{2}}{\omega^{2}} \quad=\frac{A k}{\tanh k h} \quad=\frac{\pi H / L}{\tanh k h}
$$

$$
\text { At breaking: } \quad \frac{H}{L}=\text { constant } \times \tanh (k h)
$$

Deep water:

$$
\left(\frac{H}{L}\right)_{b}=0.14 \approx \frac{1}{7}
$$

Shallow water:

$$
\left(\frac{H}{L}\right)_{b}=0.14 \times \frac{2 \pi h}{L} \quad\left(\frac{H}{h}\right)_{b}=0.88
$$

Breaker Height Index

Breaker height index:

$$
\Omega_{b}=\frac{H_{b}}{H_{0}} \quad\left(\frac{\text { wave height at breaking }}{\text { deep-water wave height }}\right)
$$

$$
\text { e.g. } \quad \Omega_{b}=0.56\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5}
$$

Deep-water quantities extrapolated from height and period measured at one point:
H_{0} from shoaling: $\quad\left(H^{2} n c \cos \theta\right)_{0}=\left(H^{2} n c \cos \theta\right)_{\text {measured }}$
L_{0} from:

$$
L_{0}=\frac{g T^{2}}{2 \pi}
$$

Breaker Depth Index

Breaker depth index:

$$
\gamma_{b}=\left(\frac{H}{h}\right)_{b} \quad\left(\frac{\text { wave height at breaking }}{\text { water depth at breaking }}\right)
$$

On a mild slope:

$$
\gamma_{b}=0.78
$$

On a beach of slope m :

$$
\begin{aligned}
& \gamma_{b}=b-a \frac{H_{b}}{g T^{2}} \quad=b-a \frac{H_{b}}{2 \pi L_{0}} \\
& \quad a=43.8\left(1-e^{-19 m}\right), \quad b=\frac{1.56}{1+e^{-19.5 m}}
\end{aligned}
$$

Types of Breaker

Irribarren Number (aka surf-similarity parameter):

$$
\left(\frac{\text { beach slope }}{\sqrt{\text { wave steepness }}}\right)
$$

$$
\xi_{0}=\frac{m}{\sqrt{H_{0} / L_{0}}}
$$

$$
\xi_{b}=\frac{m}{\sqrt{H_{b} / L_{0}}}
$$

$\xi_{0}<0.5$	spilling breakers
$0.5<\xi_{0}<3.3$	plunging breakers
$3.3<\xi_{0}$	surging or collapsing breakers

Types of Breaker

Plunging

Surging

Exa!

Waves propagate towards a long straight coastline that has a constant bed slope of 1 in 100. Consider the x-axis to be normal to the coastline and the y-axis parallel to the coastline. Waves propagate at an angle θ to the x-axis.
(a) A wave with period 7 s and height 1.2 m crosses the 36 m depth contour at angle $\theta=22^{\circ}$.
(i) Determine the direction, height and power per metre width of wave crest at the 4 m depth contour.
(ii) Explain how height changes between these depths.
(b) A wave with period 7 s and height 1.0 m crosses the 4 m depth contour at angle $\theta=0^{\circ}$. Determine the breaking wave height and breaking depth from their corresponding indices and identify the type of breaker expected.
(c) Further along the coast, waves propagate over the outflow of a river. In water depth of 14 m , measurements indicate a period of 7 s and depthaveraged flow velocity of $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ against the wave direction. Determine the wavelength.

Waves propagate towards a long straight coastline that has a constant bed slope of 1 in 100. Consider the x-axis to be normal to the coastline and the y-axis parallel to the coastline. Waves propagate at an angle θ to the x-axis.
(a) A wave with period 7 s and height 1.2 m crosses the 36 m depth contour at angle $\theta=22^{\circ}$.
(i) Determine the direction, height and power per metre width of wave crest at the 4 m depth contour.

$$
\begin{aligned}
& T=7 \mathrm{~s} \quad \text { (both depths) } \\
& \omega=\frac{2 \pi}{T}=0.8976 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Dispersion:

$\omega^{2}=g k \tanh k h$
$\frac{\omega^{2} h}{g}=k h \tanh k h$

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

Refraction (Snell's Law):

$$
(k \sin \theta)_{4 \mathrm{~m}}=(k \sin \theta)_{36 \mathrm{~m}}
$$

Shoaling:

$$
\left(H^{2} n c \cos \theta\right)_{4 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{36 \mathrm{~m}}
$$

Power:

$$
P=E c_{g} \quad E=\frac{1}{8} \rho g H^{2} \quad c_{g}=n c
$$

Waves propagate towards a long straight coastline that has a constant bed slope of 1 in 100. Consider the x-axis to be normal to the coastline and the y-axis parallel to the coastline. Waves propagate at an angle θ to the x-axis.
(a) A wave with period 7 s and height 1.2 m crosses the 36 m depth contour at angle $\theta=22^{\circ}$.
(i) Determine the direction, height and power per metre width of wave crest at the 4 m depth contour.
$\omega=0.8976 \mathrm{rad} \mathrm{s}^{-1}$

	$h=4 \mathrm{~m}$	$h=36 \mathrm{~m}$
$\omega^{2} h / g$	0.3285	
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.3285}{\tanh k h}\right)$	2.957
$k h$	0.6065	$k h=\frac{2.957}{\tanh k h}$
k	$0.1516 \mathrm{~m}^{-1}$	2.973
$c=\frac{\omega}{k}$	$5.921 \mathrm{~m} \mathrm{~s}^{-1}$	$0.08258 \mathrm{~m}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.8956	$10.87 \mathrm{~m} \mathrm{~s}^{-1}$
θ	---	0.5156
H	--	22°
	1.2 m	

Refraction: $(k \sin \theta)_{4 \mathrm{~m}}=(k \sin \theta)_{36 \mathrm{~m}}$

$$
0.1516 \sin \theta_{4 \mathrm{~m}}=0.08258 \sin 22^{\circ} \quad \boldsymbol{\theta}_{4 \mathrm{~m}}=11 . \mathbf{7 7}^{\circ}
$$

Shoaling: $\quad\left(H^{2} n c \cos \theta\right)_{4 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{36 \mathrm{~m}}$
$H_{4 \mathrm{~m}}=1.201 \mathrm{~m}$
Power: $\quad P=E c_{g}=\frac{1}{8} \rho g H^{2}(n c)=\mathbf{9 6 1 4} \mathbf{W} \mathbf{m}^{\mathbf{1}}$
(b) A wave with period 7 s and height 1.0 m crosses the 4 m depth contour at angle $\theta=0^{\circ}$. Determine the breaking wave height and breaking depth from their corresponding indices and identify the type of breaker expected.

$$
\begin{array}{ccc}
H_{b}=0.56 H_{0}\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5} & \gamma_{b} \equiv\left(\frac{H}{h}\right)_{b}=b-a \frac{H_{b}}{g T^{2}} & a=43.8\left(1-\mathrm{e}^{-19 m}\right) \\
\left(H^{2} n c\right)_{0}=\left(H^{2} n c\right)_{4 \mathrm{~m}} & T=7 \mathrm{~s} & b=\frac{1.56}{1+\mathrm{e}^{-19.5 m}}
\end{array}
$$

Depth 4 m	Deep water
$H=1.0 \mathrm{~m}$	$?$
$n=0.8956$	$n=0.5$
$c=5.921 \mathrm{~m} \mathrm{~s}^{-1}$	$c=\frac{g T}{2 \pi}=10.93 \mathrm{~m} \mathrm{~s}^{-1}$
	$L_{0}=\frac{g T^{2}}{2 \pi}=\mathbf{7 6 . 5 0} \mathbf{~ m}$

Shoaling:

$$
\begin{aligned}
& \left(H^{2} n c\right)_{0}=\left(H^{2} n c\right)_{4 \mathrm{~m}} \\
& H_{0}^{2} \times 0.5 \times 10.93=1 \times 0.8956 \times 5.921
\end{aligned}
$$

$H_{0}=0.9851 \mathrm{~m}$
(b) A wave with period 7 s and height 1.0 m crosses the 4 m depth contour at angle $\theta=0^{\circ}$. Determine the breaking wave height and breaking depth from their corresponding indices and identify the type of breaker expected.

$$
H_{b}=0.56 H_{0}\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5}
$$

$$
\gamma_{b} \equiv\left(\frac{H}{h}\right)_{b}=b-a \frac{H_{b}}{g T^{2}}
$$

$$
a=43.8\left(1-\mathrm{e}^{-19 m}\right)
$$

$$
\begin{array}{lll}
T=7 \mathrm{~s} & H_{0}=0.9851 \mathrm{~m} & m=0.01 \\
& L_{0}=76.50 \mathrm{~m} &
\end{array}
$$

Breaking height:

$$
H_{b}=1.317 \mathrm{~m}
$$

Breaking depth:

$$
\begin{aligned}
& a=7.579 \\
& b=0.8558 \\
& \gamma_{b}=0.8350 \\
& \boldsymbol{h}_{\boldsymbol{b}}=\mathbf{1 . 5 7 7} \mathbf{~ m}
\end{aligned}
$$

Breaker type:

$$
\xi_{0}=\frac{m}{\sqrt{H_{0} / L_{0}}}=\mathbf{0 . 0 8 8 1}
$$

(c) Further along the coast, waves propagate over the outflow of a river. In water depth of 14 m , measurements indicate a period of 7 s and depth-averaged flow velocity of $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ against the wave direction. Determine the wavelength.

$$
\begin{aligned}
& h=14 \mathrm{~m} \\
& T_{a}=7 \mathrm{~s} \\
& U=-0.8 \mathrm{~m} \mathrm{~s}^{-1} \\
& \omega_{a}=\frac{2 \pi}{T_{a}}=0.8976 \mathrm{rad} \mathrm{~s}^{-1} \\
& k=\frac{\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h}{9.81 \tanh 14 k} \\
& k=0.1087 \mathrm{~m}^{-1} \\
& k=\frac{2 \pi}{k}=57.80 \mathbf{~ m} \\
& k \tanh k h
\end{aligned}
$$

Example

Waves propagate towards a straight shoreline. The wave heading is equal to the angle formed between wave crests and the bed contours. The bed slope is less than 1 in 100 . Waves are measured in 30 m depth and wave conditions at 6 m depth are required to inform design of nearshore structures.

Regular waves are measured with period of 7 s and height of 3 m .
(a) Determine the water depth in which waves with this period can be considered as deep-water waves.
(b) For 30 m depth, determine the breaking height by the Miche criterion and briefly describe this type of breaking wave.
(c) If the heading is zero degrees, calculate wave height in 6 m depth. State your assumptions.
(d) If the heading of the measured conditions is 30°, calculate the wave heading and height in 6 m depth. Hence calculate the change of wave power per unit width of wave crest ($\mathrm{kW} \mathrm{m}^{-1}$) between the two depths.

Waves propagate towards a straight shoreline. The wave heading is equal to the angle formed between wave crests and the bed contours. The bed slope is less than 1 in 100 . Waves are measured in 30 m depth and wave conditions at 6 m depth are required to inform design of nearshore structures.

Regular waves are measured with period of 7 s and height of 3 m .
(a) Determine the water depth in which waves with this period can be considered as deepwater waves.

$$
\begin{gathered}
T=7 \mathrm{~s} \\
\omega=\frac{2 \pi}{T}=0.8976 \mathrm{rad} \mathrm{~s}^{-1} \\
\omega^{2}=g k \tanh k h \\
\frac{\omega^{2} h}{g}=k h \tanh k h \\
\text { Deep-water waves if } k h>\pi: \\
0.08213 h>\pi \tanh \pi \\
\boldsymbol{h}>\mathbf{3 8 . 1 1} \mathbf{m}
\end{gathered}
$$

(b) For 30 m depth, determine the breaking height by the Miche criterion and briefly
(b) For 30 m depth, determine the
describe this type of breaking wave.
$\frac{\omega^{2} h}{g}=k h \tanh k h$
$2.464=k h \tanh k h$

$$
k h=\frac{2.464}{\tanh k h}
$$

$$
\begin{aligned}
& \frac{H_{b}}{75.46}=0.14 \tanh 2.498 \\
& \boldsymbol{H}_{\boldsymbol{b}}=\mathbf{1 0 . 4 2} \mathbf{~ m}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=0.8976 \mathrm{rad} \mathrm{~s}^{-1} \\
& h=30 \mathrm{~m}
\end{aligned}
$$

$$
k h=2.498
$$

$$
k=0.08327 \mathrm{~m}^{-1}
$$

$$
L=\frac{2 \pi}{k}=75.46 \mathrm{~m}
$$

Miche criterion:

Miche criterion:
Irribarren number:

$$
\frac{H_{b}}{L}=0.14 \tanh k h
$$

Miche criterion:
Irribarren number:

$$
\xi_{b}=\frac{m}{\sqrt{H_{b} / L_{0}}}
$$

Dispersion relation: $\quad \omega^{2}=g k \tanh k h$

$$
\begin{aligned}
& L_{0}=\frac{g T^{2}}{2 \pi}=76.50 \mathrm{~m} \\
& m<0.01 \\
& \xi_{b}<\frac{0.01}{\sqrt{10.42 / 76.50}}=0.0271
\end{aligned}
$$

spilling breakers
(c) If the heading is zero degrees, calculate wave height in 6 m depth. State your assumptions.

Shoaling (no refraction): $\quad\left(H^{2} n c\right)_{6 \mathrm{~m}}=\left(H^{2} n c\right)_{30 \mathrm{~m}}$

$$
\omega=0.8976 \mathrm{rad} \mathrm{~s}^{-1} \quad H_{30 \mathrm{~m}}=3 \mathrm{~m}
$$

	6 m depth (exercise)	30 m depth (earlier)
$k h$	0.7651	2.498
k	$0.1275 \mathrm{~m}^{-1}$	$0.08327 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$7.04 \mathrm{~m} \mathrm{~s}^{-1}$	$10.78 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.8476	0.5338
H	---	3 m

Shoaling:

$$
H_{6 \mathrm{~m}}^{2} \times 0.8476 \times 7.04=3^{2} \times 0.5338 \times 10.78 \quad \boldsymbol{H}_{\mathbf{6} \mathbf{m}}=\mathbf{2 . 9 4 6} \mathbf{~ m}
$$

(d) If the heading of the measured conditions is 30°, calculate the wave heading and height in 6 m depth. Hence calculate the change of wave power per unit width of wave crest ($\mathrm{kW} \mathrm{m}^{-1}$) between the two depths.

Refraction:
Shoaling (with refraction):

$$
(k \sin \theta)_{6 \mathrm{~m}}=(k \sin \theta)_{30 \mathrm{~m}}
$$

$$
\left(H^{2} n c \cos \theta\right)_{6 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{30 \mathrm{~m}}
$$

30 m depth
2.498
$0.08327 \mathrm{~m}^{-1}$
$10.78 \mathrm{~m} \mathrm{~s}^{-1}$
0.5338
30°
3 m

Refraction: $\quad 0.1275 \sin \theta_{6 \mathrm{~m}}=0.08327 \sin 30^{\circ} \quad \boldsymbol{\theta}_{\mathbf{6} \mathrm{m}}=\mathbf{1 9 . 0 6}^{\circ}$
Shoaling: $\quad H_{6 \mathrm{~m}}^{2} \times 0.8476 \times 7.040 \times \cos 19.06^{\circ}=3^{2} \times 0.5338 \times 10.78 \times \cos 30^{\circ}$
$H_{6 \mathrm{~m}}=2.820 \mathrm{~m}$
(d) If the heading of the measured conditions is 30°, calculate the wave heading and height in 6 m depth. Hence calculate the change of wave power per unit width of wave crest ($\mathrm{kW} \mathrm{m}^{-1}$) between the two depths.

$$
\begin{aligned}
& P=E c_{g} \quad E=\frac{1}{8} \rho g H^{2} \quad c_{g}=n c \\
& \Delta P=\left(\frac{1}{8} \rho g H^{2} n c\right)_{30 \mathrm{~m}}-\left(\frac{1}{8} \rho g H^{2} n c\right)_{6 \mathrm{~m}}=\mathbf{5 . 4 5 1} \mathbf{~ k W ~ m}
\end{aligned}
$$

Wave Transformation

2. WAVE TRANSFORMATION

2.1 Refraction
2.2 Shoaling
2.3 Breaking
2.4 Diffraction
2.5 Reflection

Diffraction

Diffraction is the spreading of waves into a region of geometric shadow.

It occurs because there cannot be discontinuities at the boundary of the illuminated zone.

Diffraction - Semi-Infinite Breakwater

diffracted wave crests

Normal incidence

incident + reflected waves

Diffraction Coefficient

$$
K_{D}(x)=\frac{H(x)}{H_{0}}
$$

Semi-infinite plane breakwater; 90° wave incidence

Diffraction Coefficient

Breakwater with a $2 L$ gap

Offshore breakwater, length $10 L$

Example

A harbour is to be protected by an L-shaped breakwater as sketched. Determine the length X of the outer arm necessary for the wave height at point P to be 0.3 m when incident waves have a height of 3 m and a period of 5 s .

The depth is everywhere uniform at 5 m . The diffraction diagram for the appropriate approach angle is shown.
 Neglect reflections within the harbour.

A harbour is to be protected by an L-shaped breakwater as sketched. Determine the length X of the outer arm necessary for the wave height at point P to be 0.3 m when incident waves have a height of 3 m and a period of 5 s .

The depth is everywhere uniform at 5 m . The diffraction diagram for the appropriate approach angle is shown. Neglect reflections within the harbour.

Require $K=\frac{0.3}{3}=0.1$

From the diagram, this occurs at $x / L=4.0$

A harbour is to be protected by an L-shaped breakwater as sketched. Determine the length X of the outer arm necessary for the wave height at point P to be 0.3 m when incident waves have a height of 3 m and a period of 5 s .

The depth is everywhere uniform at 5 m . The diffraction diagram for the appropriate approach angle is shown. Neglect reflections within the harbour.

$$
\begin{aligned}
& h=5 \mathrm{~m} \\
& T=5 \mathrm{~s} \\
& \omega=\frac{2 \pi}{T}=1.257 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
& \frac{\omega^{2} h}{g}=k h \tanh k h
\end{aligned}
$$

$k h \tanh k h=0.8053$

$$
\begin{aligned}
& k h=\frac{0.8053}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{0.8053}{\tanh k h}\right) \\
& k h=1.037 \\
& k=0.2074 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=30.30 \mathrm{~m}
\end{aligned}
$$

Wave Transformation

2. WAVE TRANSFORMATION

2.1 Refraction
2.2 Shoaling
2.3 Breaking
2.4 Diffraction
2.5 Reflection

Reflection

For a rigid, impermeable boundary: $u=0 \quad$ at the boundary

Superpose two progressive waves moving in opposite directions:

$$
\begin{aligned}
\eta & =A \cos (k x-\omega t)+A \cos (-k x-\omega t) \\
& =A[\cos (k x-\omega t)+\cos (k x+\omega t)] \\
& =2 A \cos k x \cos \omega t
\end{aligned}
$$

This is a standing wave
... with twice the amplitude
... and nodes every half-wavelength

Reflection

$\eta=2 A \cos k x \cos \omega t$
$u=\frac{2 A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin k x \sin \omega t$

- Reflection can be represented by the superposition of two equal and opposite progressive waves to form a standing wave.
- The standing wave has the same wavelength and frequency but twice the amplitude.
- There are surface nodes (i.e. zeroes of η) separated by half a wavelength, with velocity nodes intermediate between.
- The point of reflection corresponds to a point of zero velocity and doubleamplitude displacement.

Seiching

Seiches are resonant standing waves set up in enclosed basins (lakes, harbours, ...)

Fundamental (mode 1)

Mode 2
The basin length is a whole number of halfwavelengths:

$$
\begin{gathered}
B=n_{s}\left(\frac{1}{2} L\right) \\
\text { period }=\frac{\text { wavelength }}{\text { speed }} \\
\end{gathered} \quad T=\frac{2 B}{n_{s}}, \frac{2 B}{n_{s} \sqrt{g h}}
$$

Mode

Reflection

Lake Baikal in Siberia contains about one fifth of the world's fresh-water resources. It is 636 km long, with an average depth of 744 m . Find the fundamental period for seiching.

Lake Baikal in Siberia contains about one fifth of the world's fresh-water resources. It is 636 km long, with an average depth of 744 m . Find the fundamental period for seiching.

Fundamental (mode 1)

$$
L=2 \times \text { length of lake }=1.272 \times 10^{6} \mathrm{~m}
$$

$$
c=\sqrt{g h}=85.43 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
T=\frac{L}{c}=14890 \mathrm{~s}
$$

(4.1 hours)

