B. Waves

1. Linear wave theory
2. Wave transformation
3. Random waves and statistics
4. Wave loading on structures

Recommended Books

- Dean and Dalrymple, Water Wave Mechanics For Engineers and Scientists
- Kamphuis, Introduction to coastal engineering and management

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Linear Wave Theory

Single-frequency ("monochromatic", "regular") progressive wave on still water:

$$
\eta=A \cos (k x-\omega t)
$$

Linear wave theory:

- aka Airy wave theory
- assume amplitude small (compared with depth and wavelength)
- neglect powers and products of wave perturbations
- sum of any such wave fields also a solution

Amplitude and Height

- Amplitude A is the maximum displacement from still-water level (SWL)
- Wave height H is the vertical distance between neighbouring crest and trough
- For sinusoidal waves, $\boldsymbol{H}=\mathbf{2 A}$
- For regular waves, formulae more naturally expressed in terms of A
- For irregular waves, H is the more measurable quantity

Wavenumber and Wavelength

- $\quad k$ is the wavenumber
- Wavelength L is the horizontal distance over which wave form repeats:

$$
k L=2 \pi \quad \Rightarrow \quad L=\frac{2 \pi}{k}
$$

Frequency and Period

- $\quad \omega$ is the wave angular frequency
- Period T is the time over which the wave form repeats:

$$
\omega T=2 \pi \quad \Rightarrow \quad T=\frac{2 \pi}{\omega}
$$

- The actual frequency f (cycles per second, or Hertz) is

$$
f=\frac{1}{T}=\frac{\omega}{2 \pi}
$$

Wave Speed

$$
\eta=A \cos (k x-\omega t) \quad=A \cos \left[k\left(x-\frac{\omega}{k} t\right)\right] \quad=A \cos [k(x-c t)]
$$

- $\quad c$ is the phase speed or celerity
- $\quad c$ is the speed at which the wave form translates

$$
\begin{aligned}
c & =\frac{\omega}{k} \\
& =\frac{L}{T} \quad\left(\frac{\text { wavelength }}{\text { period }}\right) \\
& =f L \quad(\text { frequency } \times \text { wavelength })
\end{aligned}
$$

Summary

Surface elevation:

$$
\eta=A \cos (k x-\omega t)
$$

Wavenumber k, wavelength L :

$$
L=\frac{2 \pi}{k}
$$

Angular frequency ω, period T :

$$
T=\frac{2 \pi}{\omega}
$$

Phase speed (celerity) c :

$$
c=\frac{\omega}{k}=\frac{L}{T}
$$

Hyperbolic Functions

$\sinh x \equiv \frac{\mathrm{e}^{x}-e^{-x}}{2}$
$\cosh x \equiv \frac{\mathrm{e}^{x}+e^{-x}}{2}$
$\tanh x \equiv \frac{\sinh x}{\cosh x}$

Hyperbolic Functions

Trigonometric-like formulae:

$$
\begin{aligned}
& \cosh ^{2} x-\sinh ^{2} x=1 \\
& \cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1 \\
& \sinh 2 x=2 \sinh x \cosh x
\end{aligned}
$$

Derivatives:

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}(\sinh x) & =\cosh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\cosh x) & =\sinh x \\
\frac{\mathrm{~d}}{\mathrm{~d} x}(\tanh x) & =\operatorname{sech}^{2} x
\end{aligned}
$$

Asymptotic behaviour:

Small x : $\sinh x \sim \tanh x \sim x, \quad \cosh x \rightarrow 1$ as $x \rightarrow 0$

Large x :
$\sinh x \sim \cosh x \sim \frac{1}{2} \mathrm{e}^{x}, \quad \tanh x \rightarrow 1$ as $x \rightarrow \infty$

Fluid-Flow Equations

Continuity: $\quad \frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0$

Irrotationality: $\quad \frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}=0$

$$
\text { or: } \quad u=\frac{\partial \phi}{\partial x}, \quad w=\frac{\partial \phi}{\partial z}
$$

ϕ is a velocity potential

Time-dependent Bernoulli equation:

$$
\rho \frac{\partial \phi}{\partial t}+p+\frac{1}{2} \rho U^{2}+\rho g z=C(t), \quad \text { along a streamline }
$$

Continuity

Net volume outflow:

$$
u_{e} \Delta z-u_{w} \Delta z+w_{n} \Delta x-w_{s} \Delta x=0
$$

Divide by $\Delta x \Delta z$:

$$
\begin{aligned}
& \frac{u_{e}-u_{w}}{\Delta x}+\frac{w_{n}-w_{s}}{\Delta z}=0 \\
& \frac{\Delta u}{\Delta x}+\frac{\Delta w}{\Delta z}=0
\end{aligned}
$$

$$
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0
$$

Irrotationality

Pressure forces act normal to surfaces, so can cause no rotation.

Circulation:

$$
u_{n} \Delta x-w_{e} \Delta z-u_{s} \Delta x+w_{w} \Delta z=0
$$

Divide by $\Delta x \Delta z$:

$$
\frac{u_{n}-u_{s}}{\Delta z}-\frac{w_{e}-w_{w}}{\Delta x}=0
$$

$$
\frac{\Delta u}{\Delta z}-\frac{\Delta w}{\Delta x}=0
$$

$\Delta x, \Delta z \rightarrow 0$:

$$
\frac{\partial u}{\partial z}-\frac{\partial w}{\partial x}=0
$$

Velocity Potential

The no-circulation condition makes the following well-defined:

$$
\mathrm{d} \phi=u \mathrm{~d} x+w \mathrm{~d} z
$$

For any 2-d function:

$$
\mathrm{d} \phi=\frac{\partial \phi}{\partial x} \mathrm{~d} x+\frac{\partial \phi}{\partial z} \mathrm{~d} z
$$

The velocity components are the gradient of the velocity potential ϕ :

$$
u=\frac{\partial \phi}{\partial x}, \quad w=\frac{\partial \phi}{\partial z}
$$

Aim: solve a single scalar equation for ϕ, then derive everything else from it.

Time-Dependent Bernoulli Equation

mass \times acceleration $=$ force
$\rho\left(\frac{\partial U}{\partial t}+U \frac{\partial U}{\partial s}\right)=-\frac{\partial p}{\partial s}-\rho g \sin \theta$

$$
U=\frac{\partial \phi}{\partial s} \quad \sin \theta=\partial z / \partial s
$$

$\rho\left(\frac{\partial^{2} \phi}{\partial t} \partial s+\frac{\partial}{\partial s}\left(\frac{1}{2} U^{2}\right)\right)=-\frac{\partial p}{\partial s}-\rho g \frac{\partial z}{\partial s}$
$\frac{\partial}{\partial s}\left[\rho \frac{\partial \phi}{\partial t}+\frac{1}{2} \rho U^{2}+p+\rho g z\right]=0$

$$
\rho \frac{\partial \phi}{\partial t}+p+\frac{1}{2} \rho U^{2}+\rho g z=C(t), \quad \text { along a streamline }
$$

Special case: if steady-state then

$$
p+\frac{1}{2} \rho U^{2}+\rho g z=C, \quad \text { along a streamline }
$$

Recap of Fluid-Flow Equations

Continuity

$$
\frac{\partial u}{\partial x}+\frac{\partial w}{\partial z}=0
$$

Velocity potential

$$
u=\frac{\partial \phi}{\partial x}, \quad w=\frac{\partial \phi}{\partial z}
$$

Bernoulli equation

$$
\rho \frac{\partial \phi}{\partial t}+p+\frac{1}{2} \rho U^{2}+\rho g z=C(t)
$$

Boundary Conditions

- Kinematic boundary condition: no net flow through boundary
- Dynamic boundary condition: stress continuous at interface

$$
\begin{array}{r}
z=z_{\text {surf }}(x, t) \xrightarrow{\mathrm{KBC}} \frac{\mathrm{D}}{\mathrm{D} t}\left(z-z_{\text {surf }}\right)=0 \quad \text { on surface } \\
\frac{\mathrm{D}}{\mathrm{D} t} \equiv \frac{\partial}{\partial t}+u \frac{\partial}{\partial x}+w \frac{\partial}{\partial z} \\
\\
w-\frac{\partial z_{\text {surf }}}{\partial t}-u \frac{\partial z_{\text {surf }}}{\partial x}=0 \quad \text { on the surface }
\end{array}
$$

$$
w=\frac{\partial z_{\text {surf }}}{\partial t}+u \frac{\partial z_{\text {surf }}}{\partial x} \quad \text { on } \quad z=z_{\text {surf }}(x, t)
$$

Boundary Conditions

KBBC - Kinematic Bed Boundary Condition

$$
w=0 \quad \text { on } \quad z=-h
$$

KFSBC - Kinematic Free-Surface Boundary Condition

$$
w=\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x} \quad \text { on } \quad z=\eta(x, t)
$$

DFSBC - Dynamic Free-Surface Boundary Condition

$$
p=0 \quad \text { on } \quad z=\eta(x, t)
$$

Linearised Equations

$$
y=a+b \varepsilon+c \varepsilon^{2}+\cdots
$$

- If ε is small, ignore quadratic and higher powers:

$$
y=a+b \varepsilon+\cdots
$$

- Boundary conditions on $z=\eta(x, t)$ can be applied on $z=0$

Boundary Conditions

KBBC - Kinematic Bed Boundary Condition

$$
w=0 \quad \text { on } \quad z=-h
$$

$$
\frac{\partial \phi}{\partial z}=0 \quad \text { on } \quad z=-h
$$

KBBC - Kinematic Free-Surface Boundary Condition

$$
w=\frac{\partial \eta}{\partial t}+u \frac{\partial \eta}{\partial x} \quad \text { on } \quad z=\eta(x, t) \quad \frac{\partial \phi}{\partial z}=\frac{\partial \eta}{\partial t} \quad \text { on } \quad z=0
$$

DFSBC - Dynamic Free-Surface Boundary Condition

$$
p=0 \quad \text { on } \quad z=\eta(x, t)
$$

$$
\frac{\partial \phi}{\partial t}+g \eta=C(t) \quad \text { on }
$$

Summary of Equations and BCs

Laplace's equation

$$
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0
$$

KBBC

$$
\frac{\partial \phi}{\partial z}=0 \quad \text { on } \quad z=-h
$$

KFSBC $\quad \frac{\partial \phi}{\partial z}=\frac{\partial \eta}{\partial t} \quad$ on $\quad z=0$

DFSBC

$$
\frac{\partial \phi}{\partial t}+g \eta=C(t) \quad \text { on } \quad z=0
$$

Solution For Velocity Potential, $\boldsymbol{\phi}$

Surface displacement:

Look for solution by separation of variables:

$$
\phi=X(x, t) Z(z)
$$

KFSBC: $\quad \frac{\partial \phi}{\partial z}=\frac{\partial \eta}{\partial t} \quad$ on $\quad z=0$

$$
\left.X \frac{\mathrm{~d} Z}{\mathrm{~d} z}\right|_{z=0}=A \omega \sin (k x-\omega t)
$$

Hence:

$$
X \propto \sin (k x-\omega t)
$$

WLOG:

$$
X=\sin (k x-\omega t)
$$

$$
\begin{array}{cc}
\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0 & -k^{2} X Z+X \frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}=0 \\
\frac{\mathrm{~d}^{2} Z}{\mathrm{~d} z^{2}}=k^{2} Z
\end{array}
$$

General solution:

$$
\eta=A \cos (k x-\omega t)
$$

Laplace's equation: $\quad \frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0$

$$
Z=\alpha \mathrm{e}^{k z}+\beta \mathrm{e}^{-k z}
$$

$$
\left.\frac{\mathrm{d} Z}{\mathrm{~d} z}\right|_{z=0}=A \omega
$$

Solution For Velocity Potential, ϕ

$$
\begin{aligned}
& \text { So far: } \\
& \phi=Z(z) \sin (k x-\omega t) \\
& Z=\alpha \mathrm{e}^{k z}+\beta \mathrm{e}^{-k z} \\
& \begin{array}{ll}
\text { KFSBC: } & \frac{\mathrm{d} Z}{\mathrm{~d} z}=A \omega \text { on } z=0 \\
\text { KBBC: } & \frac{\mathrm{d} Z}{\mathrm{~d} z}=0 \quad \text { on } \quad z=-h
\end{array} \\
& \text { Solution: } \quad Z=\frac{A \omega}{k} \frac{\cosh k(h+z)}{\sinh k h}
\end{aligned}
$$

$$
\phi=\frac{A \omega}{k} \frac{\cosh k(h+z)}{\sinh k h} \sin (k x-\omega t)
$$

Dispersion Relationship

$$
\phi=\frac{A \omega}{k} \frac{\cosh k(h+z)}{\sinh k h} \sin (k x-\omega t)
$$

How is wavenumber (k) related to wave angular frequency (ω) ?
DFSBC: $\quad \frac{\partial \phi}{\partial t}+g \eta=C(t) \quad$ on $\quad z=0$

$$
-\frac{A \omega^{2}}{k} \frac{\cosh k h}{\sinh k h} \cos (k x-\omega t)+A g \cos (k x-\omega t)=C(t)
$$

LHS has zero space average ... so $C(t)$ must be zero

$$
\begin{array}{lr}
-\frac{\omega^{2}}{k} \frac{\cosh k h}{\sinh k h}+g=0 & \frac{\omega}{k}=\left(\frac{g}{\omega}\right) \frac{\sinh k h}{\cosh k h} \\
\omega^{2}=g k \tanh k h & \\
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t) &
\end{array}
$$

Summary of Solution

Surface displacement:

$$
\eta=A \cos (k x-\omega t)
$$

Velocity potential:

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

Dispersion relation:

$$
\omega^{2}=g k \tanh k h
$$

This is all we need!!!

Velocity: $\quad u \equiv \frac{\partial \phi}{\partial x} \quad w \equiv \frac{\partial \phi}{\partial z}$

Pressure: $\quad p=-\rho g z-\rho \frac{\partial \phi}{\partial t}$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Dispersion Relationship

$\omega^{2}=g k \tanh k h$
or

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega} \quad L=\frac{2 \pi}{k} \\
& c \equiv \frac{\omega}{k}=\sqrt{\frac{g}{k} \tanh k h}
\end{aligned}
$$

Variation of Phase Speed With Depth

$$
\omega^{2}=g k \tanh k h
$$

When waves propagate into shallower water:
Period T - and hence ω - are unchanged
Depth h decreases ... so wavenumber k increases
Wavelength L decreases
Speed c decreases
This is VERY important!

Solving the Dispersion Relationship

$$
\omega^{2}=g k \tanh k h
$$

1. Know wavelength (L)... find period (T)

$$
k=\frac{2 \pi}{L}
$$

Substitute: gives ω

$$
T=\frac{2 \pi}{\omega}
$$

Solving the Dispersion Relationship

$$
\omega^{2}=g k \tanh k h
$$

2. Know period (T) ... find wavelength (L)

$$
\omega=\frac{2 \pi}{T}
$$

Rewrite as $\quad \frac{\omega^{2} h}{g}=k h \tanh k h$ $Y=X \tanh X$

Iterate $\quad X=\frac{Y}{\tanh X} \quad$ or $\quad X=\frac{1}{2}\left(X+\frac{Y}{\tanh X}\right)$

Gives $X=k h$ and hence k

$$
L=\frac{2 \pi}{k}
$$

Example

Find, in still water of depth 15 m :
(a) the period of a wave with wavelength 45 m ;
(b) the wavelength of a wave with period 8 s .

In each case write down the phase speed (celerity).

Find, in still water of depth 15 m :
(a) the period of a wave with wavelength 45 m ;
(b) the wavelength of a wave with period 8 s .

In each case write down the phase speed (celerity).
$h=15 \mathrm{~m}$
$\omega^{2}=g k \tanh k h$

$$
\begin{array}{ll}
\text { wavelength: } & L=45 \mathrm{~m} \\
\text { wavenumber: } & k=\frac{2 \pi}{L}=0.1396 \mathrm{~m}^{-1}
\end{array}
$$

$$
\text { angular frequency: } \omega=1.153 \mathrm{rad} \mathrm{~s}^{-1}
$$

$$
\text { period: } \quad T=\frac{2 \pi}{\omega}=\mathbf{5 . 4 4 9} \mathbf{~ s}
$$

phase speed (celerity): $\quad c=\frac{\omega}{k} \quad=\mathbf{8 . 2 5 9} \mathbf{m ~ s}^{\mathbf{- 1}}$

$$
\left(\text { or } \frac{L}{T}\right)
$$

Find, in still water of depth 15 m :
(a) the period of a wave with wavelength 45 m ;
(b) the wavelength of a wave with period 8 s .

In each case write down the phase speed (celerity).

$$
h=15 \mathrm{~m}
$$

$$
\begin{array}{ll}
\text { period: } & T=8 \mathrm{~s} \\
\text { angular frequency: } & \omega=\frac{2 \pi}{T}=0.7854 \mathrm{rad} \mathrm{~s}^{-1} \\
& \frac{\omega^{2} h}{g}=k h \tanh k h \\
& k h \tanh k h=0.9432 \\
& k h=\frac{0.9432}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{0.9432}{\tanh k h}\right) \\
& k h=1.152 \\
\text { wavenumber: } & k=0.0768 \mathrm{~m}^{-1} \\
\text { wavelength: } & L=\frac{2 \pi}{k}=\mathbf{8 1 . 8 1 ~ m}
\end{array}
$$

phase speed (celerity): $\quad c=\frac{\omega}{k} \quad=\mathbf{1 0 . 2 3} \mathbf{m ~ s}^{\mathbf{1}}$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Velocity

Surface displacement:

$$
\eta=A \cos (k x-\omega t)
$$

Velocity potential:

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

$$
\begin{aligned}
& u \equiv \frac{\partial \phi}{\partial x} \quad=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \\
& w \equiv \frac{\partial \phi}{\partial z} \quad=\frac{A g k}{\omega} \frac{\sinh k(h+z)}{\cosh k h} \sin (k x-\omega t)
\end{aligned}
$$

Pressure

Surface displacement:

$$
\eta=A \cos (k x-\omega t)
$$

Velocity potential:

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

Bernoulli equation: $\quad \rho \frac{\partial \phi}{\partial t}+p+\rho g z=0$

$$
p=-\rho g z-\rho \frac{\partial \phi}{\partial t}
$$

$$
\begin{aligned}
p & =\underbrace{-\rho g z}_{\text {hydrostatic }}+\underbrace{\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)}_{\text {hydrodynamic (i.e. wave) }} \\
& =-\rho g z+\rho g \eta \times \frac{\cosh k(h+z)}{\cosh k h}
\end{aligned}
$$

Example

A pressure sensor is located 0.6 m above the sea bed in a water depth $h=12 \mathrm{~m}$. The pressure fluctuates with period 15 s . A maximum gauge pressure of 124 kPa is recorded.
(a) What is the wave height?
(b) What are the maximum horizontal and vertical velocities at the surface?

A pressure sensor is located 0.6 m above the sea bed in a water depth $h=12 \mathrm{~m}$. The pressure fluctuates with period 15 s . A maximum gauge pressure of 124 kPa is recorded.
(a) What is the wave height?

$$
\begin{aligned}
& h=12 \mathrm{~m} \\
& z=-11.4 \mathrm{~m} \\
& T=15 \mathrm{~s} \\
& p_{\max }=124000 \mathrm{~Pa}
\end{aligned}
$$

$$
\omega=\frac{2 \pi}{T}=0.4189 \mathrm{rad} \mathrm{~s}^{-1}
$$

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

$k h \tanh k h=0.2147$

$$
\begin{aligned}
& k h=\frac{0.2147}{\tanh k h} \\
& k h=0.4806 \\
& k=0.04005 \mathrm{~m}^{-1}
\end{aligned}
$$

$$
p=-\rho g z+\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

$$
124000=114630+10060 A \frac{\cosh (k \times 0.6)}{\cosh k h}
$$

$$
\omega^{2}=g k \tanh k h
$$

$$
k h=\frac{1}{2}\left(k h+\frac{0.2147}{\tanh k h}\right)
$$

$$
\begin{aligned}
124000 & =114630+10060 A \times 0.8949 \\
A & =1.041 \mathrm{~m} \\
H & =2 A=2.082 \mathrm{~m}
\end{aligned}
$$

(b) What are the maximum horizontal and vertical velocities at the surface?

$$
\omega=0.4189 \mathrm{rad} \mathrm{~s}^{-1}
$$

$$
k h=0.4806
$$

$$
k=0.04005 \mathrm{~m}^{-1}
$$

$$
A=1.041 \mathrm{~m}
$$

$$
\begin{aligned}
& u=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \\
& w=\frac{A g k}{\omega} \frac{\sinh k(h+z)}{\cosh k h} \sin (k x-\omega t) \\
& z=0 \quad \text { (surface) } \\
& u_{\text {max }}=\frac{A g k}{\omega} \quad=0.9764 \mathrm{~m} \mathrm{~s}^{-1} \\
& w_{\text {max }}=\frac{A g k}{\omega} \tanh k h \quad=\mathbf{0 . 4 3 6 2} \mathbf{m ~ s}^{-1}
\end{aligned}
$$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Wave Energy

- Wave energy density E is average energy per unit horizontal area.
- Found by integrating over the water column, and averaging over a wave cycle.
- Kinetic energy:

$$
\overline{\mathrm{KE}}=\overline{\int_{z=-h}^{\eta} \frac{1}{2} \rho\left(u^{2}+w^{2}\right) \mathrm{d} z}=\frac{1}{4} \rho g A^{2}
$$

$$
\overline{\mathrm{PE}}=\overline{\int_{z=-h}^{\eta} \rho g z \mathrm{~d} z}=\frac{1}{4} \rho g A^{2}+\text { constant }
$$

- (Under linear theory) average wave-related KE and PE are the same.
- Total energy:

$$
E=\frac{1}{2} \rho g A^{2} \quad=\frac{1}{8} \rho g H^{2}
$$

Kinetic Energy (Appendix A4)

$$
\mathrm{KE}=\frac{1}{2} \rho \int_{z=-h}^{\eta}\left(u^{2}+w^{2}\right) \mathrm{d} z
$$

$$
u^{2}+w^{2}=\left(\frac{A g k}{\omega \cosh k h}\right)^{2}\left\{\cosh ^{2} k(h+z) \cos ^{2}(k x-\omega t)+\sinh ^{2} k(h+z) \sin ^{2}(k x-\omega t)\right\}
$$

$$
\overline{\mathrm{KE}}=\frac{1}{2} \rho \int_{z=-h}^{0}\left(\overline{u^{2}+w^{2}}\right) \mathrm{d} z \quad=\frac{1}{2} \rho\left(\frac{A g k}{\omega \cosh k h}\right)^{2} \times \frac{1}{2} \int_{-h}^{0}\left\{\cosh ^{2} k(h+z)+\sinh ^{2} k(h+z)\right\} \mathrm{d} z
$$

$$
=\frac{1}{2} \rho\left(\frac{A g k}{\omega \cosh k h}\right)^{2} \times \frac{1}{2} \int_{-h}^{0} \cosh 2 k(h+z) \mathrm{d} z
$$

$$
=\frac{1}{2} \rho\left(\frac{A g k}{\omega \cosh k h}\right)^{2} \times \frac{1}{2}\left[\frac{\sinh 2 k(h+z)}{2 k}\right]_{-h}^{0}
$$

$$
=\frac{1}{2} \rho\left(\frac{A g k}{\omega \cosh k h}\right)^{2} \times \frac{1}{2} \times \frac{\sinh 2 k h}{2 k}
$$

$$
=\frac{1}{2} \rho\left(\frac{A g k}{\omega \cosh k h}\right)^{2} \times \frac{1}{2} \times \frac{2 \sinh k h \cosh k h}{2 k}
$$

$$
=\frac{1}{4} \frac{\rho A^{2} g^{2} k \tanh k h}{\omega^{2}} \quad \omega^{2}=g k \tanh k h
$$

$$
\overline{\mathrm{KE}}=\frac{1}{4} \rho g A^{2}
$$

Potential Energy (Appendix A4)

$$
\begin{aligned}
\mathrm{PE} & =\int_{z=-h}^{\eta} \rho g z \mathrm{~d} z \\
& =\frac{1}{2} \rho g\left[z^{2}\right]_{-h}^{\eta} \\
& =\frac{1}{2} \rho g\left(\eta^{2}-h^{2}\right) \\
& =\frac{1}{2} \rho g\left(A^{2} \cos ^{2}(k x-\omega t)+\text { constant }\right)
\end{aligned}
$$

Only the wave component is needed

$$
\begin{aligned}
& \overline{\mathrm{PE}}=\frac{1}{2} \rho g \times \frac{1}{2} A^{2} \\
& \overline{\mathrm{PE}}=\frac{1}{4} \rho g A^{2}
\end{aligned}
$$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Phase and Group Velocities

Phase velocity $\quad c \equiv \frac{\omega}{k}$

- velocity at which the waveform translates
- really only meaningful for a regular wave, or single frequency component

Group velocity $\quad c_{g} \equiv \frac{\mathrm{~d} \omega}{\mathrm{~d} k}$

- velocity at which energy propagates
- more appropriate for a wave packet comprised of multiple frequency components

Combination of Frequency Components

Two components: frequencies $\omega \pm \Delta \omega$ and wavenumbers $k \pm \Delta k$

$$
\begin{gathered}
\eta=\underbrace{a \cos [(k+\Delta k) x-(\omega+\Delta \omega) t]}_{\text {component } 1}+\underbrace{a \cos [(k-\Delta k) x-(\omega-\Delta \omega) t]}_{\text {component } 2} \\
\cos \alpha+\cos \beta=2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2}
\end{gathered}
$$

$\eta=2 a \cos (k x-\omega t) \cos (\Delta k \cdot x-\Delta \omega \cdot t)$

Amplitude modulation:

$$
A(t)=2 a \cos (\Delta k x-\Delta \omega t)
$$

Speed of amplitude envelope: $\quad \frac{\Delta \omega}{\Delta k}$

Group velocity

$$
c_{g} \equiv \frac{\mathrm{~d} \omega}{\mathrm{~d} k}
$$

Group Velocity (Appendix A5)

Group velocity

$$
c_{g} \equiv \frac{\mathrm{~d} \omega}{\mathrm{~d} k}
$$

Dispersion relation

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
& \begin{aligned}
2 \omega \frac{\mathrm{~d} \omega}{\mathrm{~d} k} & =g \tanh k h+g k h \operatorname{sech}^{2} k h \\
& =\frac{\omega^{2}}{k}+\frac{\omega^{2}}{\tanh k h} \frac{h}{\cosh ^{2} k h} \\
& =\frac{\omega^{2}}{k}\left[1+\frac{k h}{\sinh k h \cosh k h}\right] \\
\frac{\mathrm{d} \omega}{\mathrm{~d} k} & =\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right] \frac{\omega}{k}
\end{aligned}
\end{aligned}
$$

$c_{g}=n c$

$$
c \equiv \frac{\omega}{k}
$$

$$
n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]
$$

$$
\frac{1}{2}<n<1
$$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Wave Power

Wave power P is the (average) rate of energy transfer per unit length of wave crest.

It can be calculated from the rate of working of pressure forces.

$$
\text { Power } \quad P=E c_{g}
$$

$$
\begin{array}{ll}
E=\frac{1}{2} \rho g A^{2} & \text { (energy density) } \\
c_{g}=n c & \text { (group velocity) }
\end{array}
$$

Wave Power (Appendix A6)

Wave power = (time-averaged) rate of working of pressure forces (pressure \times area \times velocity)
Per unit length of wave crest: \quad power $=\overline{\int_{z=-h}^{\eta} p u \mathrm{~d} z}$
pressure $(p) \times$ area $(1 \times d z) \times$ velocity (u)
$p u=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \times \frac{\operatorname{Agk}}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)$
$=\frac{\rho g^{2} A^{2} k}{\omega} \frac{\cosh ^{2} k(h+z)}{\cosh ^{2} k h} \cos ^{2}(k x-\omega t)$
power $=\frac{\rho g^{2} A^{2} k}{\omega \cosh ^{2} k h} \times \int_{-h}^{0} \cosh ^{2} k(h+z) \mathrm{d} z \times \frac{1}{2}$

$$
\begin{aligned}
& \frac{1}{2} \int_{-h}^{0}(\cosh 2 k(h+z)+1) \mathrm{d} z \\
& =\frac{1}{2}\left[\frac{\sinh 2 k(h+z)}{2 k}+z\right]_{-h}^{0} \\
& =\frac{1}{2}\left(\frac{\sinh 2 k h}{2 k}+h\right)
\end{aligned}
$$

Wave Power

$$
\begin{aligned}
& \text { power }=\frac{\rho g^{2} A^{2} k}{\omega \cosh ^{2} k h} \times \frac{1}{2}\left(\frac{\sinh 2 k h}{2 k}+h\right) \times \frac{1}{2} \\
& \\
& =\frac{1}{2} \rho g A^{2} \times \frac{g k}{\omega \cosh ^{2} k h} \times \frac{\sinh 2 k h}{2 k}\left(1+\frac{2 k h}{\sinh 2 k h}\right) \times \frac{1}{2} \\
& \\
& =\frac{1}{2} \rho g A^{2} \times \frac{g k}{\omega \cosh ^{2} k h} \times \frac{2 \sinh k h \cosh k h}{2 k}\left(1+\frac{2 k h}{\sinh 2 k h}\right) \times \frac{1}{2} \\
& \\
& =\frac{1}{2} \rho g A^{2} \times \frac{g k \tanh k h}{\omega^{2}} \times \frac{1}{2}\left(1+\frac{2 k h}{\sinh 2 k h}\right) \times \frac{\omega}{k} \\
& E \\
& P=E c_{g} \quad c
\end{aligned} \quad \begin{aligned}
& 1 \\
& \text { power } \quad E=\frac{1}{2} \rho g A^{2} \\
& \text { energy density } \quad \text { group velocity }
\end{aligned}
$$

Example

A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s .

Find the wave height, energy density and wave power per metre of crest.

A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s .

Find the wave height, energy density and wave power per metre of crest.

$$
\begin{aligned}
& h=9 \mathrm{~m} \\
& z=-h \quad \text { (sea bed) } \\
& \Delta p_{\text {wave }}=5900 \mathrm{~Pa} \quad \text { (amplitude) } \\
& T=7.5 \mathrm{~s}
\end{aligned}
$$

$$
p_{\mathrm{wave}}=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

$$
E=\frac{1}{2} \rho g A^{2}
$$

$$
P=E c_{g} \quad c_{g}=n c
$$

$$
n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]
$$

$\omega=\frac{2 \pi}{T}=0.8378 \mathrm{rad} \mathrm{s}^{-1}$
$\omega^{2}=g k \tanh k h$
$\frac{\omega^{2} h}{g}=k h \tanh k h$
$k h \tanh k h=0.6440$

$$
\begin{aligned}
& k h=\frac{0.6440}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{0.6440}{\tanh k h}\right) \\
& k h=0.8994 \\
& k=0.09993 \mathrm{~m}^{-1}
\end{aligned}
$$

A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude 5.9 kPa and period 7.5 s .

Find the wave height, energy density and wave power per metre of crest.

$$
\begin{aligned}
& h=9 \mathrm{~m} \\
& Z=-h \quad \text { (sea bed) } \\
& \Delta p_{\text {wave }}=5900 \mathrm{~Pa} \\
& T=7.5 \mathrm{~s} \\
& \omega=0.8378 \mathrm{rad} \mathrm{~s}^{-1} \\
& k h=0.8994 \\
& k=0.09993 \mathrm{~m}^{-1} \\
& 5900=10055 A \times \frac{1}{\cosh 0.8994} \\
& A=0.8405 \mathrm{~m} \\
& H=2 A=\mathbf{1 . 6 8 1} \mathbf{~ m} \\
& E=\frac{1}{2} \rho g A^{2} \quad=\mathbf{3 5 5 2} \mathbf{~ J ~ m}^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& p_{\text {wave }}=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \\
& E=\frac{1}{2} \rho g A^{2} \\
& P=E c_{g} \quad c_{g}=n c \quad n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]
\end{aligned}
$$

$$
\begin{aligned}
& c=\frac{\omega}{k}=8.384 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.8061 \\
& c_{g}=n c=6.758 \mathrm{~m} \mathrm{~s}^{-1} \\
& P=E c_{g}=\mathbf{2 4 0 0 0} \mathbf{~ W ~ m}
\end{aligned}
$$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Particle Motion

Velocity: $\quad u=A \frac{g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \quad=\omega A \frac{\cosh k(h+z)}{\sinh k h} \cos (k x-\omega t)$

$$
w=A \frac{g k}{\omega} \frac{\sinh k(h+z)}{\cosh k h} \sin (k x-\omega t) \quad=\omega A \frac{\sinh k(h+z)}{\sinh k h} \sin (k x-\omega t)
$$

Dispersion relation: $\quad \omega^{2}=g k \tanh k h \quad \rightarrow \quad \frac{\omega}{\sinh k h}=\frac{g k}{\omega \cosh k h}$

$$
\begin{array}{lr}
\frac{\mathrm{d} X}{\mathrm{~d} t}=u \quad=a \omega \cos \left(k X_{0}-\omega t\right) & a=A \frac{\cosh k(h-1}{\sinh k} \\
\frac{\mathrm{~d} Z}{\mathrm{~d} t}=w \quad=b \omega \sin \left(k X_{0}-\omega t\right) & b=A \frac{\sinh k(h+}{\sinh k h} \\
X=X_{0}-a \sin \left(k X_{0}-\omega t\right) & \frac{X-X_{0}}{a}=-\sin \left(k X_{0}-\omega t\right) \\
Z=Z_{0}+b \cos \left(k X_{0}-\omega t\right) & \frac{Z-Z_{0}}{b}=\cos \left(k X_{0}-\omega t\right)
\end{array}
$$

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Particle Motion

$$
\frac{\left(X-X_{0}\right)^{2}}{a^{2}}+\frac{\left(Z-Z_{0}\right)^{2}}{b^{2}}=1
$$

$$
\begin{aligned}
& a=A \frac{\cosh k\left(h+Z_{0}\right)}{\sinh k h} \\
& b=A \frac{\sinh k\left(h+Z_{0}\right)}{\sinh k h}
\end{aligned}
$$

Ellipse, centre (X_{0}, Z_{0}) and semi-axes a and b

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Shallow-Water / Deep-Water Limits

Dispersion relationship:

$$
\omega^{2}=g k \tanh k h \quad k h=2 \pi \frac{h}{L}
$$

Asymptotic behaviour:

$$
\begin{array}{ll}
\tanh k h \sim k h & (\text { as } k h \rightarrow 0) \\
\tanh k h \rightarrow 1 & (\text { as } k h \rightarrow \infty)
\end{array}
$$

Shallow water (or long waves): $\quad k h \ll 1$

$$
\begin{array}{lcc}
\omega^{2} \approx k^{2} g h & \text { or } \quad \omega \approx k \sqrt{g h} & \\
c=c_{g}=\sqrt{g h} & n=1 & \text { (non-dispersive) }
\end{array}
$$

Deep water (or short waves): $\quad k h \gg 1$
$\omega^{2} \approx g k$
$L=\frac{g T^{2}}{2 \pi}$
$c=\frac{L}{T}=\frac{g T}{2 \pi}, \quad n=\frac{1}{2}, \quad c_{g}=\frac{1}{2} c$
(dispersive)

Shallow / Deep Limits

$$
\omega^{2}=g k \tanh k h
$$

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

Shallow:

$$
k h<\frac{\pi}{10}
$$

$h<\frac{1}{20} L$
Deep:
$k h>\pi$
$h>\frac{1}{2} L$

Shallow / Deep Particle Motions

Ellipses:

$$
a=A \frac{\cosh k\left(h+Z_{0}\right)}{\sinh k h},
$$

$$
b=A \frac{\sinh k\left(h+Z_{0}\right)}{\sinh k h}
$$

Deep: $\quad k h \gg 1$

$$
a=b \approx A \mathrm{e}^{-k\left|Z_{0}\right|}
$$

Circles diminishing in size over half a wavelength

Shallow: $\quad k h \ll 1$

$$
a \approx \frac{A}{k h}, \quad \frac{b}{a} \ll 1
$$

Highly-flattened ellipses; horizontal excursion almost independent of depin

Shallow / Deep Pressure

$$
p=-\rho g z-\rho \frac{\partial \phi}{\partial t} \quad=\underbrace{-\rho g z}_{\text {hydrostatic }}+\underbrace{\rho g \eta \frac{\cosh k(h+z)}{\cosh k h}}_{\text {hydrodynamic }}
$$

Deep: $\quad k h \gg 1$

$$
p \approx-\rho g z+\rho g \eta \mathrm{e}^{-k|z|} \quad \text { Perturbation decays over half a wavelength }
$$

Shallow: $k h \ll 1$

$$
p \approx \rho g(\eta-z)
$$

Hydrostatic

Example

(a) Find the deep-water speed and wavelength of a wave of period 12 s .
(b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m . Compare with the shallow-water approximation.

Reminder of Deep and Shallow Limits

$$
\omega^{2}=g k \tanh k h
$$

Deep water:

$$
\begin{aligned}
& k \boldsymbol{h} \rightarrow \infty \\
& \tanh k h \rightarrow 1
\end{aligned}
$$

$$
\omega^{2}=g k
$$

$$
\begin{aligned}
\left(\frac{2 \pi}{T}\right)^{2}=g\left(\frac{2 \pi}{L}\right) & L \\
L & \frac{g T^{2}}{2 \pi} \\
c & =\frac{g T}{2 \pi}
\end{aligned}
$$

Shallow water:

$$
\begin{array}{ll}
\omega^{2}=g k^{2} h \quad\left(\frac{\omega}{k}\right)^{2}=g h & c=\sqrt{g h} \\
L=c T
\end{array}
$$

(a) Find the deep-water speed and wavelength of a wave of period 12 s .
(b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m . Compare with the shallow-water approximation.
$T=12 \mathrm{~s}$
Deep: $\quad c=\frac{g T}{2 \pi}=\mathbf{1 8 . 7 4} \mathbf{m ~ s}^{\mathbf{- 1}} \quad L=\frac{g T^{2}}{2 \pi}=\mathbf{2 2 4 . 8} \mathbf{m}$
Exact, with $h=3 \mathrm{~m}$:

$$
\begin{array}{ll}
\omega=\frac{2 \pi}{T}=0.5236 \mathrm{rad} \mathrm{~s}^{-1} & \omega^{2}=g k \tanh k h \\
\frac{\omega^{2} h}{g}=k h \tanh k h
\end{array}
$$

$k h \tanh k h=0.08384$

$$
k h=\frac{0.08384}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{0.08384}{\tanh k h}\right)
$$

$$
k h=0.2937
$$

$$
k=0.09790 \mathrm{~m}^{-1} \quad c=\frac{\omega}{k}=\mathbf{5 . 3 4 8} \mathrm{m} \mathrm{~s}^{-1} \quad L=\frac{2 \pi}{k}=\mathbf{6 4 . 1 8} \mathrm{m}
$$

Shallow: $\quad c=\sqrt{g h}=5.425 \mathrm{~m} \mathrm{~s}^{-1}$ $L=c T=65.10 \mathrm{~m}$

Linear Wave Theory

1. LINEAR WAVE THEORY

1.1 Main wave parameters
1.2 Dispersion relationship
1.3 Wave velocity and pressure
1.4 Wave energy
1.5 Group velocity
1.6 Energy transfer (wave power)
1.7 Particle motion
1.8 Shallow-water and deep-water behaviour
1.9 Waves on currents

Waves on Currents

- Waves co-exist with background current U
- Formulae hold in relative frame moving with the current:

$$
x_{r}=x-U t
$$

$$
\begin{aligned}
& \eta=A \cos \left(k x_{r}-\omega_{r} t\right) \\
& =A \cos \left[k x-\left(\omega_{r}+k U\right) t\right]=A \cos \left[k x-\omega_{a} t\right] \quad \omega_{a}=\omega_{r}+k U \\
& c_{a}=\frac{\omega_{a}}{k} \quad=c_{r}+U
\end{aligned}
$$

- Dispersion relationship: $\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h$

Example

An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water of depth 12 m . Find the wavelength and absolute phase speed of the waves when there is:
(a) no mean current;
(b) a current of $3 \mathrm{~m} \mathrm{~s}^{-1}$ in the same direction as the waves;
(c) a current of $3 \mathrm{~m} \mathrm{~s}^{-1}$ in the opposite direction to the waves.

An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water of depth 12 m . Find the wavelength and absolute phase speed of the waves when there is:
(a) no mean current;
(b) a current of $3 \mathrm{~m} \mathrm{~s}^{-1}$ in the same direction as the waves;
(c) a current of $3 \mathrm{~m} \mathrm{~s}^{-1}$ in the opposite direction to the waves.

$$
h=12 \mathrm{~m}
$$

$$
\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h
$$

$$
T_{a}=8 \mathrm{~s} \quad \text { (absolute) }
$$

$$
\omega_{a}=\frac{2 \pi}{T_{a}}=0.7854 \mathrm{rad} \mathrm{~s}^{-1}
$$

$$
k=\frac{(0.7854-k U)^{2}}{9.81 \tanh 12 k} \quad \text { or } \quad k=\frac{1}{2}\left[k+\frac{(0.7854-k U)^{2}}{9.81 \tanh 12 k}\right]
$$

	$U=0$	$U=+3 \mathrm{~m} \mathrm{~s}^{-1}$	$U=-3 \mathrm{~m} \mathrm{~s}^{-1}$
	$k=\frac{1}{2}\left[k+\frac{0.7854^{2}}{9.81 \tanh 12 k}\right]$	$k=\frac{1}{2}\left[k+\frac{(0.7854-3 k)^{2}}{9.81 \tanh 12 k}\right]$	$k=\frac{1}{2}\left[k+\frac{(0.7854+3 k)^{2}}{9.81 \tanh 12 k}\right]$
$k\left(\mathrm{~m}^{-1}\right)$	0.08284	0.06024	0.1951
$L(\mathrm{~m})$	$\mathbf{7 5 . 8 5}$	$\mathbf{1 0 4 . 3}$	
$c_{a}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)=\frac{\omega_{a}}{k}$	$\mathbf{9 . 4 8 1}$	$\mathbf{1 3 . 0 4}$	$\mathbf{3 2 . 2 0}$

