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Linear Wave Theory

Single-frequency (“monochromatic”, “regular”) progressive wave on still water:

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡

Linear wave theory:

● aka Airy wave theory

● assume amplitude small (compared with depth and wavelength)
‒ neglect powers and products of wave perturbations
‒ sum of any such wave fields also a solution 
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Amplitude and Height
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● Amplitude 𝐴 is the maximum displacement from still-water level (SWL)

● Wave height 𝐻 is the vertical distance between neighbouring crest and trough

● For sinusoidal waves, 𝑯 = 𝟐𝑨

● For regular waves, formulae more naturally expressed in terms of 𝐴

● For irregular waves, 𝐻 is the more measurable quantity

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡



Wavenumber and Wavelength
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● 𝑘 is the wavenumber

● Wavelength 𝐿 is the horizontal distance over which wave form repeats:

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡

𝐿 =
2π

𝑘
𝑘𝐿 = 2π 



Frequency and Period
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● 𝜔 is the wave angular frequency

● Period 𝑇 is the time over which the wave form repeats:

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡

𝑇 =
2π

𝜔
𝜔𝑇 = 2π 

● The actual frequency 𝑓 (cycles per second, or Hertz) is

𝑓 =
1

𝑇
=

𝜔

2𝜋



Wave Speed
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● 𝑐 is the phase speed or celerity

● 𝑐 is the speed at which the wave form translates

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡 = 𝐴 cos 𝑘 𝑥 −
𝜔

𝑘
𝑡 = 𝐴 cos 𝑘 𝑥 − c𝑡

𝑐 =
𝜔

𝑘

=
𝐿

𝑇

wavelength

period

= 𝑓𝐿 frequency × wavelength



Summary
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𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡Surface elevation:

Wavenumber 𝑘, wavelength 𝐿: 𝐿 =
2π

𝑘

Angular frequency 𝜔, period 𝑇: 𝑇 =
2π

𝜔

Phase speed (celerity) 𝑐: 𝑐 =
𝜔

𝑘
=
𝐿

𝑇



Hyperbolic Functions

sinh 𝑥 ≡
e𝑥 − 𝑒−𝑥

2

cosh 𝑥 ≡
e𝑥 + 𝑒−𝑥

2

tanh 𝑥 ≡
sinh 𝑥

cosh 𝑥



Hyperbolic Functions

Trigonometric-like formulae:

cosh2 𝑥 − sinh2 𝑥 = 1

cosh2𝑥 = cosh2 𝑥 + sinh2 𝑥 = 2 cosh2 𝑥 − 1

sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥

Derivatives:

d

d𝑥
sinh 𝑥 = cosh 𝑥

d

d𝑥
cosh 𝑥 = sinh 𝑥

d

d𝑥
tanh𝑥 = sech2 𝑥

Asymptotic behaviour:

Small 𝑥:

sinh 𝑥 ~ tanh𝑥 ~ 𝑥,

Large 𝑥:

sinh𝑥 ~ cosh 𝑥 ~
1

2
e𝑥,

cosh 𝑥 → 1 as 𝑥 → 0

tanh 𝑥 → 1 as 𝑥 → ∞



Fluid-Flow Equations

Continuity:

Irrotationality:

Time-dependent Bernoulli equation:

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
= 0

or: 𝑢 =
𝜕𝜙

𝜕𝑥
, 𝑤 =

𝜕𝜙

𝜕𝑧
𝜙 is a velocity potential

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶 𝑡 , along a streamline



Continuity

𝑢𝑒Δ𝑧 − 𝑢𝑤Δ𝑧 + 𝑤𝑛Δ𝑥 − 𝑤𝑠Δ𝑥 = 0Net volume outflow:

Divide by Δ𝑥Δ𝑧:
𝑢𝑒 − 𝑢𝑤
Δ𝑥

+
𝑤𝑛 − 𝑤𝑠

Δ𝑧
= 0

Δ𝑢

Δ𝑥
+
Δ𝑤

Δ𝑧
= 0

Δ𝑥, Δ𝑧 → 0:
𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0

ueuw

wn
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Irrotationality

Circulation:

Divide by Δ𝑥Δ𝑧:

Δ𝑥, Δ𝑧 → 0:

weww

un

us

z

x

Pressure forces act normal to surfaces,
so can cause no rotation.

𝑢𝑛Δ𝑥 − 𝑤𝑒Δ𝑧 − 𝑢𝑠Δ𝑥 + 𝑤𝑤Δ𝑧 = 0

𝑢𝑛 − 𝑢𝑠
Δ𝑧

−
𝑤𝑒 − 𝑤𝑤

Δ𝑥
= 0

Δ𝑢

Δ𝑧
−
Δ𝑤

Δ𝑥
= 0

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
= 0



Velocity Potential

The no-circulation condition makes the following 
well-defined:

For any 2-d function:

weww
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d𝜙 = 𝑢 d𝑥 + 𝑤 d𝑧

d𝜙 =
𝜕𝜙

𝜕𝑥
d𝑥 +

𝜕𝜙

𝜕𝑧
d𝑧

The velocity components are the gradient of the velocity potential 𝜙:

𝑢 =
𝜕𝜙

𝜕𝑥
, 𝑤 =

𝜕𝜙

𝜕𝑧

Aim: solve a single scalar equation for 𝜙, then derive everything else from it.



Time-Dependent Bernoulli Equation


U

s

𝜌
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑠
= −

𝜕𝑝

𝜕𝑠
− 𝜌𝑔 sin 𝜃

mass  acceleration = force

sin 𝜃 = Τ𝜕𝑧 𝜕𝑠𝑈 =
𝜕𝜙

𝜕𝑠

𝜌
𝜕2𝜙

𝜕𝑡 𝜕𝑠
+

𝜕

𝜕𝑠
(12𝑈

2) = −
𝜕𝑝

𝜕𝑠
− 𝜌𝑔

𝜕𝑧

𝜕𝑠

𝜕

𝜕𝑠
𝜌
𝜕𝜙

𝜕𝑡
+
1

2
𝜌𝑈2 + 𝑝 + 𝜌𝑔𝑧 = 0

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡), along a streamline

Special case: if steady-state then

𝑝 +
1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶, along a streamline



Recap of Fluid-Flow Equations

Continuity

Velocity potential

Bernoulli equation

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0

𝑢 =
𝜕𝜙

𝜕𝑥
, 𝑤 =

𝜕𝜙

𝜕𝑧

Laplace’s equation

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡)

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= 0



Boundary Conditions

● Kinematic boundary condition: no net flow through boundary

● Dynamic boundary condition: stress continuous at interface

𝑧 = 𝑧surf 𝑥, 𝑡
D

D𝑡
𝑧 − 𝑧surf = 0 on surface

KBC

D

D𝑡
≡

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑤

𝜕

𝜕𝑧

𝑤 −
𝜕𝑧surf
𝜕𝑡

− 𝑢
𝜕𝑧surf
𝜕𝑥

= 0 on the surface

𝑤 =
𝜕𝑧surf
𝜕𝑡

+ 𝑢
𝜕𝑧surf
𝜕𝑥

on 𝑧 = 𝑧surf 𝑥, 𝑡



Boundary Conditions

KBBC – Kinematic Bed Boundary Condition

𝑤 = 0 on 𝑧 = −ℎ

KFSBC – Kinematic Free-Surface Boundary Condition

𝑤 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
on 𝑧 = 𝜂 𝑥, 𝑡

DFSBC – Dynamic Free-Surface Boundary Condition

𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡

L

h

A
H

(x,t)
SWL (z=0)x

z

trough

crest c

bed (z= -h)
𝑤 =

𝜕𝑧surf
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+ 𝑢
𝜕𝑧surf
𝜕𝑥

on 𝑧 = 𝑧surf



Linearised Equations

𝑦 = 𝑎 + 𝑏𝜀 + 𝑐𝜀2 +⋯

● If 𝜀 is small, ignore quadratic and higher powers:

𝑦 = 𝑎 + 𝑏𝜀 +⋯

● Boundary conditions on 𝑧 = 𝜂(𝑥, 𝑡) can be applied on 𝑧 = 0



Boundary Conditions

KBBC – Kinematic Bed Boundary Condition

𝑤 = 0 on 𝑧 = −ℎ

KBBC – Kinematic Free-Surface Boundary Condition

𝑤 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
on 𝑧 = 𝜂 𝑥, 𝑡

DFSBC – Dynamic Free-Surface Boundary Condition

𝑝 = 0 on 𝑧 = 𝜂 𝑥, 𝑡
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𝑤 =
𝜕𝑧surf
𝜕𝑡

+ 𝑢
𝜕𝑧surf
𝜕𝑥

on 𝑧 = 𝑧surf

𝜕𝜙

𝜕𝑧
= 0 on 𝑧 = −ℎ

𝜕𝜙

𝜕𝑧
=
𝜕𝜂

𝜕𝑡
on 𝑧 = 0

𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡)



Summary of Equations and BCs

Laplace’s equation
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= 0

KBBC

KFSBC

DFSBC

𝜕𝜙

𝜕𝑧
= 0 on 𝑧 = −ℎ

𝜕𝜙

𝜕𝑧
=
𝜕𝜂

𝜕𝑡
on 𝑧 = 0

𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0



Solution For Velocity Potential, 𝝓
𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡Surface displacement:

Look for solution by separation of variables: 𝜙 = 𝑋 𝑥, 𝑡 𝑍 𝑧

KFSBC:
𝜕𝜙

𝜕𝑧
=
𝜕𝜂

𝜕𝑡
on 𝑧 = 0 𝑋 ቤ

d𝑍

d𝑧
𝑧=0

= 𝐴𝜔 sin 𝑘𝑥 − 𝜔𝑡

Hence: 𝑋 ∝ sin 𝑘𝑥 − 𝜔𝑡

WLOG: 𝑋 = sin 𝑘𝑥 − 𝜔𝑡 ቤ
d𝑍

d𝑧
𝑧=0

= 𝐴𝜔

Laplace’s equation:
𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= 0 −𝑘2𝑋𝑍 + 𝑋

d2𝑍

d𝑧2
= 0

d2𝑍

d𝑧2
= 𝑘2𝑍

𝑍 = 𝛼e𝑘𝑧 + 𝛽e−𝑘𝑧General solution:



Solution For Velocity Potential, 𝝓

𝑍 = 𝛼e𝑘𝑧 + 𝛽e−𝑘𝑧

So far: 𝜙 = 𝑍 𝑧 sin 𝑘𝑥 − 𝜔𝑡

KFSBC:
d𝑍

d𝑧
= 𝐴𝜔 on 𝑧 = 0

KBBC:
d𝑍

d𝑧
= 0 on 𝑧 = −ℎ

𝑍 =
𝐴𝜔

𝑘

cosh𝑘 ℎ + 𝑧

sinh 𝑘ℎ
Solution:

𝜙 =
𝐴𝜔

𝑘

cosh 𝑘 ℎ + 𝑧

sinh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡



Dispersion Relationship

𝜙 =
𝐴𝜔

𝑘

cosh 𝑘 ℎ + 𝑧

sinh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡

How is wavenumber (𝑘) related to wave angular frequency (𝜔)?

𝜕𝜙

𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡) on 𝑧 = 0DFSBC:

−
𝐴𝜔2

𝑘

cosh 𝑘ℎ

sinh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡 + 𝐴𝑔 cos 𝑘𝑥 − 𝜔𝑡 = 𝐶(𝑡)

LHS has zero space average ... so 𝐶(𝑡) must be zero

−
𝜔2

𝑘

cosh 𝑘ℎ

sinh 𝑘ℎ
+ 𝑔 = 0

𝜔2 = 𝑔𝑘 tanh𝑘ℎ
𝜔

𝑘
=

𝑔

𝜔

sinh𝑘ℎ

cosh 𝑘ℎ

𝜙 =
𝐴𝑔

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡



Summary of Solution

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

𝜙 =
𝐴𝑔

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡Velocity potential:

Dispersion relation:

This is all we need!!!

𝑢 ≡
𝜕𝜙

𝜕𝑥
𝑤 ≡

𝜕𝜙

𝜕𝑧

𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙

𝜕𝑡

Velocity:

Pressure:

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡Surface displacement:
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Dispersion Relationship

𝜔2 = 𝑔𝑘 tanh𝑘ℎ
𝜔2ℎ

𝑔
= 𝑘ℎ tanh𝑘ℎor

𝐿 =
2π

𝑘
𝑇 =

2π

𝜔

𝑐 ≡
𝜔

𝑘
=

𝑔

𝑘
tanh 𝑘ℎ



Variation of Phase Speed With Depth

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

When waves propagate into shallower water:

Period 𝑇 - and hence 𝜔 - are unchanged

Depth ℎ decreases  … so wavenumber 𝑘 increases

Wavelength 𝐿 decreases

Speed 𝑐 decreases This is VERY important !



Solving the Dispersion Relationship
𝜔2 = 𝑔𝑘 tanh𝑘ℎ

1. Know wavelength (𝑳) … find period (𝑻)

𝑘 =
2π

𝐿

𝑇 =
2π

𝜔

Substitute: gives 𝜔



Solving the Dispersion Relationship
𝜔2 = 𝑔𝑘 tanh𝑘ℎ

2. Know period (𝑻) … find wavelength (𝑳)

𝐿 =
2π

𝑘

Rewrite as

𝜔 =
2π

𝑇

𝜔2ℎ

𝑔
= 𝑘ℎ tanh𝑘ℎ 𝑌 = 𝑋 tanh𝑋

𝑋 =
𝑌

tanh𝑋
Iterate or 𝑋 =

1

2
𝑋 +

𝑌

tanh𝑋

Gives 𝑋 = 𝑘ℎ and hence 𝑘



Example

Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.

In each case write down the phase speed (celerity).



Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.
In each case write down the phase speed (celerity).

ℎ = 15 m

𝐿 = 45 m

𝑘 =
2π

𝐿
= 0.1396 m−1

𝜔 = 1.153 rad s−1

𝑇 =
2π

𝜔

𝑐 =
𝜔

𝑘

wavelength:

wavenumber:

angular frequency:

period:

phase speed (celerity):

or
𝐿

𝑇

= 𝟖. 𝟐𝟓𝟗 𝐦 𝐬−𝟏

𝜔2 = 𝑔𝑘 tanh 𝑘ℎ

= 𝟓. 𝟒𝟒𝟗 𝐬



Find, in still water of depth 15 m:
(a) the period of a wave with wavelength 45 m;
(b) the wavelength of a wave with period 8 s.
In each case write down the phase speed (celerity).

ℎ = 15 m

= 𝟖𝟏. 𝟖𝟏 𝐦𝐿 =
2π

𝑘

𝑘 = 0.0768 m−1

= 0.7854 rad s−1𝜔 =
2π

𝑇

𝑐 =
𝜔

𝑘

wavelength:

wavenumber:

angular frequency:

period:

phase speed (celerity): = 𝟏𝟎. 𝟐𝟑 𝐦 𝐬−𝟏

𝜔2 = 𝑔𝑘 tanh 𝑘ℎ

𝑇 = 8 s

𝜔2ℎ

𝑔
= 𝑘ℎ tanh𝑘ℎ

𝑘ℎ tanh𝑘ℎ = 0.9432

𝑘ℎ =
0.9432

tanh 𝑘ℎ
or 𝑘ℎ =

1

2
𝑘ℎ +

0.9432

tanh 𝑘ℎ

𝑘ℎ = 1.152
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Velocity

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡Surface displacement:

Velocity potential: 𝜙 =
𝐴𝑔

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡

𝑢 ≡
𝜕𝜙

𝜕𝑥
=
𝐴𝑔𝑘

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡

𝑤 ≡
𝜕𝜙

𝜕𝑧
=
𝐴𝑔𝑘

𝜔

sinh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡



Pressure

𝜂 = 𝐴 cos 𝑘𝑥 − 𝜔𝑡Surface displacement:

Velocity potential: 𝜙 =
𝐴𝑔

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡

Bernoulli equation:

𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙

𝜕𝑡

𝑝 = −𝜌𝑔𝑧
hydrostatic

+ 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡

)hydrodynamic (i.e. wave

𝜌
𝜕𝜙

𝜕𝑡
+ 𝑝 + 𝜌𝑔𝑧 = 0

= −𝜌𝑔𝑧 + 𝜌𝑔𝜂 ×
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ



Example

A pressure sensor is located 0.6 m above the sea bed
in a water depth ℎ = 12 m. The pressure fluctuates
with period 15 s. A maximum gauge pressure of
124 kPa is recorded.

(a) What is the wave height?

(b) What are the maximum horizontal and vertical
velocities at the surface?



A pressure sensor is located 0.6 m above the sea bed in a water depth ℎ = 12 m. The
pressure fluctuates with period 15 s. A maximum gauge pressure of 124 kPa is recorded.
(a) What is the wave height?

𝑝 = −𝜌𝑔𝑧 + 𝜌𝑔𝐴
cosh𝑘 ℎ + 𝑧

cosh𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)ℎ = 12 m

𝑧 = −11.4 m

𝑇 = 15 s

𝑝max = 124000 Pa 124000 = 114630 + 10060𝐴
cosh(𝑘 × 0.6)

cosh 𝑘ℎ

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

𝑘 = 0.04005 m−1

= 0.4189 rad s−1𝜔 =
2π

𝑇

𝜔2ℎ

𝑔
= 𝑘ℎ tanh 𝑘ℎ

𝑘ℎ tanh𝑘ℎ = 0.2147

𝑘ℎ =
0.2147

tanh 𝑘ℎ or 𝑘ℎ =
1

2
𝑘ℎ +

0.2147

tanh 𝑘ℎ

𝑘ℎ = 0.4806

124000 = 114630 + 10060𝐴 × 0.8949

𝐴 = 1.041 m

𝐻 = 2𝐴 = 𝟐. 𝟎𝟖𝟐𝐦



(b) What are the maximum horizontal and vertical velocities at the surface?

𝑧 = 0

𝑘 = 0.04005 m−1

𝜔 = 0.4189 rad s−1

𝑘ℎ = 0.4806

𝑢 =
𝐴𝑔𝑘

𝜔

cosh 𝑘 ℎ + 𝑧

cosh𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡

𝑤 =
𝐴𝑔𝑘

𝜔

sinh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
sin 𝑘𝑥 − 𝜔𝑡

𝐴 = 1.041 m

𝑢max =
𝐴𝑔𝑘

𝜔

𝑤max =
𝐴𝑔𝑘

𝜔
tanh 𝑘ℎ

= 𝟎. 𝟗𝟕𝟔𝟒𝐦 𝐬−𝟏

= 𝟎. 𝟒𝟑𝟔𝟐𝐦 𝐬−𝟏

(surface)
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Wave Energy
● Wave energy density 𝐸 is average energy per unit horizontal area.

● Found by integrating over the water column, and averaging over a wave cycle.

● Kinetic energy:

● Potential energy:

● (Under linear theory) average wave-related KE and PE are the same.

● Total energy:
𝐸 =

1

2
𝜌𝑔𝐴2 =

1

8
𝜌𝑔𝐻2

KE = න
𝑧=−ℎ

𝜂 1

2
𝜌 𝑢2 + 𝑤2 d𝑧 =

1

4
𝜌𝑔𝐴2

PE = න
𝑧=−ℎ

𝜂

𝜌𝑔𝑧 d𝑧 =
1

4
𝜌𝑔𝐴2 + constant



Kinetic Energy (Appendix A4)
KE =

1

2
𝜌න

𝑧=−ℎ

𝜂

𝑢2 + 𝑤2 d𝑧

𝑢2 + 𝑤2 =
𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

cosh2 𝑘 ℎ + 𝑧 cos2 𝑘𝑥 − 𝜔𝑡 + sinh2 𝑘 ℎ + 𝑧 sin2 𝑘𝑥 − 𝜔𝑡

KE =
1

2
𝜌න

𝑧=−ℎ

0

𝑢2 + 𝑤2 d𝑧

=
1

2
𝜌

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

×
1

2
න
−ℎ

0

cosh 2𝑘 ℎ + 𝑧 d𝑧

=
1

2
𝜌

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

×
1

2

sinh 2𝑘 ℎ + 𝑧

2𝑘
−ℎ

0

=
1

2
𝜌

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

×
1

2
×
sinh 2𝑘ℎ

2𝑘

=
1

2
𝜌

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

×
1

2
×
2 sinh 𝑘ℎ cosh 𝑘ℎ

2𝑘

=
1

4

𝜌𝐴2𝑔2𝑘 tanh 𝑘ℎ

𝜔2
𝜔2 = 𝑔𝑘 tanh 𝑘ℎ

KE =
1

4
𝜌𝑔𝐴2

=
1

2
𝜌

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ

2

×
1

2
න
−ℎ

0

cosh2 𝑘 ℎ + 𝑧 + sinh2 𝑘(ℎ + 𝑧) d𝑧



Potential Energy (Appendix A4)

PE = න
𝑧=−ℎ

𝜂

𝜌𝑔𝑧 d𝑧

=
1

2
𝜌𝑔 𝑧2 −ℎ

𝜂

PE =
1

4
𝜌𝑔𝐴2

=
1

2
𝜌𝑔(𝜂2 − ℎ2)

PE =
1

2
𝜌𝑔 ×

1

2
𝐴2

Only the wave component is needed

=
1

2
𝜌𝑔(𝐴2 cos2 𝑘𝑥 − 𝜔𝑡 + constant)
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Phase and Group Velocities

Phase velocity 𝑐 ≡
𝜔

𝑘

– velocity at which the waveform translates

– really only meaningful for a regular wave, or single 
frequency component

Group velocity 𝑐𝑔 ≡
d𝜔

d𝑘
– velocity at which energy propagates

– more appropriate for a wave packet comprised of 
multiple frequency components



Combination of Frequency Components

𝜂 = 𝑎 cos (𝑘 + Δ𝑘)𝑥 − (𝜔 + Δ𝜔)𝑡
component 1

+ 𝑎 cos (𝑘 − Δ𝑘)𝑥 − (𝜔 − Δ𝜔)𝑡
component 2

Amplitude modulation:

𝜂 = 2𝑎 cos 𝑘𝑥 − 𝜔𝑡 cos Δ𝑘. 𝑥 − Δ𝜔. 𝑡

Two components: frequencies ω± Δω and wavenumbers 𝑘 ± Δ𝑘

𝐴 𝑡 = 2𝑎 cos Δ𝑘 𝑥 − Δ𝜔 𝑡

Speed of amplitude envelope:
Δ𝜔

Δ𝑘

Group velocity 𝑐𝑔 ≡
d𝜔

d𝑘

cos 𝛼 + cos 𝛽 = 2 cos
𝛼 + 𝛽

2
cos

𝛼 − 𝛽

2



Group Velocity (Appendix A5)

Group velocity 𝑐𝑔 ≡
d𝜔

d𝑘

Dispersion relation 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ

2𝜔
d𝜔

d𝑘
= 𝑔 tanh 𝑘ℎ + 𝑔𝑘ℎ sech2 𝑘ℎ

=
𝜔2

𝑘
+

𝜔2

tanh𝑘ℎ

ℎ

cosh2 𝑘ℎ

=
𝜔2

𝑘
1 +

𝑘ℎ

sinh 𝑘ℎ cosh𝑘ℎ

d𝜔

d𝑘
=
1

2
1 +

2𝑘ℎ

sinh 2𝑘ℎ

𝜔

𝑘

𝑐𝑔 = 𝑛𝑐 𝑐 ≡
𝜔

𝑘
𝑛 =

1

2
1 +

2𝑘ℎ

sinh2𝑘ℎ

1
2
< 𝑛 < 1 group velocity < phase velocity 



1. LINEAR WAVE THEORY

1.1 Main wave parameters

1.2 Dispersion relationship

1.3 Wave velocity and pressure

1.4 Wave energy

1.5 Group velocity

1.6 Energy transfer (wave power)

1.7 Particle motion

1.8 Shallow-water and deep-water behaviour

1.9 Waves on currents

Linear Wave Theory



Wave Power

𝑃 = 𝐸𝑐𝑔

𝐸 =
1

2
𝜌𝑔𝐴2

𝑐𝑔 = 𝑛𝑐

(energy density)

Power

(group velocity)

Wave power 𝑃 is the (average) rate of energy transfer per unit length of wave crest. 

It can be calculated from the rate of working of pressure forces.



Wave Power (Appendix A6)
Wave power = (time-averaged) rate of working of pressure forces (pressure  area  velocity)

Per unit length of wave crest: power = න
𝑧=−ℎ

𝜂

𝑝𝑢 d𝑧

𝑝𝑢 = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡 ×

𝐴𝑔𝑘

𝜔

cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos 𝑘𝑥 − 𝜔𝑡

=
𝜌𝑔2𝐴2𝑘

𝜔

cosh2 𝑘 ℎ + 𝑧

cosh2 𝑘ℎ
cos2 𝑘𝑥 − 𝜔𝑡

power =
𝜌𝑔2𝐴2𝑘

𝜔 cosh2 𝑘ℎ
×න

−ℎ

0

cosh2 𝑘 ℎ + 𝑧 d𝑧 ×
1

2
1

2
න
−ℎ

0

cosh 2𝑘 ℎ + 𝑧 + 1 d𝑧

=
1

2

sinh 2𝑘 ℎ + 𝑧

2𝑘
+ 𝑧

−ℎ

0

=
1

2

sinh 2𝑘ℎ

2𝑘
+ ℎ

pressure (𝑝)  area (1 × 𝑑𝑧)  velocity (𝑢)



Wave Power

power =
𝜌𝑔2𝐴2𝑘

𝜔 cosh2 𝑘ℎ
×
1

2

sinh 2𝑘ℎ

2𝑘
+ ℎ ×

1

2

=
1

2
𝜌𝑔𝐴2 ×

𝑔𝑘

𝜔 cosh2 𝑘ℎ
×
sinh 2𝑘ℎ

2𝑘
1 +

2𝑘ℎ

sinh 2𝑘ℎ
×
1

2

=
1

2
𝜌𝑔𝐴2 ×

𝑔𝑘

𝜔 cosh2 𝑘ℎ
×
2 sinh 𝑘ℎ cosh 𝑘ℎ

2𝑘
1 +

2𝑘ℎ

sinh 2𝑘ℎ
×
1

2

=
1

2
𝜌𝑔𝐴2 ×

𝑔𝑘 tanh 𝑘ℎ

𝜔2
×
1

2
1 +

2𝑘ℎ

sinh 2𝑘ℎ
×
𝜔

𝑘

𝐸 1 𝑛 𝑐

𝑃 = 𝐸𝑐𝑔 𝐸 =
1

2
𝜌𝑔𝐴2 𝑐𝑔 = 𝑛𝑐

energy densitypower group velocity



Example

A sea-bed pressure transducer in 9 m of water
records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.

Find the wave height, energy density and wave
power per metre of crest.



A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.
Find the wave height, energy density and wave power per metre of crest.

𝑝wave = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)

ℎ = 9 m

𝑧 = −ℎ

𝑇 = 7.5 s

Δ𝑝wave = 5900 Pa

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

𝑘 = 0.09993 m−1

= 0.8378 rad s−1𝜔 =
2π

𝑇

𝜔2ℎ

𝑔
= 𝑘ℎ tanh 𝑘ℎ

𝑘ℎ tanh𝑘ℎ = 0.6440

𝑘ℎ =
0.6440

tanh 𝑘ℎ
or 𝑘ℎ =

1

2
𝑘ℎ +

0.6440

tanh 𝑘ℎ

𝑘ℎ = 0.8994

(sea bed)

𝐸 =
1

2
𝜌𝑔𝐴2

𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 =
1

2
1 +

2𝑘ℎ

sinh2𝑘ℎ

(amplitude)



A sea-bed pressure transducer in 9 m of water records a sinusoidal signal with amplitude
5.9 kPa and period 7.5 s.
Find the wave height, energy density and wave power per metre of crest.

ℎ = 9 m
𝑧 = −ℎ

𝑇 = 7.5 s

Δ𝑝wave = 5900 Pa

5900 = 10055𝐴 ×
1

cosh0.8994

𝑘 = 0.09993 m−1

𝜔 = 0.8378 rad s−1

𝑘ℎ = 0.8994

𝐻 = 2𝐴 = 𝟏. 𝟔𝟖𝟏 𝐦

(sea bed)

𝐸 =
1

2
𝜌𝑔𝐴2

𝑃 = 𝐸𝑐𝑔 𝑐𝑔 = 𝑛𝑐 𝑛 =
1

2
1 +

2𝑘ℎ

sinh2𝑘ℎ

𝑝wave = 𝜌𝑔𝐴
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)

𝐴 = 0.8405 m

𝐸 =
1

2
𝜌𝑔𝐴2 = 𝟑𝟓𝟓𝟐 𝐉 𝐦−𝟐

𝑐 =
𝜔

𝑘
= 8.384 m s−1

𝑛 =
1

2
1 +

2𝑘ℎ

sinh 2𝑘ℎ
= 0.8061

𝑐𝑔 = 𝑛𝑐 = 6.758 m s−1

𝑃 = 𝐸𝑐𝑔 = 𝟐𝟒𝟎𝟎𝟎𝐖𝐦−𝟏
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Particle Motion

= 𝜔𝐴
cosh𝑘 ℎ + 𝑧

sinh 𝑘ℎ
cos 𝑘𝑥 − ω𝑡Velocity:

𝑤 = 𝐴
𝑔𝑘

𝜔

sinh 𝑘 ℎ + 𝑧

cosh𝑘ℎ
sin 𝑘𝑥 − ω𝑡

Dispersion relation: 𝜔2 = 𝑔𝑘 tanh𝑘ℎ →
𝜔

sinh𝑘ℎ
=

𝑔𝑘

𝜔 cosh𝑘ℎ

d𝑋

d𝑡
= 𝑢

d𝑍

d𝑡
= 𝑤

𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0

sinh𝑘ℎ

𝑏 = 𝐴
sinh 𝑘 ℎ + 𝑍0

sinh 𝑘ℎ

𝑋 = 𝑋0 − 𝑎 sin 𝑘𝑋0 − 𝜔𝑡

𝑍 = 𝑍0 + 𝑏 cos 𝑘𝑋0 − 𝜔𝑡

sin2 𝜃 + cos2 𝜃 = 1

𝑋 − 𝑋0
𝑎

= −sin 𝑘𝑋0 −𝜔𝑡

𝑍 − 𝑍0
𝑏

= cos 𝑘𝑋0 − 𝜔𝑡

= 𝑎𝜔 cos 𝑘𝑋0 − ω𝑡

= 𝑏𝜔 sin 𝑘𝑋0 − ω𝑡

𝑢 = 𝐴
𝑔𝑘

𝜔

cosh𝑘 ℎ + 𝑧

cosh𝑘ℎ
cos 𝑘𝑥 − ω𝑡

= 𝜔𝐴
sinh 𝑘 ℎ + 𝑧

sinh 𝑘ℎ
sin 𝑘𝑥 − ω𝑡



Particle Motion

𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0

sinh𝑘ℎ

𝑏 = 𝐴
sinh𝑘 ℎ + 𝑍0

sinh𝑘ℎ

𝑋 − 𝑋0
2

𝑎2
+

𝑍 − 𝑍0
2

𝑏2
= 1

Ellipse, centre (𝑋0, 𝑍0) and semi-axes 𝑎 and 𝑏

deep water intermediate depth shallow water
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Shallow-Water / Deep-Water Limits

Dispersion relationship: 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ

Asymptotic behaviour: )tanh 𝑘ℎ~𝑘ℎ (as 𝑘ℎ → 0

)tanh 𝑘ℎ → 1 (as 𝑘ℎ → ∞

Shallow water (or long waves): 𝑘ℎ ≪ 1

𝜔2 ≈ 𝑘2𝑔ℎ

𝑐 = 𝑐𝑔 = 𝑔ℎ (non-dispersive)

Deep water (or short waves): 𝑘ℎ ≫ 1

𝜔2 ≈ 𝑔𝑘

𝐿 =
𝑔𝑇2

2π

𝑐 =
𝐿

𝑇
=
𝑔𝑇

2π
, 𝑛 =

1

2
, 𝑐𝑔 =

1

2
𝑐 (dispersive)

𝑛 = 1

𝑘ℎ = 2π
ℎ

𝐿

𝜔 ≈ 𝑘 𝑔ℎor



Shallow / Deep Limits

Deep:

𝑘ℎ <
𝜋

10
ℎ <

1

20
𝐿Shallow:

𝑘ℎ > π ℎ >
1

2
𝐿

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

𝜔2ℎ

𝑔
= 𝑘ℎ tanh 𝑘ℎ



Shallow / Deep Particle Motions

𝑎 = 𝐴
cosh 𝑘 ℎ + 𝑍0

sinh 𝑘ℎ
, 𝑏 = 𝐴

sinh𝑘 ℎ + 𝑍0
sinh𝑘ℎ

Ellipses:

deep water intermediate depth shallow water

Deep:

Shallow:

𝑘ℎ ≫ 1

𝑎 = 𝑏 ≈ 𝐴e−𝑘 𝑍0 Circles diminishing in size over half 
a wavelength 

𝑘ℎ ≪ 1

𝑎 ≈
𝐴

𝑘ℎ
,

𝑏

𝑎
≪ 1

Highly-flattened ellipses; horizontal 
excursion almost independent of depth



Shallow / Deep Pressure

Deep:

Shallow:

𝑘ℎ ≫ 1

Perturbation decays over half a wavelength 

𝑘ℎ ≪ 1

𝑝 = −𝜌𝑔𝑧 − 𝜌
𝜕𝜙

𝜕𝑡
= −𝜌𝑔𝑧

hydrostatic

+ 𝜌𝑔𝜂
cosh 𝑘 ℎ + 𝑧

cosh 𝑘ℎ
hydrodynamic

𝑝 ≈ −𝜌𝑔𝑧 + 𝜌𝑔𝜂e−𝑘 𝑧

)𝑝 ≈ 𝜌𝑔(𝜂 − 𝑧 Hydrostatic



Example

(a) Find the deep-water speed and wavelength of a
wave of period 12 s.

(b) Find the speed and wavelength of a wave of
period 12 s in water of depth 3 m. Compare with
the shallow-water approximation.



𝜔2 = 𝑔𝑘 tanh𝑘ℎ

Deep water:

𝑘𝒉 → ∞

tanh𝑘ℎ → 1

𝜔2 = 𝑔𝑘 2π

𝑇

2

= 𝑔
2π

𝐿
𝐿 =

𝑔𝑇2

2π

𝑐 =
𝑔𝑇

2π

Shallow water:

𝑘𝒉 → 𝟎

tanh𝑘ℎ~𝑘ℎ

𝜔2 = 𝑔𝑘2ℎ
𝜔

𝑘

2

= 𝑔ℎ

𝐿 = 𝑐𝑇

𝑐 = 𝑔ℎ

Reminder of Deep and Shallow Limits



(a) Find the deep-water speed and wavelength of a wave of period 12 s.
(b) Find the speed and wavelength of a wave of period 12 s in water of depth 3 m. Compare

with the shallow-water approximation.

Deep:

𝑇 = 12 s

𝑐 =
𝑔𝑇

2π
= 𝟏𝟖. 𝟕𝟒 𝐦 𝐬−𝟏 𝐿 =

𝑔𝑇2

2π
= 𝟐𝟐𝟒. 𝟖 𝐦

Exact, with ℎ = 3 m:

𝜔2 = 𝑔𝑘 tanh𝑘ℎ

𝑐 =
𝜔

𝑘

= 0.5236 rad s−1𝜔 =
2π

𝑇

𝜔2ℎ

𝑔
= 𝑘ℎ tanh 𝑘ℎ

𝑘ℎ tanh 𝑘ℎ = 0.08384

𝑘ℎ =
0.08384

tanh𝑘ℎ
or 𝑘ℎ =

1

2
𝑘ℎ +

0.08384

tanh 𝑘ℎ

𝑘ℎ = 0.2937

𝑘 = 0.09790 m−1 = 𝟓. 𝟑𝟒𝟖𝐦 𝐬−𝟏 𝐿 =
2π

𝑘
= 𝟔𝟒. 𝟏𝟖 𝐦

Shallow: 𝑐 = 𝑔ℎ = 𝟓. 𝟒𝟐𝟓 𝐦 𝐬−𝟏 𝐿 = 𝑐𝑇 = 𝟔𝟓. 𝟏𝟎 𝐦



1. LINEAR WAVE THEORY

1.1 Main wave parameters

1.2 Dispersion relationship

1.3 Wave velocity and pressure

1.4 Wave energy

1.5 Group velocity

1.6 Energy transfer (wave power)

1.7 Particle motion

1.8 Shallow-water and deep-water behaviour

1.9 Waves on currents

Linear Wave Theory



Waves on Currents

● Waves co-exist with background current 𝑈

● Formulae hold in relative frame moving with the current:  

𝑥𝑟 = 𝑥 − 𝑈𝑡

𝜂 = 𝐴 cos 𝑘𝑥𝑟 − 𝜔𝑟𝑡

= 𝐴 cos 𝑘𝑥 − 𝜔𝑟 + 𝑘𝑈 𝑡

= 𝑐𝑟 + 𝑈

𝜔𝑎 = 𝜔𝑟 + 𝑘𝑈

● Dispersion relationship: 𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟
2 = 𝑔𝑘 tanh𝑘ℎ

𝑐𝑎 =
𝜔𝑎
𝑘

= 𝐴 cos 𝑘𝑥 − 𝜔𝑎𝑡



Example

An acoustic depth sounder indicates regular surface waves with
apparent period 8 s in water of depth 12 m. Find the wavelength
and absolute phase speed of the waves when there is:

(a) no mean current;

(b) a current of 3 m s–1 in the same direction as the waves;

(c) a current of 3 m s–1 in the opposite direction to the waves.



An acoustic depth sounder indicates regular surface waves with apparent period 8 s in water
of depth 12 m. Find the wavelength and absolute phase speed of the waves when there is:
(a) no mean current;
(b) a current of 3 m s–1 in the same direction as the waves;
(c) a current of 3 m s–1 in the opposite direction to the waves.

ℎ = 12 m

𝑇𝑎 = 8 s (absolute)

𝜔𝑎 =
2π

𝑇𝑎

𝜔𝑎 − 𝑘𝑈 2 = 𝜔𝑟
2 = 𝑔𝑘 tanh𝑘ℎ

𝑘 =
0.7854 − 𝑘𝑈 2

9.81 tanh12𝑘
𝑘 =

1

2
𝑘 +

0.7854 − 𝑘𝑈 2

9.81 tanh12𝑘
or

𝑈 = 0

0.08284

=
𝜔𝑎
𝑘

=
2π

𝑘
𝟕𝟓. 𝟖𝟓

𝟗. 𝟒𝟖𝟏

𝑈 = +3 m s−1

0.06024

𝟏𝟎𝟒. 𝟑

𝟏𝟑. 𝟎𝟒

𝑈 = −3 m s−1

0.1951

𝟑𝟐. 𝟐𝟎

𝟒. 𝟎𝟐𝟔

= 0.7854 rad s−1

𝑘 (m−1)

𝐿 (m)

𝑐𝑎 (m s−1)

𝑘 =
1

2
𝑘 +

0.78542

9.81 tanh 12𝑘
𝑘 =

1

2
𝑘 +

0.7854 − 3𝑘 2

9.81 tanh 12𝑘
𝑘 =

1

2
𝑘 +

0.7854 + 3𝑘 2

9.81 tanh 12𝑘
Iteration:
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