Sediment Transport

- Most natural channels have mobile beds
- Sufficiently vigorous fluid motions can stir these into motion
- Many rivers carry a large sediment load (e.g. Yellow River)
- Most mobile beds are in **dynamic equilibrium**:
 - sediment in = sediment out ... on average
- This equilibrium can be seriously disturbed by
 - short-term extreme events (storms; floods)
 - man-made infrastructure (dams; coastal defences)

Bridge Scour

Sediment Transport

Basic questions:

- Does sediment transport occur? (Threshold of motion).
- If so, then at what rate? (Sediment load)
- What net effect does it have on the bed? (Scour/accretion)

Main types of sediment load (volume of sediment per second):

- Bed load
- Suspended load

The combination is total load

Classical Bedforms

Relevant Properties

• Particle

- Diameter, d
- Specific gravity, $s = \rho_s / \rho$
- Settling velocity, w_s
- Porosity, P
- Angle of repose, ϕ

• Fluid

- Density, ρ
- Kinematic viscosity, ν

• Flow

- Bed shear stress, au_b
- Mean-velocity profile, U(z)
- Eddy-viscosity profile, $v_t(z)$

Inception of Motion

- Inception and magnitude of **bed-load** depends on:
 - bed shear stress τ_b
 - particle diameter d and specific gravity s

- Inception of **suspended load** depends on ratio of:
 - settling velocity w_s
 - typical turbulent velocity (friction velocity u_{τ})

Particle Properties: Diameter *d*

Various types:

- sieve diameter
- sedimentation diameter
- nominal diameter

Туре	Diameter
Boulders	> 256 mm
Cobbles	64 mm – 256 mm
Gravel	2 mm – 64 mm
Sand	0.06 mm – 2 mm
Silt	0.002 mm – 0.06 mm
Clay	< 0.002 mm (cohesive)

In practice, there is a range of diameters (typically, lognormally distributed).

Particle Properties: Specific Gravity S

$$s = \frac{\rho_s}{\rho}$$

Quartz-like:
$$\rho_s \approx 2650 \text{ kg m}^{-3}$$
, $s \approx 2.65$
Anthracite: $\rho_s \approx 1500 \text{ kg m}^{-3}$, $s \approx 1.50$

Particle Properties: Settling Velocity *w*_s

Used to determine onset and distribution of suspended load.

• Terminal velocity in still fluid.
drag = weight – buoyancy

$$c_D(\frac{1}{2}\rho w_s^2)(\frac{\pi d^2}{4}) = (\rho_s - \rho)g\frac{\pi d^3}{6}$$

 $w_s = \left(\frac{4}{3}\frac{(s-1)gd}{c_D}\right)^{1/2}$
 $c_D = f(\text{Re}), \quad \text{Re} = \frac{w_s d}{v}$
Small particles (Stokes' Law):
 $c_D = \frac{24}{\text{Re}}$
 $w_s = \frac{1}{18}\frac{(s-1)gd^2}{v}$
 $\frac{w_s d}{v} = \frac{1}{18}\frac{(s-1)gd^3}{v^2} = \frac{1}{18}d^{*3}$
 $d^* = d\left(\frac{(s-1)g}{v^2}\right)^{1/3}$
Realistic sizes and shapes:
 $\frac{w_s d}{v} = [(25 + 1.2d^{*2})^{1/2} - 5]^{3/2}$

Particle Properties: Porosity P

Porosity = fraction of voids (by volume)

Typical uncompacted sediment: $P \approx 0.4$.

Particle Properties: Angle of Repose ϕ

Angle of repose = limiting angle of slope (in still fluid)

Effective **coefficient of friction** $\mu_f = \tan \phi$

Can be used to estimate the effect of slopes on incipient motion

Flow Properties: Bed Friction

Bed shear stress τ_b

- Drag (per unit area) of flow on granular bed.
- Determines inception and magnitude of bed load.

Friction velocity u_{τ}

• Defined (on dimensional grounds) by:

$$au_b =
ho u_{ au}^2$$
 or $u_{ au} = \sqrt{ au_b/
ho}$

Determines inception and magnitude of suspended load.

Flow Properties: Mean-Velocity Profile

- u_{τ} = friction velocity;
- κ = von Kármán's constant (≈ 0.41);
- z = distance from boundary;
- k_s = roughness height (1.0 to 2.5 times particle diameter).

Flow Properties: Eddy-Viscosity Profile

A model for the effective shear stress τ in a turbulent flow:

$$au = \mu_t \frac{\mathrm{d}U}{\mathrm{d}z}$$
 or $au = \rho v_t \frac{\mathrm{d}U}{\mathrm{d}z}$

 μ_t and ν_t are the dynamic and kinematic **eddy viscosities**.

At the bed: $\tau = \tau_b \equiv \rho u_\tau^2$ At the free surface: $\tau = 0$ Assuming linear: $\tau = \rho u_\tau^2 (1 - z/h)$

From stress and mean-velocity profiles:

$$v_t = \kappa u_\tau z (1 - z/h)$$

$$\rho u_{\tau}^2 (1 - z/h) = \rho v_t \frac{u_{\tau}}{\kappa z}$$

Formulae For Bed Shear Stress

Normal flow:
$$\tau_b = \rho g R_h S$$

Manning's formula:

Strickler's formula:

$$V = \frac{1}{n} R_h^{2/3} S^{1/2} \quad \text{(gives } R_h \text{ from } V \text{ or } Q\text{)}$$
$$n = \frac{d^{1/6}}{21.1}$$

Typical values: $n \approx 0.01$ to 0.035 m^{-1/3} s

Via a **friction coefficient**:
$$\tau_b = c_f(\frac{1}{2}\rho V^2)$$

Fully-developed boundary layer (log-law): c

$$c_f = \frac{0.34}{[\ln(12h/k_s)]^2}$$

n n l

Typical values: $c_f \approx 0.003$ to 0.01

Threshold of Motion

A mobile bed starts to move once the bed stress exceeds a critical stress τ_{crit} .

Simple model:

critical stress × representative area = friction coefficient × normal reaction

$$\tau_{\rm crit} \times c \frac{\pi d^2}{4} = \mu_{\rm frict} \times (\rho_s - \rho)g \frac{\pi d^3}{6}$$

$$\frac{\tau_{\rm crit}}{(\rho_s - \rho)gd} = \frac{2\mu_{\rm frict}}{3c}$$

 $\frac{\tau_{\text{crit}}}{(\rho_s - \rho)gd} = \text{dimensionless function of particle shape and size}$

Shields' Diagram (A.F. Shields, 1936)

Dimensionless groups:

$$\tau^* = \frac{\tau_b}{(\rho_s - \rho)gd}$$

Shields parameter or Shields stress

particle Reynolds number

But this is not helpful in finding the critical τ ... because that also appears on the RHS (via u_{τ})

Critical Stress

2 dimensionless groups:

$$\Pi_{1} = \frac{\tau_{b}}{(\rho_{s} - \rho)gd} \qquad (\tau^{*}) \qquad \Pi_{2} = \frac{u_{\tau}d}{\nu} = \frac{(\sqrt{\tau_{b}/\rho})d}{\nu} \qquad (\operatorname{Re}_{p})$$

$$= \frac{1}{2} \int_{-\infty}^{1/3} \left(\frac{(1-1)g}{2} \right)^{1/3} - \left[\frac{(s-1)g}{2} \right]^{1/3} d \qquad \dots \text{ call this } d^{*}$$

Replace
$$\Pi_2$$
 by $\Pi'_2 = \left(\frac{\Pi_2^2}{\Pi_1}\right)^T = \left[\frac{(s-1)g}{\nu^2}\right]^T d$... call this d^*

Finding the Threshold of Motion

Curve fit (Soulsby):

$$\tau_{\rm crit}^* = \frac{0.30}{1 + 1.2d^*} + 0.055 \left[1 - \exp(-0.020d^*)\right]$$

Example

An undershot sluice is placed in a channel with a horizontal bed covered by gravel with a median diameter of 5 cm and density 2650 kg m⁻³. The flow rate is 4 m³ s⁻¹ per metre width and initially the depth below the sluice is 0.5 m.

Assuming a critical Shields parameter τ_{crit}^* of 0.06 and friction coefficient c_f of 0.01:

- (a) find the depth just upstream of the sluice and show that the bed there is stationary;
- (b) show that the bed below the sluice will erode and determine the depth of scour.

Example

A long rectangular channel contracts smoothly from 5 m width to 3 m width for a region near its midpoint. The bed is composed of gravel with a median grain size of 10 mm and density 2650 kg m⁻³. The friction coefficient c_f is 0.01 and the critical Shields parameter is 0.05. If the flow rate is 5 m³ s⁻¹ and the upstream depth is 1 m:

- (a) show that the bed is stationary in the 5 m width and mobile in the 3 m width by assuming that the bed is initially flat;
- (b) determine the depth of the scour hole which results just after the contraction.

Inception of Motion in Normal Flow

Assume:

coarse sediment:
$$\frac{\tau_b}{(\rho_c - \rho)ad}$$

$$\frac{c_b}{(\rho_s - \rho)gd} > 0.056$$

normal flow:

$$\tau_b = \rho g R_h S$$

Mobile if _

$$\frac{R_h S}{(\rho_s/\rho - 1)} > 0.056 d$$

D C

For sand: $d < 10.8R_hS$

Effect of Slopes

Gravitational forces may oppose or assist the initiation of motion

$$\tau_{\rm crit} = \frac{\sin(\phi + \beta)}{\sin \phi} \tau_{\rm crit,0} \qquad (\beta \text{ positive for upslope flow})$$

On side slopes the gravitational force always favours motion:

$$\tau_{\rm crit} = \cos\beta \sqrt{1 - \frac{\tan^2\beta}{\tan^2\phi}} \ \tau_{\rm crit,0}$$

Bed Load

- Bed load consists of particles sliding, rolling or saltating, but remaining essentially in contact with the bed
- It is the dominant form of sediment transport for larger particles (settling velocity too large for suspension)
- The bed-load flux q_b is the volume of non-suspended sediment crossing unit width of bed per unit time.

Dimensional Analysis

Variable	Symbol	Dimensions
Bed load flux	${\boldsymbol{q}}_b$	L ² T ⁻¹
Bed shear stress	$ au_b$	ML ⁻¹ T ⁻²
Reduced gravity	(s-1)g	LT ⁻²
Particle diameter	d	L
Density	ho	ML ⁻³
Kinematic viscosity	ν	L ² T ⁻¹

6 variables, 3 dimensions \Rightarrow 3 dimensionless groups

3 scales: ρ , (s-1)g, d

$$\Pi_1 = \frac{q_b}{\sqrt{(s-1)gd^3}} \qquad \qquad \Pi_2 = \frac{\tau_b}{\rho(s-1)gd}$$

$$\Pi_{3} = \frac{\nu}{\sqrt{(s-1)gd^{3}}}$$
$$\Pi_{3}' = \frac{1}{\Pi_{3}^{2/3}} = d \left[\frac{(s-1)g}{\nu^{2}} \right]^{1/3}$$

Dimensionless Groups

$$q^* = \frac{q_b}{\sqrt{(s-1)gd^3}}$$

dimensionless bed-load flux

$$\tau^* = \frac{\tau_b}{\rho(s-1)gd}$$

dimensionless bed shear stress (Shields parameter)

$$d^* = d \left[\frac{(s-1)g}{v^2} \right]^{1/3}$$

dimensionless particle diameter

Bed-Load Models

Reference	Formula
Meyer-Peter and Müller (1948)	$q^* = 8(\tau^* - \tau^*_{\rm crit})^{3/2}$
Nielsen (1992)	$q^* = 12(\tau^* - \tau^*_{\rm crit})\sqrt{\tau^*}$
Van Rijn (1984)	$q^* = \frac{0.053}{d^{*0.3}} \left(\frac{\tau^*}{\tau^*_{\rm crit}} - 1\right)^{2.1}$
Einstein-Brown (Brown, 1950)	$q^* = \begin{cases} \frac{K \exp(-0.391/\tau^*)}{0.465} & \tau^* < 0.182\\ 40K\tau^{*3} & \tau^* \ge 0.182 \end{cases}$
Yalin (1963)	$q^* = 0.635r\sqrt{\tau^*}[1 - \frac{1}{\sigma r}\ln(1 + \sigma r)]$

$$q^* = \frac{q_b}{\sqrt{(s-1)gd^3}} \qquad \tau^* = \frac{\tau_b}{\rho(s-1)gd} \qquad d^* = d\left[\frac{(s-1)g}{\nu^2}\right]^{1/3}$$

Calculating Bed Load

$$q^* = f(\tau^*, d^*)$$

$$q^* = \frac{q_b}{\sqrt{(s-1)gd^3}}$$
$$\tau^* = \frac{\tau_b}{\rho(s-1)gd}$$

dimensionless bed-load flux

dimensionless bed shear stress

 $d^* = d \left| \frac{(s-1)g}{v^2} \right|^{1/3}$ dimensionless particle diameter

To find bed-load flux:

- from particle and fluid properties, find d*
- from formula or graph, find $au_{
 m crit}^*$
- from flow hydraulics, find au_b and hence au^*
- if $\tau^* > \tau^*_{\text{crit}}$ (or $\tau > \tau_{\text{crit}}$), find q^* by chosen model
- invert to get absolute bed-load flux per unit width, q_b
- if required, multiply by width to get bed-load flux, Q_b

Suspended Load

- Suspended load consists of finer particles carried in suspension by turbulent fluid flow.
- Significant suspended load only occurs if turbulent velocity fluctuations are larger than the settling velocity:

$$\frac{u_{\tau}}{w_s} > 1$$

 For coarser sediment, suspended load does not occur and all sediment motion is bed load.

Concentration

• **Concentration** *C* is the volume of sediment per total volume

- Sediment settles, so concentrations are larger near the bed.
- Hence, upward-moving eddies tend to carry more sediment than downward-moving ones.
- This leads to a net upward diffusion of material.
- Equilibrium when **downward settling = upward diffusion**.

Fluxes

Sediment flux = volume flux × amount per unit volume = (velocity × area) × concentration

$$C(z + \delta z) = C(z) + \delta z \frac{\mathrm{d}C}{\mathrm{d}z} + \cdots$$

Diffusion:

Net upward flux of sediment through a horizontal area A:

$$\frac{1}{2}u'A(C-l\frac{\mathrm{d}C}{\mathrm{d}z}) - \frac{1}{2}u'A(C+l\frac{\mathrm{d}C}{\mathrm{d}z}) = -u'l\frac{\mathrm{d}C}{\mathrm{d}z}A$$

Upward diffusive flux:

$$-K\frac{\mathrm{d}C}{\mathrm{d}z}A$$

K = eddy diffusivity

Settling:

Downward settling flux: $(w_s A)C$

Diffusion Equation For Concentration (1)

A dynamic equilibrium exists when the net **upward flux** due to diffusion equals the net **downward flux** due to settling:

$$-K\frac{\mathrm{d}C}{\mathrm{d}z} = w_s C$$

Eddy Diffusivity

Sediment is diffused by the same turbulent eddies as those that transfer momentum: $\tau = \mu_t \frac{dU}{dz} = \nu_t \frac{d(\rho U)}{dz}$

flux of momentum (per unit area)

momentum (per unit volume)

Hence, common to take

$$K = v_t = \kappa u_\tau z (1 - z/h)$$

Diffusion Equation For Concentration (2)

$$-K \frac{\mathrm{d}C}{\mathrm{d}z} = w_s C$$
 where $K = v_t = \kappa u_\tau z (1 - z/h)$

$$-\kappa u_{\tau} z (1-z/h) \frac{\mathrm{d}C}{\mathrm{d}z} = w_s C$$

$$\frac{\mathrm{d}C}{C} = -\frac{w_s}{\kappa u_\tau} \frac{1}{z(1-z/h)} \,\mathrm{d}z$$

$$\int_{C_{\text{ref}}}^{C} \frac{\mathrm{d}C}{C} = -\frac{w_s}{\kappa u_\tau} \int_{Z_{\text{ref}}}^{Z} \left(\frac{1}{z} + \frac{1}{h-z}\right) \mathrm{d}z$$

Semi-empirical formulae for $C_{
m ref}$ and $z_{
m ref}$

Solution

$$[\ln C]_{C_{\text{ref}}}^{C} = -\frac{w_s}{\kappa u_{\tau}} [\ln z - \ln(h-z)]_{Z_{\text{ref}}}^{Z}$$

$$\ln C - \ln C_{\text{ref}} = -\frac{w_s}{\kappa u_\tau} \left(\ln \frac{z}{h-z} - \ln \frac{z_{\text{ref}}}{h-z_{\text{ref}}} \right)$$

$$\ln A - \ln B = \ln \frac{A}{B}$$
$$n \ln A = \ln A^{n}$$
$$\ln \frac{1}{A} = -\ln A$$

$$\ln C - \ln C_{\text{ref}} = -\frac{w_s}{\kappa u_\tau} \left(\ln \frac{1}{h/z - 1} - \ln \frac{1}{h/z_{\text{ref}} - 1} \right)$$

$$\ln C - \ln C_{\rm ref} = \frac{w_s}{\kappa u_\tau} (\ln(h/z - 1) - \ln(h/z_{\rm ref} - 1))$$

$$\ln \frac{C}{C_{\rm ref}} = \ln \left(\frac{h/z - 1}{h/z_{\rm ref} - 1} \right)^{\frac{W_s}{\kappa u_\tau}}$$

Rouse profile:
$$\frac{C}{C_{\text{ref}}} = \left(\frac{h/z - 1}{h/z_{\text{ref}} - 1}\right)^{\frac{W_s}{\kappa u_\tau}}$$

Rouse number: $\frac{w}{\kappa \iota}$

Rouse Distribution

Rouse profile:

Rouse number:

 w_s = settling velocity of the particle u_{τ} = friction velocity of the flow = $\sqrt{\tau_b/\rho}$ κ =von Kármán's constant (≈ 0.41)

Calculation of Suspended Load

Volume flow rate of water: $u \, dA$

per unit span: u dz (through depth dz)

Volume flux of sediment = concentration × volume flux of water

= Cu dz

Suspended load:

$$q_s = \int_{z_{\rm ref}}^h Cu \, \mathrm{d}z$$

$$u(z) = \frac{u_{\tau}}{\kappa} \ln(33\frac{z}{k_s})$$

$$\frac{C}{C_{\rm ref}} = \left(\frac{h/z - 1}{h/z_{\rm ref} - 1}\right)^{\frac{W_s}{\kappa u_\tau}}$$

Using Cheng's formula estimate the settling velocity of a sand particle of diameter 1 mm in
(a) air;
(b) water.

Cheng's formula for settling velocity:

$$\frac{w_s d}{v} = \left[(25 + 1.2d^{*2})^{1/2} - 5 \right]^{3/2} \qquad d^* = d \left(\frac{(s-1)g}{v^2} \right)^{1/3}$$

10

Find the critical Shields parameter and critical absolute stress τ_{crit} for a sand particle of diameter 1 mm in water.

Critical shear stress

Assuming a friction coefficient $c_f = 0.005$, estimate the velocities V at which (a) incipient motion; (b) incipient suspended load; occur in water for sand particles of density 2650 kg m⁻³ and diameter 1 mm.

$$\tau^* = \frac{\tau_b}{(\rho_s - \rho)gd}$$

A wide channel of slope 1:800 has a fine sandy bed with $d_{50} = 0.5 \text{ mm}$. The discharge is 5 m³ s⁻¹ per metre width. The specific gravity of the bed material is 2.65.

- (a) Estimate Manning's *n* using Strickler's formula.
- (b) Find the depth of flow; (assume normal flow).
- (c) Find the bed shear stress.
- (d) Show that the bed is mobile and calculate the bed-load flux (per metre width) using: (i) Meyer-Peter and Müller; (ii) Nielsen models.
- (e) Find the particle settling velocity and show that suspended load will occur.
- (f) Estimate the suspended-load flux (per metre width), explaining your method and stating any assumptions made.

Bed-Load Formulae

Meyer-Peter and Müller (1948)	$q^* = 8(\tau^* - \tau^*_{\rm crit})^{3/2}$	
Nielsen (1992)	$q^* = 12(\tau^* - \tau^*_{\rm crit})\sqrt{\tau^*}$	
Van Rijn (1984)	$q^* = \frac{0.053}{{d^*}^{0.3}} \left(\frac{\tau^*}{\tau^*_{\rm crit}} - 1\right)^{2.1}$	

$$q^* = \frac{q_b}{\sqrt{(s-1)gd^3}}$$

(dimensionless bed-load flux)

$$\tau^* = \frac{\tau_b}{\rho(s-1)gd}$$

(dimensionless bed shear stress)

$$d^* = d \left[\frac{(s-1)g}{v^2} \right]^{1/3}$$

(dimensionless particle diameter)