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Rapidly-Varied Flow (RVF)

● Examples
 ‒ hydraulic jump, weir, venturi, sluice, …

● Flow transitions between:
 ‒ deep, slow flow (subcritical; Fr < 1)

 ‒ shallow, fast flow (supercritical; Fr > 1)

● Changes over short distances (a few depths)
 ‒ bed friction not important

 ‒ total head approximately constant (except hydraulic jump)

● Either:
 ‒ smooth transition (e.g. weir); negligible change in head

 ‒ abrupt transition (hydraulic jump); significant head loss
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Hydraulic Jump

● Abrupt change from shallow (Fr > 1) to deep (Fr < 1)

● Occurs where up- and downstream depths are not compatible

● Smooth transition Fr > 1 to Fr < 1 not possible on a flat bed
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2
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Hydraulic Jump: Assumptions

Assume (for now):

● uniform velocities upstream and downstream

● small slope (weight component not important)

● short extent (bed friction not important)

● wide or rectangular cross-section
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Hydraulic Jump
Continuity:

Momentum:

V1

A2

A1

V2

Flow rate  𝑄 = 𝑉𝐴  constant

Net pressure force = change in momentum flux
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Restrict attention to a rectangular (or wide) channel
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Hydraulic Jump (Rectangular Channel)

1

2

ℎ2

ℎ1
(1 +

ℎ2

ℎ1
) = Fr1

2 ℎ2

ℎ1

2

+
ℎ2

ℎ1
− 2Fr1

2 = 0
ℎ2

ℎ1
=

−1 + 1 + 8Fr1
2

2

V1

h2

h1

V21
2𝑔(ℎ1

2 − ℎ2
2) = 𝑞2(

1

ℎ2
−

1

ℎ1
)

1
2𝑔(ℎ1 − ℎ2)(ℎ1 + ℎ2) = 𝑞2(

ℎ1 − ℎ2

ℎ1ℎ2
)

1
2ℎ1ℎ2(ℎ1 + ℎ2) =

𝑞2

𝑔

1

2

ℎ2

ℎ1
(1 +

ℎ2

ℎ1
) =

𝑞2

𝑔ℎ1
3

𝑞2

𝑔ℎ1
3 =

(𝑞/ℎ1)2

𝑔ℎ1
=

𝑉1
2

𝑔ℎ1
= Fr1

2



Hydraulic Jump (Rectangular Channel)

𝐻1 − 𝐻2 =
(ℎ2 − ℎ1)3

4ℎ1ℎ2

ℎ1 and ℎ2 are called sequent depths

Loss of mechanical energy      

Fr1 > 1 and Fr2 < 1

V1
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V2

Energy:

𝐻1 − 𝐻2 = 𝑧𝑠1 − 𝑧𝑠2 +
𝑉1

2 − 𝑉2
2

2𝑔
Head loss:

𝐻1 − 𝐻2 = ℎ1 − ℎ2 +
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Mass and momentum:

So far:
     1 and 2 could be either upstream or downstream;
     Jump could be either shallow-to-deep or deep-to-shallow.

Jump ... from shallow to deep

... supercritical to subcritical

ℎ2 > ℎ1
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Specific Energy

Total head: 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
(open channel, hydrostatic)

Specific energy 𝐸 is the head relative to the bed:

𝐸 = ℎ +
𝑉2

2𝑔

𝐻 = 𝑧𝑏 + 𝐸

Increase in 𝑧𝑏         decrease in 𝐸

h

z (x)s

z (x)b

= 𝑧𝑏 + ℎ +
𝑉2

2𝑔



Rectangular (or Wide) Channel

𝑉 =
𝑞

ℎ
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Specific Energy in a Rectangular Channel

𝐸 = ℎ +
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Minimum Specific Energy

𝐸 = ℎ +
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For a rectangular or wide channel:
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Critical Depth – Froude Number

● For a given flow rate there is a (strictly positive) minimum specific energy, 
occurring at the critical depth where Fr = 1.

● For any energy 𝐸 > 𝐸𝑐 there are two possible depths:
 – a shallow (ℎ < ℎ𝑐), high-speed flow with Fr > 1
 – a deep (ℎ > ℎ𝑐), low speed flow with Fr < 1
 These are called alternate depths.

Fr2 =
𝑉2

𝑔ℎ

=
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𝑔ℎ3

𝑞2

𝑔ℎ3
= 1Minimum 𝐸 where
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𝑞

ℎ
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Calculating the Alternate Depths
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𝐸 = ℎ +
𝑞2

2𝑔ℎ2

For a wide or rectangular channel:

(Specific energy = head, if bed height = 0)   

Subcritical - rearrange for deep solution:

𝐸 = ℎ +
𝑉2

2𝑔

ℎ = 𝐸 −
𝑞2

2𝑔ℎ2

Supercritical - rearrange for shallow solution: ℎ =
𝑞

2𝑔(𝐸 − ℎ)



Example

A 3 m wide channel carries a total discharge of 12 m3 s–1. 
Calculate:
(a) the critical depth;
(b) the minimum specific energy;
(c) the alternate depths when 𝐸 = 4 m.



A 3 m wide channel carries a total discharge of 12 m3 s–1. Calculate:
(a) the critical depth;
(b) the minimum specific energy;
(c) the alternate depths when 𝐸 = 4 m.

𝑏 = 3 m

𝑄 = 12 m3 s−1
𝑞 ≡

𝑄

𝑏} = 4 m2 s−1

ℎ𝑐 =
𝑞2

𝑔

1/3

= 𝟏. 𝟏𝟕𝟕 𝐦

𝐸𝑐 =
3

2
ℎ𝑐 = 𝟏. 𝟕𝟔𝟔 𝐦

𝐸 = ℎ +
𝑉2

2𝑔
𝑉 =

𝑞

ℎ

𝐸 = ℎ +
𝑞2

2𝑔ℎ2

4 = ℎ +
0.8155

ℎ2

Deep: ℎ = 4 −
0.8155

ℎ2

4, 3.949, 3.948, …    3.948 m

Shallow: ℎ =
0.8155

4 − ℎ

0, 0.4515, 0.4794, … 0.4814 m



Flow Over a (Small) Bump

Subcritical
– depth decreases over the bump.

subcritical

supercritical

𝐻 = 𝑧𝑏 + 𝐸 = constant

𝑧𝑏 increases          𝐸 decreases

Supercritical
– depth increases over the bump.
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Surface Level (𝒛𝒔) vs Depth (𝒉)

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔

(wide or rectangular channel)

d𝐻 = d𝑧𝑠 −
𝑞2

𝑔ℎ3
dℎ

For constant head (d𝐻 = 0): d𝑧𝑠 = Fr2dℎ

At constant head ...
(1) surface level changes in the same direction as depth;
(2) if Fr is very small, surface displacement is negligible.

= 𝑧𝑠 +
𝑞2

2𝑔ℎ2

= d𝑧𝑠 − Fr2dℎ



Non-Rectangular Channel

b
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s
Total head: 𝐻 = 𝑧𝑠 +

𝑉2

2𝑔
𝑉 =

𝑄

𝐴

𝐻 = 𝑧𝑏 + 𝐸 𝐸 = ℎ +
𝑄2

2𝑔𝐴2

Minimise specific energy:
d𝐸

dℎ
= 1 +

d

d𝐴

𝑄2

2𝑔𝐴2 ×
d𝐴

dℎ
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dh

d𝐴 = 𝑏𝑠 dℎ

(𝑄/𝐴)2

𝑔(𝐴/𝑏𝑠)
= 1

𝑉2

𝑔തℎ
= 1

Minimum specific energy occurs at Fr = 1
Fr =

𝑉

𝑔തℎ
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dℎ
= 0 ⇒

𝑄2

𝑔𝐴3

d𝐴

dℎ
= 1

𝑧𝑠 = 𝑧𝑏 + ℎ

𝑄2𝑏𝑠

𝑔𝐴3 = 1

= 1 −
𝑄2
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Critical-Flow Devices

● Broad-crested weir

● Venturi flume

● Sluice gate

● Free overfall



Critical-Flow Devices

For weir or venturi, given sufficient flow restriction:

● to attain the required minimum energy to pass the flow, the depth 
must increase just upstream; (i.e. the flow “backs up”)

● the flow accelerates smoothly from sub- to supercritical, with 
critical conditions at the restriction;

● there is fixed relationship between depth (“stage”) and discharge:
 ‒ measurement of discharge
 ‒ control point for GVF calculations

WEIR

normal GVF

normal

hydraulic
jump

hn
ch

1h

2h GVF

CP CP

hn



Critical-Flow Devices

Unlike a hydraulic jump:

● smooth transition: no loss of head

● sub- to supercritical transition

WEIR

total-head line



Weir



Broad-Crested Weir
Upstream: subcritical, with specific energy 𝐸𝑎 .

Bed raised by Δ𝑧𝑏.
Specific energy reduced: 𝐸 →  𝐸𝑎 –  Δ𝑧𝑏.
Subcritical, so loss in depth.

WEIR

But 𝐸 cannot be less than the critical value 𝐸𝑐 at this discharge.

If Δ𝑧𝑏 exceeds the allowed margin there must be an increase in depth immediately 
upstream to provide sufficient specific energy.

WEIR
D

e
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th
, 
h

Specific Energy, E

hc

Ec

Ea

margin

Δ𝑧𝑏

Increase in upstream depth is just sufficient to allow critical flow over the weir.



Broad-Crested Weir: Flow Depths
When the weir controls the flow:

● Smooth acceleration from sub- to supercritical flow

● Critical flow over the top:

● The total head immediately up or downstream of the weir is the same as 
that over the top:

● Depths immediately up- or downstream of the weir can be found as the 
sub- and supercritical depths with this head.

ℎ𝑐 =
𝑞2

𝑔

1/3

𝐸𝑐 =
3

2
ℎ𝑐

𝐻 = 𝑧weir + 𝐸𝑐 WEIR

total-head line

WEIR

normal GVF

normal

hydraulic
jump

hn
ch

1h

2h GVF

CP CP

hn



Broad-Crested Weir: Test For Critical

First find, for the given discharge 𝑄:
• approach-flow conditions (often normal): ℎ𝑎 and 𝐸𝑎

• weir critical conditions (ℎ𝑐 and 𝐸𝑐)

Then either:

Method 2 (my preference)

• Calculate total head over weir assuming critical; i.e. 𝐻𝑐 =  𝑧weir + 𝐸𝑐.

 (This is the minimum energy needed to get over the weir at this flow rate.)

• If this exceeds the available head, 𝐻𝑎, then critical conditions occur. (The 
depth just upstream must increase to supply the necessary head.)

Method 1

• Calculate specific energy following rise, 𝐸𝑎– 𝑧weir, assuming not critical.

• If this is less than 𝐸𝑐 then the flow must actually be critical over the weir.



Example

(a) Define:
 (i) specific energy
 (ii) Froude number
 for open-channel flow. What is special about these quantities in critical conditions?

A long, wide channel has a slope of 1:1000, a Manning’s 𝑛 of 0.015 m–1/3 s and a 
discharge of 3 m3 s–1 per metre width.

(b) Calculate the normal and critical depths.

(c) In a region of the channel the bed is raised by a height of 0.8 m over a length 
sufficient for the flow to be parallel to the bed over this length. Determine the 
depths upstream, downstream and over the raised bed, ignoring frictional losses. 
Sketch the key features of the flow, indicating all hydraulic transitions caused by the 
bed rise.

(d) In the same channel, the bed is lowered by 0.8 m from its original level. Determine 
the depths upstream, downstream and over the lowered bed, ignoring frictional 
losses. Sketch the flow.



(a) Define:
 (i) specific energy
 (ii) Froude number
 for open-channel flow. What is special about these quantities in critical conditions?

Specific energy is head (energy per unit weight) relative to the bed of the channel
or

𝐸 = ℎ +
𝑉2

2𝑔

The Froude number is Fr =
𝑉

𝑔തℎ

In critical conditions, Fr = 1, and the specific energy is a minimum at the given 
discharge.



A long, wide channel has a slope of 1:1000, a Manning’s 𝑛 of 0.015 m–1/3 s and a discharge of 
3 m3 s–1 per metre width.
(b) Calculate the normal and critical depths.

𝑞 = 3 m2 s−1

𝑛 = 0.015 m− Τ1 3 s
𝑆 = 0.001

𝑞 = 𝑉ℎ 𝑉 =
1

𝑛
𝑅ℎ

Τ2 3𝑆 Τ1 2 𝑅ℎ = ℎ ("wide")

Normal:

𝑞 =
1

𝑛
ℎ Τ2 3𝑆 Τ1 2ℎ

𝑞 =
ℎ Τ5 3 𝑆

𝑛

ℎ𝑛 =
𝑛𝑞

𝑆

Τ3 5

= 𝟏. 𝟐𝟑𝟔 𝐦

Critical:

ℎ𝑐 =
𝑞2

𝑔

Τ1 3

= 𝟎. 𝟗𝟕𝟏𝟕 𝐦



(c) In a region of the channel the bed is raised by a height of 0.8 m over a length sufficient 
for the flow to be parallel to the bed over this length. Determine the depths upstream, 
downstream and over the raised bed, ignoring frictional losses. Sketch the key features 
of the flow, indicating all hydraulic transitions caused by the bed rise.

Minimum head required (critical conditions):

ℎ𝑐 = 0.9717 m

𝐸𝑐 =
3

2
ℎ𝑐 = 1.458 m 𝑧𝑏 = 0.8 m

𝐻𝑐 = 𝑧𝑏 + 𝐸𝑐

𝐻𝑎 = 0 + 𝐸𝑎  = ℎ𝑛 +
𝑉𝑛

2

2𝑔

= ℎ𝑛 +
𝑞2

2𝑔ℎ𝑛
2

= 1.536 m

Head available without backing up (normal flow):

ℎ𝑛 = 1.236 m 𝑞 = 3 m2 s−1

Available head (𝐻𝑎) is less than the minimum required (𝐻𝑐). Hence:

= 2.258 m

• the water depth must increase (“back up”), to raise the head immediately upstream;

• a hydraulic transition (subcritical to supercritical) must take place;

• the head throughout is critical: 𝐻 = 𝐻𝑐 = 2.258 m



(c) In a region of the channel the bed is raised by a height of 0.8 m over a length sufficient 
for the flow to be parallel to the bed over this length. Determine the depths upstream, 
downstream and over the raised bed, ignoring frictional losses. Sketch the key features 
of the flow, indicating all hydraulic transitions caused by the bed rise.

normal

normal

hydraulic
jump

hn
ch

1h

2h hn

GVF

GVF

RVF

Over the weir:

ℎ = ℎ𝑐 = 𝟎. 𝟗𝟕𝟏𝟕 𝐦

Just up or downstream (ℎ1 and ℎ2):

𝐻 = ℎ +
𝑞2

2𝑔ℎ2

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
𝑧𝑠 = ℎ 𝑉 =

𝑞

ℎ

2.258 = ℎ +
0.4587

ℎ2
Deep (ℎ1):

Shallow (ℎ2):

ℎ = 2.258 −
0.4587

ℎ2

ℎ =
0.4587

2.258 − ℎ

𝒉𝟏 = 𝟐. 𝟏𝟔𝟎 𝐦

𝒉𝟐 = 𝟎. 𝟓𝟏𝟐𝟕 𝐦



(d) In the same channel, the bed is lowered by 0.8 m from its original level. 
Determine the depths upstream, downstream and over the lowered bed, 
ignoring frictional losses. Sketch the flow.

normal

normal

hn

hn

RVF

No flow transition: 𝐻 = 𝐻𝑎 = 1.536 m

Upstream/downstream: ℎ1 = ℎ2 = ℎ𝑛 = 𝟏. 𝟐𝟑𝟔 𝐦

In the depressed-bed region:

1.536 = −0.8 + ℎ +
𝑞2

2𝑔ℎ2

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
𝑧𝑠 = −0.8 + ℎ 𝑉 =

𝑞

ℎ

2.336 = ℎ +
0.4587

ℎ2

Subcritical (deep): ℎ = 2.336 −
0.4587

ℎ2
𝒉 = 𝟐. 𝟐𝟒𝟓 𝐦



Broad-Crested Weir: Test For Critical

First find, for the given discharge 𝑞:
• approach-flow conditions (often normal): ℎ𝑎 and 𝐸𝑎

• weir critical conditions (ℎ𝑐 and 𝐸𝑐)

Then either:

Method 2 (my preference)

• Calculate total head over weir assuming critical; i.e. 𝐻𝑐 =  𝑧weir + 𝐸𝑐.

 (This is the minimum energy needed to get over the weir at this flow rate.)

• If this exceeds the available head 𝐻𝑎 (= 𝐸𝑎) then critical conditions occur. 
(The depth just upstream must increase to supply the necessary head.)

Method 1

• Calculate specific energy following rise, 𝐸𝑎– 𝑧weir, assuming not critical.

• If this is less than 𝐸𝑐 then the flow must actually be critical over the weir.



Broad-Crested Weir: Total Head

• If the flow does go critical then:
– the total head throughout is critical;

– the flow goes smoothly from sub- to supercritical.

• If the flow does not go critical then:
– the total head throughout is that from upstream;

– there is simply a localised dip in the free surface.

• In both cases the total head through the device is:
– constant

– equal to the larger of the critical or the approach-flow head

WEIR

WEIR



Broad-Crested Weir: Downstream Conditions

On a mild slope (i.e. where the normal flow is subcritical), the flow must go through 
a hydraulic jump back to subcritical flow.

Depths either side of the hydraulic jump are connected by the sequent-depth 
formula.

On a mild slope, any supercritical GVF increases in depth (see later). 

Case 𝒉𝟐 < 𝒉𝑱

Region of supercritical GVF between weir and 
jump.

Case 𝒉𝟐 > 𝒉𝑱

No region of supercritical GVF between weir and 
jump. Hydraulic jump occurs immediately.

hJ
WEIR

h2
h1

hydraulic
jump

WEIR

h1

hydraulic
jump



Example

A long channel of rectangular cross-section with width 3.5 m and 
streamwise slope 1 in 800 carries a discharge of 15 m3 s–1. 
Manning’s 𝑛 may be taken as 0.016 m–1/3 s. A broad-crested weir 
of height 0.7 m is constructed at the centre of the channel.

Determine:

(a) the depth far upstream of the weir;

(b) the depth just upstream of the weir;

(c) whether or not a region of supercritical gradually-varied flow 
exists downstream of the weir.



A long channel of rectangular cross-section with width 3.5 m and streamwise slope 1 in 800 
carries a discharge of 15 m3 s–1. Manning’s 𝑛 may be taken as 0.016 m–1/3 s. A broad-crested 
weir of height 0.7 m is constructed at the centre of the channel. Determine:
(a) the depth far upstream of the weir;

b

h

𝑏 = 3.5 m

𝑄 = 15 m3 s−1

𝑛 = 0.016 m− Τ1 3 s

𝑆 = 0.00125

𝑄 = 𝑉𝐴 𝑉 =
1

𝑛
𝑅ℎ

Τ2 3𝑆 Τ1 2 𝑅ℎ =
𝑏ℎ

𝑏 + 2ℎ
=

ℎ

1 + 2 Τℎ 𝑏

𝑄 =
𝑏 𝑆

𝑛

ℎ Τ5 3

1 + 2ℎ/𝑏 2/3

𝑄 =
1

𝑛

ℎ

1 + 2ℎ/𝑏

2/3

𝑆1/2𝑏ℎ

ℎ =
𝑛𝑄

𝑏 𝑆

Τ3 5

(1 + 2ℎ/𝑏) Τ2 5 ℎ = 1.488 1 + 0.5714ℎ 2/5

𝒉𝒏 = 𝟐. 𝟎𝟐𝟑 𝐦

𝑛𝑄

𝑏 𝑆
(1 + 2ℎ/𝑏) Τ2 3= ℎ5/3



(b) the depth just upstream of the weir;

𝐻𝑎 = 0 + 𝐸𝑎  = ℎ𝑛 +
𝑉𝑛

2

2𝑔

= ℎ𝑛 +
𝑄2

2𝑔𝑏2ℎ𝑛
2

= 𝟐. 𝟐𝟓𝟐 𝐦

Available head in the approach flow:

ℎ𝑛 = 2.023 m 𝑄 = 15 m3 s−1 𝑏 = 3.5 m

Minimum head required (critical conditions):

= 1.233 m

𝐸𝑐 =
3

2
ℎ𝑐 = 1.850 m 𝑧weir = 0.7 m

𝐻𝑐 = 𝑧𝑏 + 𝐸𝑐 = 𝟐. 𝟓𝟓𝟎 𝐦

ℎ𝑐 =
𝑞2

𝑔

Τ1 3

=
𝑄2

𝑏2𝑔

Τ1 3

Available head (𝐻𝑎) is less than the minimum required (𝐻𝑐). Hence:

• the water depth must increase (“back up”), to raise the head immediately upstream;

• a hydraulic transition (subcritical to supercritical) must take place;

• the head throughout is critical: 𝐻 = 𝐻𝑐 = 2.550 m

𝑉 =
𝑄

𝑏ℎ



(b) the depth just upstream of the weir;

Just upstream (or downstream):

𝐻 = ℎ +
𝑄2

2𝑔𝑏2ℎ2

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
𝑧𝑠 = ℎ 𝑉 =

𝑄

𝑏ℎ

2.550 = ℎ +
0.9362

ℎ2

Upstream (deep):

𝒉𝟏 = 𝟐. 𝟑𝟖𝟓 𝐦

ℎ = 2.550 −
0.9362

ℎ2

𝐻 = 2.550 m

Total head near the weir:



(c) whether or not a region of supercritical gradually-varied flow exists downstream of the 
weir.

Downstream of the weir (if supercritical flow is reached):

ℎ =
0.9362

2.550 − ℎ
ℎ2 = 𝟎. 𝟕𝟏𝟒𝟏 𝐦

Total head near the weir:

2.550 = ℎ +
0.9362

ℎ2

Hydraulic jump:

Downstream: ℎ𝑛 = 2.023 m

Upstream:

𝑉𝑛 =
𝑄

𝑏ℎ𝑛
= 2.118 m s−1 Fr𝑛 =

𝑉𝑛

𝑔ℎ𝑛

= 0.4754

hJ
WEIR

h2
h1

hydraulic
jump

ℎ𝐽 =
ℎ𝑛

2
(−1 + 1 + 8Fr𝑛

2)

ℎ2 > ℎ𝐽, so there is no room for supercritical flow between weir and hydraulic jump

The hydraulic jump occurs immediately, at the downstream end of the weir

= 𝟎. 𝟔𝟖𝟑𝟓 𝐦

WEIR

h1

hydraulic
jump



Measurement of Discharge
Head over weir = head upstream

3

2
ℎ𝑐 = ℎ0 +

𝑉1
2

2𝑔

3

2

𝑞2

𝑔

1/3

= ℎ0 +
𝑞2

2𝑔ℎ1
2

Discharge per unit width: 𝑞 = (2/3)3/2 𝑔 (ℎ0 +
𝑞2

2𝑔ℎ1
2)3/2

Ideal total discharge: 𝑄 = (2/3)3/2 𝑔𝑏 (ℎ0 +
𝑄2

2𝑔𝑏2ℎ1
2)3/2

Actual total discharge: 𝑄 = 𝑐𝑑𝑄ideal

If discharging from still water, 𝑉1  =  0: WEIR

freeboard, h0

total-head line

RESERVOIR

h1

WEIR

freeboard, h0

total-head line

3

2

𝑞2

𝑔

1/3

= ℎ0



Example

A reservoir discharge is controlled by a weir of width 8 m and 
discharge coefficient 0.9.

(a) Calculate the flow rate over the weir when the freeboard is 
0.65 m.

(b) Assuming negligible inflow and a constant plan area for the 
reservoir of 1.5 km2, calculate the time in hours to reduce 
the level of the reservoir by 0.4 m.



A reservoir discharge is controlled by a weir of width 8 m and discharge coefficient 0.9.
(a) Calculate the flow rate over the weir when the freeboard is 0.65 m.
(b) Assuming negligible inflow and a constant plan area of 1.5 km2 for the reservoir, 

calculate the time in hours taken to reduce the level of the reservoir by 0.4 m.

𝑏 = 8 m

𝑐𝑑 = 0.9

Head in reservoir = head over weir

Relative to the top of the weir:

ℎ0 =
3

2

𝑞2

𝑔

Τ1 3

WEIR

freeboard, h0

total-head line

RESERVOIR

ℎ0 =
3

2
ℎ𝑐

𝑞 = 2/3 3𝑔ℎ0
3

𝑄 = 𝑐𝑑𝑄ideal

= 1.705ℎ0
Τ3 2

𝑄 = 12.28ℎ0
Τ3 2

2

3
ℎ0

3

=
𝑞2

𝑔

= 𝑐𝑑𝑞𝑏



𝐴𝑤𝑠 = 1.5 × 106 m2

𝑄 = 12.28ℎ3/2

(a) When ℎ = 0.65 m, 𝑄 = 𝟔. 𝟒𝟑𝟓 𝐦𝟑 𝐬−𝟏

(b) Generally:
d

d𝑡
(volume) = 𝑄in − 𝑄out

𝐴𝑤𝑠

dℎ

d𝑡
= 0 − 12.28ℎ Τ3 2

1.5 × 106
dℎ

ℎ Τ3 2
= −12.28 d𝑡

−1.5 × 106

12.28
න

0.65

0.25

ℎ− Τ3 2 dℎ = න
0

𝑇

 d𝑡

−122100
ℎ− Τ1 2

− Τ1 2
0.65

0.25

= 𝑇

244200
1

0.25
−

1

0.65
= 𝑇 𝑇 = 185500 s = 51.5 hours

A reservoir discharge is controlled by a weir of width 8 m and discharge coefficient 0.9.
(a) Calculate the flow rate over the weir when the freeboard is 0.65 m.
(b) Assuming negligible inflow and a constant plan area of 1.5 km2 for the reservoir, 

calculate the time in hours taken to reduce the level of the reservoir by 0.4 m.



Maximum Discharge (Per Unit Width) at Given Energy

𝐸 = ℎ +
𝑞2

2𝑔ℎ2

d(𝑞2)

dℎ
= 0



𝐸 =
3

2
ℎ

𝑞2 = 2𝑔ℎ2(𝐸 − ℎ) = 2𝑔(𝐸ℎ2 − ℎ3)

d

dℎ
(𝑞2) = 2𝑔(2𝐸ℎ − 3ℎ2)



 𝑞2 = 𝑔ℎ3

Fr2 =
𝑉2

𝑔ℎ
 =

𝑞2

𝑔ℎ3  = 1

● For a given specific energy there is a maximum discharge per unit width, occurring at 
the critical depth where Fr = 1.

D
e
p

th
, 
h

Discharge per unit width, q

Fr>1

Fr<1hc

qmax

𝐸 = ℎ +
𝑉2

2𝑔
𝑉 =

𝑞

ℎ
(rectangular channel)



Venturi Flume

A venturi is any narrowing of a channel.

If a channel narrows then the discharge 
per unit width, 𝑞 = 𝑄/𝑏, increases.

BUT, this cannot exceed the maximum discharge 
per unit width, 𝑞max, at this specific energy.

The maximum discharge occurs at a flow depth 
such that

𝐸 =
3

2
ℎ Fr = 1

If the discharge per unit width does exceed this then the flow is choked and backs 
up, the upstream depth increasing so as to increase the specific energy. Critical 
conditions are maintained at the venturi throat.

bmin

critical

PLAN VIEW

WATER PROFILE

D
e
p

th
, 
h

Discharge per unit width, q

Fr>1

Fr<1hc

qmax



Venturi Flume: Water Profile

bmin

critical

PLAN VIEW

WATER PROFILE



Venturi Flume: Critical Flow

If critical conditions occur:

• There is smooth acceleration from sub- to supercritical flow through the 

throat.

• At the venturi throat: ℎ𝑐 =
𝑞𝑚

2

𝑔

1/3

𝑞𝑚 =
𝑄

𝑏min

𝐸𝑐 =
3

2
ℎ𝑐

• Total head throughout the device is fixed by that at the throat:

𝐻 = 𝐻𝑐 = 𝑧𝑏 + 𝐸𝑐

where 𝑧𝑏 is the bed level (often 0).

• Depths anywhere in the flume are the solutions of

𝐸 = ℎ +
𝑄2

2𝑔𝑏2ℎ2𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
or



Venturi Flume: Determining Criticality

Compare:

• head in approach flow, 𝐻𝑎

• critical head at the throat, 𝐻𝑐 = (𝑧𝑏 + 𝐸𝑐)throat

If 𝐻𝑎 < 𝐻𝑐, critical conditions occur, the flow backs up and a flow 
transition occurs.

If 𝐻𝑎 > 𝐻𝑐, the flow just dips, then returns to original depth.

As for the broad-crested weir …
the total head through the device is constant and equal to the 
larger of the critical head and approach-flow head.



Example

A venturi flume is placed near the middle of a long rectangular 
channel with Manning’s 𝑛 = 0.012 m–1/3 s. The channel has a width 
of 5 m, a discharge of 12.5 m3 s–1 and a slope of 1:2500.

(a) Determine the critical depth and the normal depth in the 
main channel.

(b) Determine the venturi flume width which will just make the 
flow critical at the contraction.

(c) If the contraction width is 2 m find the depths just upstream, 
downstream and at the throat of the venturi flume (neglecting

 friction in this short section).

(d) Sketch the surface profile.



A venturi flume is placed near the middle of a long rectangular channel with Manning’s 
𝑛 = 0.012 m–1/3 s. The channel has a width of 5 m, a discharge of 12.5 m3 s–1 and a slope of 
1:2500.
(a) Determine the critical depth and the normal depth in the main channel.

b

h
𝑏 = 5 m (main channel)

𝑄 = 12.5 m3 s−1

𝑛 = 0.012 m− Τ1 3 s

𝑆 = 0.0004

ℎ =
𝑛𝑄

𝑏 𝑆

Τ3 5

(1 + 2ℎ/𝑏) Τ2 5

Critical depth:

Normal depth:

ℎ𝑐 =
𝑞2

𝑔

Τ1 3

𝑞 =
𝑄

𝑏
= 2.5 m2 s−1

𝒉𝒄 = 𝟎. 𝟖𝟔𝟎𝟓 𝐦

ℎ = 1.275(1 + 0.4ℎ) Τ2 5

𝒉𝒏 = 𝟏. 𝟓𝟒𝟔 𝐦



(b) Determine the venturi flume width which will just make the flow critical at the 
contraction.

Just critical if: 𝐻𝑎 approach flow = 𝐻𝑐(contraction)

ℎ𝑎 = 1.546 m

Approach flow :

𝐻𝑎 = 0 + 𝐸𝑎  = ℎ𝑎 +
𝑉𝑎

2

2𝑔

𝑉𝑎 =
𝑄

𝑏ℎ𝑎
= 1.617 m s−1

= 1.679 m

Critical head at the contraction:

𝐻𝑐 =
3

2

𝑞𝑚
2

𝑔

Τ1 3

=
3

2

𝑄2

𝑔𝑏𝑚
2

Τ1 3

=
3.774

𝑏𝑚
2/3

1.679 =
3.774

𝑏𝑚
2/3

𝒃𝒎 = 𝟑. 𝟑𝟕𝟎 𝐦



(c) If the contraction width is 2 m find the depths just upstream, downstream and at the 
throat of the venturi flume (neglecting friction in this short section)

2 m < 3.370 m There is a hydraulic transition

𝐻 = 𝐻𝑐(contraction) = 0 +
3

2
ℎ𝑐

𝑏𝑚 = 2 m

= 2.378 m

Critical depth at the throat:

ℎ𝑐 =
𝑞𝑚

2

𝑔

1/3

𝑞𝑚 =
𝑄

𝑏𝑚
= 6.25 m2 s−1

ℎ𝑐 = 1.585 m

Total head:

Just upstream and downstream in main channel (𝑏 = 5 m):

𝐻 = ℎ +
𝑄2

2𝑔𝑏2ℎ2

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
𝑧𝑠 = ℎ 𝑉 =

𝑄

𝑏ℎ

2.378 = ℎ +
0.3186

ℎ2

Upstream (deep): 𝒉𝟏 = 𝟐. 𝟑𝟏𝟗 𝐦ℎ = 2.378 −
0.3186

ℎ2

Downstream (shallow): 𝒉𝟐 = 𝟎. 𝟒𝟎𝟏𝟓 𝐦ℎ =
0.3186

2.378 − ℎ



(d) Sketch the surface profile.

bmin

critical

PLAN VIEW

WATER PROFILE



Sluice Gate

RVF: total head the same both sides

ℎ1 and ℎ2 are the subcritical and supercritical values in

ℎ2 is the depth at the vena contracta (≈ 0.6  gate opening)

𝐻1 = 𝐻2

𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔

total head = ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2

Gate opening plus either upstream head or upstream depth determine the 
discharge.

D

h1

total head line

h2

gate



Example

The water depth upstream of a sluice gate is 0.8 m and the 
depth just downstream (at the vena contracta) is 0.2 m.

Calculate:

(a) the discharge per unit width;

(b) the Froude numbers upstream and downstream.



The water depth upstream of a sluice gate is 0.8 m and the depth just downstream (at the 
vena contracta) is 0.2 m. Calculate:
(a) the discharge per unit width;
(b) the Froude numbers upstream and downstream.

ℎ1 = 0.8 m

ℎ2 = 0.2 m

D

h1

total head line

h2

gate

𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
𝑧𝑠 = ℎ 𝑉 =

𝑞

ℎ

ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2

0.8 + 0.0796𝑞2 = 0.2 + 1.2742𝑞2

0.6 = 1.1946𝑞2

𝒒 = 𝟎. 𝟕𝟎𝟖𝟕 𝐦𝟐 𝐬−𝟏

Fr =
𝑉

𝑔ℎ
𝑉 =

𝑞

ℎ

Fr =
𝑞

𝑔ℎ3
𝐅𝐫𝟏 = 𝟎. 𝟑𝟏𝟔𝟐 𝐅𝐫𝟐 = 𝟐. 𝟓𝟑𝟎



Example

A sluice gate controls the flow in a channel of width 
2 m. If the discharge is 0.5 m3 s–1 and the upstream 
water depth is 1.5 m, calculate the downstream 
depth and velocity.



A sluice gate controls the flow in a channel of width 2 m. If the discharge is 0.5 m3 s–1 and the 
upstream water depth is 1.5 m, calculate the downstream depth and velocity.

ℎ1 = 1.5 m

𝑄 = 0.5 m3 s−1

D

h1

total head line

h2

gate

𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
𝑧𝑠 = ℎ 𝑉 =

𝑄

𝑏ℎ

𝑏 = 2 m

ℎ1 +
𝑄2

2𝑔𝑏2ℎ1
2 = ℎ2 +

𝑄2

2𝑔𝑏2ℎ2
2

1.501 = ℎ2 +
0.003186

ℎ2
2

Downstream: shallow (supercritical) solution:

ℎ2 =
0.003186

1.501 − ℎ2

𝑉2 =
𝑄

𝑏ℎ2
𝑽𝟐 = 𝟓. 𝟑𝟒𝟏 𝐦 𝐬−𝟏

𝒉𝟐 = 𝟎. 𝟎𝟒𝟔𝟖𝟏 𝐦



Sluice Gate: Ideal Discharge

ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2

Actual discharge:

𝑄 = 𝑏ℎ2

2𝑔ℎ1

1 + ℎ2/ℎ1

Ideal approximations:
• RVF (no losses) 
• ℎ2 = 𝐷
• ℎ2 ≪ ℎ1 𝑄ideal = 𝑏𝐷 2𝑔ℎ1

𝑄 = 𝑐𝑑𝑄ideal

Constant head:

D

h1

total head line

h2

gate𝑧𝑠1 +
𝑉2

2𝑔
= 𝑧𝑠2 +

𝑉2

2𝑔



Drowned Gate

h1

Gate opened too far or downstream control too close



Free Overfall

hc

hc critical

Supercritical (Fr > 1) approach flow:
• upstream control;
• supercritical flow continues over the overfall.

Subcritical (Fr < 1) approach flow:
• downstream control;
• flow passes through critical near the overfall.



Rapidly-Varied Flow

2. RAPIDLY-VARIED FLOW

 2.1 Hydraulic jump

 2.2 Specific energy

 2.3 Critical-flow devices

 2.4 Forces on objects



Forces On Objects

● Obstacles in the flow provide a reactive force

● Often they provoke a flow transition; e.g. hydraulic jump

● Analysis by momentum principle

BAFFLE
BLOCKh1

V1

h2 V2FF



Baffle Blocks

Baffle blocks are widely used in stilling basins to dissipate 
fluid energy before discharging into rivers.



Baffle Blocks



Control-Volume Analysis

BAFFLE
BLOCKh1

V1

h2 V2

−𝐹 + 1
2𝜌𝑔ℎ1

2𝑏 − 1
2𝜌𝑔ℎ2

2𝑏 = 𝜌𝑄(𝑉2 − 𝑉1)

Force = rate of change of momentum

𝐹 = (𝜌𝑄𝑉1 + 1
2𝜌𝑔ℎ1

2𝑏) − (𝜌𝑄𝑉2 + 1
2𝜌𝑔ℎ2

2𝑏)

𝐹 = (𝑀1 + 𝐹𝑝1) − (𝑀2 + 𝐹𝑝2)

Special case: hydraulic jump (𝐹 = 0)

𝑀 = 𝜌𝑄𝑉 = momentum flux

𝐹𝑝 = 1
2𝜌𝑔ℎ2𝑏 = pressure force

−𝐹 + ҧ𝑝1𝐴1 − ҧ𝑝2𝐴2 = 𝜌𝑄(𝑉2 − 𝑉1) ҧ𝑝 = 𝜌𝑔(1
2ℎ) 𝐴 = 𝑏ℎ

F



Example

Water flows at 0.8 m3 s-1 per metre width down a long, wide spillway 
of slope 1 in 30 onto a wide apron of slope 1 in 1000. Manning’s 
roughness coefficient 𝑛 = 0.014 m–1/3 s on both slopes.

(a) Find the normal depths in both sections and show that normal 
flow is supercritical on the spillway and subcritical on the apron.

(b) Baffle blocks are placed a short distance downstream of the 
slope transition to provoke a hydraulic jump. Assuming that flow 
is normal on both the spillway and downstream of the hydraulic 
jump, calculate the force per metre width of channel that the 
blocks must impart.

(c) Find the head loss across the blocks.



Water flows at 0.8 m3 s-1 per metre width down a long, wide spillway of slope 1 in 30 onto a 
wide apron of slope 1 in 1000. Manning’s roughness coefficient 𝑛 = 0.014 m–1/3 s on both 
slopes.
(a) Find the normal depths in both sections and show that normal flow is supercritical on the 

spillway and subcritical on the apron.

𝑞 = 0.8 m2 s−1

𝑆1 = Τ1 30 𝑆2 = Τ1 1000

𝑛 = 0.014 m− Τ1 3 s

𝑞 = 𝑉ℎ
Normal depths:

𝑉 =
1

𝑛
𝑅ℎ

Τ2 3𝑆 Τ1 2 𝑅ℎ = ℎ ("wide")

𝑞 =
1

𝑛
ℎ Τ2 3𝑆 Τ1 2ℎ

𝑞 =
ℎ Τ5 3 𝑆

𝑛

ℎ =
𝑛𝑞

𝑆

Τ3 5

𝒉𝟏 = 𝟎. 𝟏𝟖𝟕𝟒 𝐦 𝒉𝟐 = 𝟎. 𝟓𝟑𝟔𝟓 𝐦

Critical depth:

ℎ𝑐 =
𝑞2

𝑔

Τ1 3

= 0.4026 m

Spillway: ℎ1 < ℎ𝑐 supercritical

Apron: ℎ2 > ℎ𝑐 subcritical

ℎ1 ℎ2



(b) Baffle blocks are placed a short distance downstream of the slope transition to 
provoke a hydraulic jump. Assuming that flow is normal on both the spillway and 
downstream of the hydraulic jump, calculate the force per metre width of channel 
that the blocks must impart.

ℎ1 ℎ2

ℎ2

ℎ1 f

−𝑓 + 1
2𝜌𝑔ℎ1

2 − 1
2𝜌𝑔ℎ2

2 = 𝜌𝑞(
𝑞

ℎ2
−

𝑞

ℎ1
)

𝑓 = 1
2𝜌𝑔 ℎ1

2 − ℎ2
2 + 𝜌𝑞2(

1

ℎ1
−

1

ℎ2
)

−𝑓 + ҧ𝑝1ℎ1 − ҧ𝑝2ℎ2 = 𝜌𝑞(𝑉2 − 𝑉1)

𝑞 = 0.8 m2 s−1 ℎ1 = 0.1874 m

ℎ2 = 0.5365 m

ҧ𝑝 = 𝜌𝑔(1
2ℎ) 𝑉 =

𝑞

ℎ

𝒇 = 𝟗𝟖𝟐. 𝟕 𝐍 𝐦−𝟏



(c) Find the head loss across the blocks.

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
𝑉 =

𝑞

ℎ
𝑧𝑠 = ℎ

𝐻 = ℎ +
𝑞2

2𝑔ℎ2
ℎ1 = 0.1874 m

ℎ2 = 0.5365 m

𝑞 = 0.8 m2 s−1

𝐻1 = 1.1162 m

𝐻2 = 0.6498 m

Head loss = 𝐻1 − 𝐻2 = 𝟎. 𝟒𝟔𝟔𝟒 𝐦



Hydraulic Jumps in Expanding Channels

● Sudden expansion causes a rapid drop in velocity.

● May be sufficient to trigger a hydraulic jump

● Analysed by momentum principle:
 ‒ control volume in expanded section only
 ‒ assume hydrostatic pressure on walls



Example

A downward step of height 0.5 m 
causes a hydraulic jump in a wide 
channel when the depth and velocity 
of the flow upstream are 0.5 m and 
10 m s–1, respectively.

(a) Find the downstream depth.

(b) Find the head lost in the jump.



h1
2h



A downward step of height 0.5 m causes a hydraulic jump in a wide channel when the depth 
and velocity of the flow upstream are 0.5 m and 10 m s–1, respectively.
(a) Find the downstream depth.

ℎ1 ℎ2

Δ

Δ = 0.5 m

ℎ1 = 0.5 m

𝑉1 = 10 m s−1

𝑞 = 𝑉1ℎ1 = 5 m2 s−1

1

2
𝜌𝑔 ℎ1 + Δ × ℎ1 + Δ −

1

2
𝜌𝑔ℎ2 × ℎ2 = 𝜌𝑞(𝑉2 − 𝑉1)

ℎ1 + Δ 2 − ℎ2
2 =

2𝑞

𝑔
(

𝑞

ℎ2
−

𝑞

ℎ1
)

𝑉 =
𝑞

ℎ

11.19 = ℎ2
2 +

5.095

ℎ2

1 − ℎ2
2 = 1.019(

5

ℎ2
− 10)

Deep solution:

ℎ2 = 11.19 −
5.095

ℎ2

𝒉𝟐 = 𝟑. 𝟎𝟖𝟗 𝐦



(b) Find the head lost in the jump.

Δ = 0.5 m

ℎ1 = 0.5 m 𝑉1 = 10 m s−1

𝑉2 =
𝑞

ℎ2

ℎ1 ℎ2

Δ

ℎ2 = 3.089 m = 1.619 m s−1

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔

𝐻1 = 1.0 +
102

2𝑔
= 6.097 m

𝐻2 = 3.089 +
1.6192

2𝑔
= 3.223 m

Head loss = 𝐻1 − 𝐻2 = 𝟐. 𝟖𝟕𝟒 𝐦
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