## Open-Channel Flow

## 3. Gradually-Varied Flow

## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behaviour
3.6 Numerical solution of the GVF equation

## Normal Flow



## Normal flow:

- Downslope component of weight balances bed friction
- Uniform depth and velocity
- Bed slope or geometric slope $\left(S_{0}\right)$ is the same as the slope of the total head line or friction slope $\left(S_{f}\right)$
- "Preferred" depth, to which flow tends given sufficient fetch


## Gradually-Varied Flow



Gradually-varied flow (GVF):

- Downslope component of weight does not balance bed friction
- Geometric slope $\left(S_{0}\right)$ is different to friction slope $\left(S_{f}\right)$
- Depth $h$ changes with distance

The gradually-varied-flow equation gives the change of depth with distance

## Gradually-Varied-Flow Equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

## Assumptions:

- Small slopes
- Quasi-1d
- Hydrostatic pressure


## Depends on:

- Difference between geometric and friction slopes $\left(S_{0}-S_{f}\right)$
- Sub- or supercritical flow (Fr)


## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behaviour
3.6 Numerical solution of the GVF equation

## Derivation of the GVF Equation (1)

Total head: $\quad H=z_{s}+\frac{V^{2}}{2 g} \quad=z_{b}+h+\frac{V^{2}}{2 g}$


$$
\frac{\mathrm{d} H}{\mathrm{~d} x}=\frac{\mathrm{d} z_{b}}{\mathrm{~d} x}+\frac{\mathrm{d} E}{\mathrm{~d} x}
$$

$$
\text { Define: } \quad \frac{\mathrm{d} H}{\mathrm{~d} x}=-S_{f}
$$

friction slope

$$
\frac{\mathrm{d} z_{b}}{\mathrm{~d} x}=-S_{0}
$$

geometric slope

GVF equation (specific-energy form): $\frac{\mathrm{d} E}{\mathrm{~d} x}=S_{0}-S_{f}$

## Derivation of the GVF Equation (2)

Specific energy: $\quad E=h+\frac{V^{2}}{2 g} \quad \longleftarrow=\frac{Q}{A} \quad \frac{\mathrm{~d} E}{\mathrm{~d} x}=S_{0}-S_{f}$

$$
\begin{aligned}
& E=h+\frac{Q^{2}}{2 g A^{2}} \\
& \frac{\mathrm{~d} E}{\mathrm{~d} x}=\frac{\mathrm{d} h}{\mathrm{~d} x}-\frac{Q^{2}}{g A^{3}} \frac{\mathrm{~d} A}{\mathrm{~d} x} \longleftarrow \mathrm{~d} A=b_{s} \mathrm{~d} h \\
& \frac{\mathrm{~d} E}{\mathrm{~d} x}=\frac{\mathrm{d} h}{\mathrm{~d} x}\left(1-\frac{Q^{2} b_{s}}{g A^{3}}\right) \longleftarrow \\
& \frac{\mathrm{d} E}{\mathrm{~d} x}=\frac{\mathrm{d} h}{\mathrm{~d} x}\left(1-\frac{V^{2}}{g \bar{h}}\right) \\
& S_{0}-S_{f}=\frac{\mathrm{d} h}{\mathrm{~d} x}\left(1-\mathrm{Fr}^{2}\right) \quad \bar{h}=\frac{A}{b_{s}} \\
& \text { GVF equation (depth form): } \quad \frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
\end{aligned}
$$

## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behavior
3.6 Numerical solution of the GVF equation

## Finding the Friction Slope, $\boldsymbol{S}_{f}$

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

## Quasi-uniform-flow assumption:

rate of energy loss is the same as uniform flow of the same depth.

$$
\begin{aligned}
& V=\frac{1}{n} R_{h}^{2 / 3} S_{f}^{1 / 2} \\
& S_{f}=\frac{n^{2} V^{2}}{R_{h}^{4 / 3}}=\frac{n^{2} Q^{2}}{R_{h}^{4 / 3} A^{2}} \quad=\text { function of depth } h
\end{aligned}
$$

Greater depth $\Rightarrow$ lower velocity $\Rightarrow$ smaller $S_{f}$ Smaller depth $\Rightarrow$ higher velocity $\Rightarrow$ greater $S_{f}$

## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behaviour
3.6 Numerical solution of the GVF equation

## Slope Classification

Critical depth $h_{c}$ : depth at which $\mathrm{Fr}=1$
Normal depth $h_{n}$ : depth of uniform flow ( $S_{f}=S_{0}$ )
e.g. wide channel: $\quad h_{c}=\left(q^{2} / g\right)^{1 / 3} \quad h_{n}=\left(n q / \sqrt{S_{0}}\right)^{3 / 5}$
(For a given discharge) a slope is:

- steep, if the normal flow is supercritical
(i.e. the normal depth is less than the critical depth)
- mild, if the normal flow is subcritical
(i.e. the normal depth is greater than the critical depth)


## Increasing or Decreasing Depth

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$


$S_{0}-S_{f}>0$ if and only if $h$ is greater than normal depth
$1-\mathrm{Fr}^{2}>0$ if and only if $h$ is greater than critical depth
$\mathrm{d} h$ $\frac{\mathrm{d} h}{\mathrm{~d} x}<0$ depth decreasing ...
... if and only if $h$ lies between normal and critical depths.

## Water-Profile Classification

2 characters (e.g. S1, M3 etc.):

- S, C, M, H, A (Steep, Critical, $\underline{M i l d}$, $\underline{H}$ orizontal, $\underline{A} d v e r s e$ )
- 1, 2, 3 (where $h$ lies with respect to $h_{c}$ and $h_{n}$ )

| Type | Symbol | Definition | Sketches | Examples |
| :---: | :---: | :---: | :---: | :---: |
| STEEP (normal flow supercritical) | S1 | $h>h_{c}>h_{n}$ |  | Hydraulic jump upstream with obstruction or reservoir controlling water level downstream. |
|  | S2 | $h_{c}>h>h_{n}$ |  | Change to steeper slope. |
|  | S3 | $h_{c}>h_{n}>h$ |  | Change to less steep slope. |
| CRITICAL <br> (undesirable; undular unsteady flow) | C1 | $h>h_{c}=h_{n}$ |  |  |
|  | C3 | $h_{c}=h_{n}>h$ |  |  |
| MILD (normal flow subcritical) | M1 | $h>h_{n}>h_{c}$ |  | Obstruction or reservoir controlling water level downstream. |
|  | M2 | $h_{n}>h>h_{c}$ |  | Approach to free overfall. |
|  | M3 | $h_{n}>h_{c}>h$ |  | Hydraulic jump downstream; change from steep to mild slope or downstream of sluice . |
| HORIZONTAL <br> (limiting mild slope; $\left.h_{n} \rightarrow \infty\right)$ | H2 | $h>h_{c}$ |  | Approach to free overfall. |
|  | H3 | $h_{c}>h$ |  | Hydraulic jump downstream; change from steep to horizontal or downstream of sluice. |
| ADVERSE <br> (upslope) | A2 | $h>h_{c}$ |  |  |
|  | A3 | $h_{c}>h$ |  |  |

## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behaviour
3.6 Numerical solution of the GVF equation

## Control Points

Definition: locations at which there is a known relationship between depth and flow rate (stage-discharge relationship)

## Examples:

- Critical flow points: weir, venturi, free overfall, ...
- Sluices
- Entry/exit from reservoir
- Hydraulic jump

A control point often yields a boundary condition from which to start a GVF calculation

## General Principles

- Supercritical $\Rightarrow$ controlled by upstream conditions. Subcritical $\Rightarrow$ controlled by downstream conditions.
- Given a long-enough fetch the flow will try to revert to normal flow.
- A hydraulic jump occurs between regions of supercritical and subcritical gradually-varied flow at the point where the jump condition for the sequent depths is correct.
- Where the slope is mild (i.e. the normal flow is subcritical), and any downstream control is far away, a hydraulic jump can be assumed to jump directly to the normal depth.


## Qualitative Examples: Weir (Mild Slope)



## Qualitative Examples: Sluice

## Mild slope



Steep slope


## Qualitative Examples: Flow From Reservoir

Mild slope


Steep slope


## Qualitative Examples

Flow into reservoir (mild slope)


RESERVOIR

Free overfall (mild slope)



## Qualitative Example: Exercise

Sketch the water profile for:

- Flow over weir (steep slope)



## Qualitative Example: Exercise

Sketch the water profile for:

- Flow into reservoir (from a steep slope)



## Gradually-Varied Flow

## 3. GRADUALLY-VARIED FLOW

3.1 Normal flow vs gradually-varied flow
3.2 Derivation of the gradually-varied-flow equation
3.3 Finding the friction slope
3.4 Profile classification
3.5 Qualitative examples of open-channel-flow behaviour 3.6 Numerical solution of the GVF equation

## The GVF Equation

Three forms:

Total head:

$$
\frac{\mathrm{d} H}{\mathrm{~d} x}=-S_{f}
$$

$$
\frac{\mathrm{d} E}{\mathrm{~d} x}=S_{0}-S_{f}
$$

Depth:

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

## Solving the GVF Equation

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

Impossible to solve analytically (in most circumstances)


Find depths $h_{1}, h_{2}, h_{3}, \ldots$ at discrete points $x_{1}, x_{2}, x_{3}, \ldots$

$$
\frac{\mathrm{d} h}{\mathrm{~d} x} \quad \text { approximated by } \frac{\Delta h}{\Delta x} \quad \text { where } \quad \begin{aligned}
\Delta h & =h_{i+1}-h_{i} \\
\Delta x & =x_{i+1}-x_{i}
\end{aligned}
$$

## Starting Point and Direction

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

Start at a control point.

## Proceed:

- forward in $x$ if supercritical (upstream control);

- backward in $x$ if subcritical (downstream control).



## Types of Method

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

## 1. Standard-step methods

Solve for depth $h_{i}$ at specified distance intervals $\Delta x$


## 2. Direct-step methods

Solve for distance $x_{i}$ at specified height intervals $\Delta h$

$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\mathrm{Fr}^{2}}{S_{0}-S_{f}}
$$



## Standard-Step Method: Total Head

$$
\begin{aligned}
& \text { ( } \frac{\mathrm{d} H}{\mathrm{~d} x}=-S_{f} \\
& \frac{H_{i+1}-H_{i}}{\Delta x}=-\left(\frac{S_{f, i}+S_{f, i+1}}{2}\right)
\end{aligned}
$$

Adjust depth $h_{i+1}$ (iteratively) at each step until LHS $=$ RHS .

## Direct-Step Method: Specific Energy



$$
\begin{aligned}
& \frac{\mathrm{d} E}{\mathrm{~d} x}=S_{0}-S_{f} \\
& \frac{\mathrm{~d} x}{\mathrm{~d} E}=\frac{1}{S_{0}-S_{f}}
\end{aligned}
$$

$$
E=h+\frac{V^{2}}{2 g}
$$

$$
\Delta x=\frac{\Delta E}{\left(S_{0}-S_{f}\right)_{\mathrm{av}}}
$$

$$
\Delta E=E_{i+1}-E_{i}
$$

$$
E=E(h)
$$

## Direct-Step Method: Depth



$$
\begin{aligned}
& \frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}} \\
& \frac{\mathrm{~d} x}{\mathrm{~d} h}=\frac{1-\mathrm{Fr}^{2}}{S_{0}-S_{f}}
\end{aligned}
$$

Write $S_{f}$ and $\mathrm{Fr}^{2}$ as functions of $h$

$$
\frac{\Delta x}{\Delta h} \approx\left(\frac{\mathrm{~d} x}{\mathrm{~d} h}\right)_{\mathrm{av}}
$$

$$
\Delta x=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\mathrm{av}} \Delta h
$$

## Example

A long, wide channel has a slope of $1: 2747$ with a Manning's $n$ of $0.015 \mathrm{~m}^{-1 / 3} \mathrm{~s}$. It carries a discharge of $2.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ per metre width, and there is a free overfall at the downstream end. An undershot sluice is placed a certain distance upstream of the free overfall which determines the nature of the flow between sluice and overfall. The depth just downstream of the sluice is 0.5 m .
(a) Determine the critical depth and normal depth.
(b) Sketch, with explanation, the two possible gradually-varied flows between sluice and overfall.
(c) Calculate the particular distance between sluice and overfall which determines the boundary between these two flows. Use one step in the gradually-varied-flow equation.

A long, wide channel has a slope of $1: 2747$ with a Manning's $n$ of $0.015 \mathrm{~m}^{-1 / 3} \mathrm{~s}$. It carries a discharge of $2.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$ per metre width, and there is a free overfall at the downstream end. An undershot sluice is placed a certain distance upstream of the free overfall which determines the nature of the flow between sluice and overfall. The depth just downstream of the sluice is 0.5 m .
(a) Determine the critical depth and normal depth.

$$
\begin{aligned}
& S_{0}=1 / 2747 \\
& n=0.015 \mathrm{~m}^{-1 / 3} \mathrm{~s} \\
& q=2.5 \mathrm{~m}^{2} \mathrm{~s}^{-1}
\end{aligned}
$$

Critical: $\quad h_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}=\mathbf{0 . 8 6 0 5} \mathrm{m}$

Normal: $\quad q=V h \quad V=\frac{1}{n} R_{h}^{2 / 3} S_{0}^{1 / 2} \quad R_{h}=h$ ("wide")

$$
\begin{aligned}
& q=\frac{1}{n} h^{5 / 3} \sqrt{S_{0}} \\
& h_{n}=\left(\frac{n q}{\sqrt{S_{0}}}\right)^{3 / 5}=\mathbf{1 . 5 0 0} \mathbf{m}
\end{aligned}
$$

(b) Sketch, with explanation, the two possible gradually-varied flows between sluice and overfall.

(c) Calculate the particular distance between sluice and overfall which determines the boundary between these two flows. Use one step in the gradually-variedflow equation.

(c) Calculate the particular distance between sluice and overfall which determines the boundary between these two flows. Use one step in the gradually-variedflow equation.

$$
\begin{align*}
& \frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}} \\
& \frac{\mathrm{~d} x}{\mathrm{~d} h}=\frac{1-\mathrm{Fr}^{2}}{S_{0}-S_{f}} \quad \mathrm{Fr}^{2}=\frac{V^{2}}{g h}=\frac{q^{2}}{g h^{3}}=\frac{0.6371}{h^{3}} \\
& S_{0}=3.640 \times 10^{-4} \\
& \left(^{*}\right) q=\frac{1}{n} h^{5 / 3} \sqrt{S_{f}} \quad S_{f}=\left(\frac{n q}{h^{5 / 3}}\right)^{2}=\frac{14.06 \times 10^{-4}}{h^{10 / 3}} \\
& \frac{\mathrm{~d} x}{\mathrm{~d} h}=\frac{1-\frac{0.6371}{h^{3}}}{\left(3.640-\frac{14.06}{h^{10 / 3}}\right) \times 10^{-4}} \\
& \frac{\Delta x}{\Delta h} \approx \frac{\mathrm{~d} x}{\mathrm{~d} h} \quad i \quad h_{i} \quad x_{i} \quad h_{\text {mid }} \quad\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \Delta x \\
& \Delta x=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \Delta h  \tag{0}\\
& \Delta h=0.3605 \\
& 1 \quad 0.8605 \quad 78.26
\end{align*}
$$

## Direct-Step Method: Depth



$$
\begin{array}{ll}
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}} & \\
\frac{\mathrm{~d} x}{\mathrm{~d} h}=\frac{1-\mathrm{Fr}^{2}}{S_{0}-S_{f}} & \text { Write } S_{f} \text { and } \mathrm{Fr}^{2} \\
\frac{\Delta x}{\Delta h}=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\mathrm{av}} & \Delta x=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\mathrm{av}} \Delta h
\end{array}
$$

Write $S_{f}$ and $\mathrm{Fr}^{2}$ as functions of h

## Example

A long rectangular channel of width 2.5 m , slope 0.004 and Manning's roughness coefficient $n=0.022 \mathrm{~m}^{-1 / 3} \mathrm{~s}$ carries water at $4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Temporary works narrow the channel at one location to 1.1 m for a short distance.
(a) Find the normal depth in the main channel and show that the slope is hydraulically mild.
(b) Show that a hydraulic transition takes place at the narrow point and find the depth just downstream of the narrowed section, confirming that supercritical flow is possible here.
(c) Use two steps in the gradually-varied-flow equation to estimate the distance from the end of the narrow section to the downstream hydraulic jump.

A long rectangular channel of width 2.5 m , slope 0.004 and Manning's roughness coefficient $n=0.022 \mathrm{~m}^{-1 / 3} \mathrm{~s}$ carries water at $4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$. Temporary works narrow the channel at one location to 1.1 m for a short distance.
(a) Find the normal depth in the main channel and show that the slope is hydraulically mild. $b=2.5 \mathrm{~m} \quad$ (main channel)
$S_{0}=0.004$
$n=0.022 \mathrm{~m}^{-1 / 3} \mathrm{~s}$
$Q=4 \mathrm{~m}^{3} \mathrm{~s}^{-1}$
$Q=V A \quad V=\frac{1}{n} R_{h}^{2 / 3} S^{1 / 2} \quad \begin{aligned} A & =b h \\ P & =b+2 h\end{aligned} \quad R_{h}=\frac{b h}{b+2 h} \quad=\frac{h}{1+2 h / b}$
$Q=\frac{1}{n} \frac{b h^{5 / 3}}{(1+2 h / b)^{2 / 3}} S^{1 / 2}$
$h=\left(\frac{n Q}{b \sqrt{S}}\right)^{3 / 5}(1+2 h / b)^{2 / 5}$

$$
\begin{aligned}
& h=0.7036(1+0.8 h)^{2 / 5} \\
& h_{n}=\mathbf{0 . 8 6 9 0} \mathbf{~ m}
\end{aligned}
$$

$V_{n}=\frac{Q}{b h_{n}}=1.841 \mathrm{~m} \mathrm{~s}^{-1}$
$\operatorname{Fr}_{n} \equiv \frac{V_{n}}{\sqrt{g h_{n}}}=\mathbf{0 . 6 3 0 5}$
subcritical normal flow
$\Rightarrow$ mild slope
(b) Show that a hydraulic transition takes place at the narrow point and find the depth just downstream of the narrowed section, confirming that supercritical flow is possible here.

Critical conditions at the throat ( $b_{m}=1.1 \mathrm{~m}$ ):

$$
\begin{array}{lll}
h_{c}=\left(\frac{q_{m}^{2}}{g}\right)^{1 / 3} & q_{m}=\frac{Q}{b_{m}}=3.636 \mathrm{~m}^{2} \mathrm{~s}^{-1} & h_{c}=1.105 \mathrm{~m} \\
H_{c}=z_{b}+E_{c} & =0+\frac{3}{2} h_{c}=1.658 \mathrm{~m} &
\end{array}
$$

Approach flow:

$$
\begin{aligned}
H_{a}=h_{n}+\frac{V_{n}^{2}}{2 g}=1.042 \mathrm{~m} \quad H_{a}<H_{c} \Rightarrow & \text { hydraulic transition occurs } \\
& H=H_{c}=1.658 \mathrm{~m} \text { throughout }
\end{aligned}
$$

Main channel width $(b=2.5 \mathrm{~m})$ :

$$
H=h+\frac{Q^{2}}{2 g b^{2} h^{2}} \quad 1.658=h+\frac{0.1305}{h^{2}} \quad h=\sqrt{\frac{0.1305}{1.658-h}} \quad h_{2}=\mathbf{0 . 3 1 1 3} \mathbf{~ m}
$$

Mild slope, so any supercritical GVF would have to increase in depth with distance.

$$
h_{J}=\frac{h_{n}}{2}\left(-1+\sqrt{1+8 \mathrm{Fr}_{n}^{2}}\right)=0.4539 \mathrm{~m} \quad h_{2}<h_{J} \Rightarrow \text { supercritical GVF occars }
$$

(c) Use two steps in the gradually-varied-flow equation to estimate the distance from the end of the narrow section to the downstream hydraulic jump.


$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\frac{0.2610}{h^{3}}}{0.004-1.239 \times 10^{-3} \frac{(1+0.8 h)^{4 / 3}}{h^{10 / 3}}}
$$

(c) Use two steps in the gradually-varied-flow equation to estimate the distance from the end of the narrow section to the downstream hydraulic jump.

$$
\begin{array}{lc}
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\frac{0.2610}{h^{3}}}{0.004-1.239 \times 10^{-3} \frac{(1+0.8 h)^{4 / 3}}{h^{10 / 3}}} \\
\Delta x=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \Delta h & \Delta h=0.0713
\end{array} \quad h_{0}=0.3113 \quad h_{1}=0.4539
$$

$i \quad h_{i} \quad x_{i} \quad h_{\text {mid }} \quad\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \quad \Delta x$

| 0 | 0.3113 | 0 |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 0.34695 | 96.27 | 6.864 |

$1 \quad 0.3826 \quad 6.864$

$$
0.41825 \quad 87.70 \quad 6.253
$$

$2 \quad 0.4539 \quad 13.12$

## Example

A long rectangular channel of width 2.2 m , streamwise slope 1:100 and Chézy coefficient $80 \mathrm{~m}^{1 / 2} \mathrm{~s}^{-1}$ carries a discharge of $4.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(a) Find the normal depth and critical depth and show that the slope is steep at this discharge.
(b) An undershot sluice gate causes a hydraulic transition in this flow. The depth of parallel flow downstream of the gate is 0.35 m . Find the depth immediately upstream of the gate and sketch the flow.
(c) Using 2 steps in the gradually-varied-flow equation, find the distance between the gate and the hydraulic jump.

A long rectangular channel of width 2.2 m , streamwise slope 1:100 and Chézy coefficient $80 \mathrm{~m}^{1 / 2} \mathrm{~s}^{-1}$ carries a discharge of $4.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$.
(a) Find the normal depth and critical depth and show that the slope is steep at this discharge.
$b=2.2 \mathrm{~m}$
$S_{0}=0.01$
$C=80 \mathrm{~m}^{1 / 2} \mathrm{~s}^{-1}$
$Q=4.5 \mathrm{~m}^{3} \mathrm{~s}^{-1}$

Normal depth:

$$
\begin{array}{lll}
Q=V A & V=C R_{h}^{1 / 2} S_{0}^{1 / 2} & \begin{array}{l}
A=b h \\
P=b+2 h
\end{array} \\
Q=C\left(\frac{h}{1+2 h / b}\right)^{1 / 2} S_{0}^{1 / 2} b h & & \\
\frac{Q}{C b \sqrt{S_{0}}}=\frac{h^{3 / 2}}{(1+2 h / b)^{1 / 2}} & \left(^{*}\right) & \\
h=\left(\frac{Q}{C b \sqrt{S_{0}}}\right)^{2 / 3}(1+2 h / b)^{1 / 3} & h=0.4028(1+0.9091 h)^{1 / 3} \quad h_{n}=\mathbf{0 . 4 5 1}
\end{array}
$$

Critical depth:
$h_{c}=\left(\frac{q^{2}}{g}\right)^{1 / 3}$

$$
q=\frac{Q}{b}=2.045 \mathrm{~m}^{2} \mathrm{~s}^{-1}
$$

$$
h_{c}=\mathbf{0 . 7 5 2 6} \mathbf{~ m}
$$

(b) An undershot sluice gate causes a hydraulic transition in this flow. The depth of parallel flow downstream of the gate is 0.35 m . Find the depth immediately upstream of the gate and sketch the flow.

$$
\begin{array}{ll}
Q=4.5 \mathrm{~m}^{3} \mathrm{~s}^{-1} & b=2.2 \mathrm{~m} \\
h_{2}=0.35 \mathrm{~m} &
\end{array}
$$

$$
\begin{aligned}
& \quad b=2.2 \mathrm{~m} \\
& z_{s 1}+\frac{V_{1}^{2}}{2 g}=z_{s 2}+\frac{V_{2}^{2}}{2 g} \\
& h_{1}+\frac{Q^{2}}{2 g b^{2} h_{1}^{2}}=h_{2}+\frac{Q^{2}}{2 g b^{2} h_{2}^{2}} \\
& h_{1}+\frac{0.2132}{h_{1}^{2}}=2.090 \\
& h_{1}=2.090-\frac{0.2132}{h_{1}^{2}} \\
& h_{1}=2.039 \mathrm{~m}
\end{aligned}
$$

... sketch the flow.

(c) Using 2 steps in the gradually-varied-flow equation, find the distance between the gate and the hydraulic jump.


$$
\begin{aligned}
& h_{n}=0.4518 \mathrm{~m} \\
& V_{n}=\frac{Q}{b h_{n}}=4.527 \mathrm{~m} \mathrm{~s}^{-1} \\
& \mathrm{Fr}_{n}=\frac{V_{n}}{\sqrt{g h_{n}}}=2.150
\end{aligned}
$$

$$
\begin{aligned}
h_{J} & =\frac{h_{n}}{2}\left(-1+\sqrt{1+8 \mathrm{Fr}_{n}^{2}}\right) \\
& =1.166 \mathrm{~m}
\end{aligned}
$$

(d) Use 2 steps in the gradually-varied-flow equation to determine how far upstream of the sluice a hydraulic jump will occur.


$$
\Delta h=\frac{1.166-2.039}{2}=-0.4365 \mathrm{~m}
$$

$$
\frac{\mathrm{d} h}{\mathrm{~d} x}=\frac{S_{0}-S_{f}}{1-\mathrm{Fr}^{2}}
$$

$$
\mathrm{Fr}^{2}=\frac{V^{2}}{g h}=\frac{Q^{2}}{g b^{2} h^{3}}=\frac{0.4263}{h^{3}}
$$

$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\mathrm{Fr}^{2}}{S_{0}-S_{f}}
$$

$$
S_{0}=0.01
$$

(*) $\quad \frac{Q}{C b \sqrt{S_{f}}}=\frac{h^{3 / 2}}{(1+2 h / b)^{1 / 2}}$
$S_{f}=\left(\frac{Q}{C b}\right)^{2} \frac{(1+2 h / b)}{h^{3}}=6.537 \times 10^{-4} \frac{(1+0.9091 h)}{h^{3}}$

$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\frac{0.4263}{h^{3}}}{0.01-6.537 \times 10^{-4} \frac{1+0.9091 h}{h^{3}}}
$$

(d) Use 2 steps in the gradually-varied-flow equation to determine how far upstream of the sluice a hydraulic jump will occur.

$$
\frac{\mathrm{d} x}{\mathrm{~d} h}=\frac{1-\frac{0.4263}{h^{3}}}{0.01-6.537 \times 10^{-4} \frac{1+0.9091 h}{h^{3}}}
$$


$\Delta x=\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \Delta h$

$$
\Delta h=-0.4365
$$

$i \quad h_{i} \quad x_{i} \quad h_{\text {mid }} \quad\left(\frac{\mathrm{d} x}{\mathrm{~d} h}\right)_{\text {mid }} \Delta x$
$0 \quad 2.039$
0
$1 \quad 1.6025-41.77$

$$
\begin{array}{lll}
1.384 & 88.87 & -38.79
\end{array}
$$

$2 \quad 1.166 \quad-80.56$

