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2. WAVE TRANSFORMATION AUTUMN 2023 
 

This section will look at the following wave transformations as waves approach a coastline: 

Refraction – change of direction as oblique waves move into shallower water; 

Shoaling – change of height as waves move into shallower water; 

Breaking – collapse of waves after steepening; 

Diffraction – spreading of waves into a region of shadow; 

Reflection – reversal of direction at a boundary, often combining to form a standing wave. 

 

 

2.1 Refraction 
 

Refraction is the bending of waves toward the normal as they move into shallower water. 

 

Waves may approach a coastline at an angle θ, defined as the angle between wave crests and 

the depth contours, or between the corresponding normals (for the wave, also called rays or 

orthogonals). 

 

As waves move toward a coastline: 

• their period remains constant; 

• their wavelength changes (because the depth changes); 

and hence: 

• their speed changes. 

 

Refraction (which occurs with other wave phenomena, notably in optics) is the change in 

direction with wave speed. 

 

 

2.1.1 Snell’s Law 

 
 

Consider a discrete depth change ℎ1 → ℎ2, with corresponding phase-speed change 𝑐1 → 𝑐2. 

Look at the region where two successive wave crests cross the depth change. From the diagram, 

since the period of waves is not changed, distances AB and A′ B′ between successive wave 

crests are covered in the same time 𝑇: 
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𝑇 =
distance

speed
     =

𝑑 sin 𝜃1
𝑐1

     =
𝑑 sin 𝜃2
𝑐2

 

Hence, 

sin 𝜃1
𝑐1

     =
sin 𝜃2
𝑐2

 

 

In reality, depth (and hence speed) change as waves approach the shore is gradual rather than 

sudden. However, it can still be imagined as a series of such small steps. Thus, refraction is 

governed by Snell’s law: 

sin 𝜃

𝑐
= constant 

or, in terms of wavenumber (since 𝑐 = 𝜔 𝑘⁄ , and frequency 𝜔 is unchanged): 

𝑘 sin 𝜃 = constant 

or 

(𝑘 sin 𝜃)1 = (𝑘 sin 𝜃)2 

 

Thus, wave direction changes approaching the coast 

may be determined from the change in celerity 𝑐 or 

wavenumber 𝑘 with depth. Since the depth, and 

hence speed, tend to zero at the coastline, obliquely-

approaching waves eventually turn to meet the coast 

at 90º. (Waves never “miss” the beach!) 

 

 

 

 

 

 

2.1.2 (Optional) Ray-Tracing Derivation of Snell’s Law 

 

This was taught in previous years, and hence appears in some exam papers. It is part of an 

impressively powerful, but considerably more mathematical approach to wave motion. 

 

The phase function (e.g. what goes inside the sine or cosine for a harmonic wave) of a 

disturbance travelling in the direction k = (𝑘𝑥, 𝑘𝑦, 0) is 

Ω = k•x− 𝜔𝑡 

From this, k is the gradient of the phase; i.e. its components are the spatial 

partial derivatives: 

k = ∇Ω ≡ (
𝜕Ω

𝜕𝑥
,
𝜕Ω

𝜕𝑦
,
𝜕Ω

𝜕𝑧
) 

Since k is the gradient of a function it is irrotational (essentially because the 

second partial derivatives commute), so that 
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𝜕𝑘𝑦

𝜕𝑥
−
𝜕𝑘𝑥
𝜕𝑦

= 0 

Taking 𝑥 as toward the coast and 𝑦 as the along-shore direction parallel to the coast (strictly, 

parallel to the depth contours) quantities do not vary in the 𝑦 direction, so 𝜕𝑘𝑥 𝜕𝑦⁄ = 0. Hence, 

𝜕𝑘𝑦

𝜕𝑥
= 0 

or 

𝑘𝑦(= 𝑘 sin 𝜃)   is constant 

as before1. 

 

 

Example. 

A straight coastline borders a uniformly-sloping sea bed. Regular waves are observed to cross 

the 8 m depth contour at an angle of 14° to the coastline-normal, with wavelength 45 m. Find: 

 

(a) the wave period; 

 

(b) the wavelength in deep water; 

 

(c) the direction in deep water. 

 

 

 

 

 

 

 

 

  

 
1 There are many other ways of deriving Snell’s Law, including Fermat’s Principle of Least 

Time. This is worth looking up. 
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2.2 Shoaling 
 

Shoaling is the change in height of waves as they move into shallower water. 

 

This occurs because of a change in group velocity (energy transmission velocity) as the depth 

decreases. If there is no bottom friction, no wave breaking and no reflection then the energy 

transmission shoreward must remain the same in all water depths. 

 

Wave energy (per unit surface area) and power (per unit length of crest) are given by 

𝐸 =
1

2
𝜌𝑔𝐴2      =

1

8
𝜌𝑔𝐻2 

𝑃 = 𝐸𝑐𝑔 

where 𝐻 is the wave height and 𝑐𝑔 is the group velocity. For regular waves: 

𝑐𝑔 = 𝑛𝑐 ,          where          𝑛 =
1

2
[1 +

2𝑘ℎ

sinh 2𝑘ℎ
]  ,          𝑐 =

𝜔

𝑘
 

𝜔 and 𝑘 are related by the usual dispersion relation. 

 

Shoaling behaviour is determined on the basis that the shoreward 

component of energy transport is constant; i.e. 

𝑃 cos 𝜃 = constant 

(An alternative approach assumes that the power between two orthogonals is constant. See the 

diagram for refraction in the previous section: 

 𝑃 × (length of crest) = 𝑃𝑑 cos 𝜃 

for two orthogonals crossing a depth contour distance 𝑑 apart.) 

 

Since energy ∝ 𝐻2 the wave height approaching the shore satisfies 

𝐻2𝑐𝑔 cos 𝜃 = constant 

i.e. 

(𝐻2𝑛𝑐 cos 𝜃)1 = (𝐻
2𝑛𝑐 cos 𝜃)2 

If subscript 1 denotes reference (often deep-water) conditions, then at location 2: 

𝐻2 = 𝐻1 (
cos 𝜃1
cos 𝜃2

)
1 2⁄

⏟      
refraction
coefficient

𝐾𝑅

(
(𝑛𝑐)1
(𝑛𝑐)2

)
1 2⁄

⏟      
shoaling

coefficient
𝐾𝑠
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Note that as the wave moves into shallower water: 

• the wavelength decreases and an oblique wave will turn toward the normal; 

• at intermediate depths the height may actually increase or decrease depending on group 

velocity and refraction; however, in sufficiently shallow water, cos 𝜃 → 1, 𝑛 → 1 and 

𝑐~√𝑔ℎ, so eventually wave height must increase; the resulting steepening of the wave 

ultimately leads to wave breaking (see later). 

 

 

Example. Exam 2016 (part) 

Waves propagate towards a long straight coastline that has a very gradual bed slope normal to 

the coast. In water depth of 20 m, regular waves propagate at heading 𝜃 = 40° relative to the 

bed slope. 

 

(a) Sketch the shape of a wave ray from the 20 m depth contour to the 5 m depth contour 

for a wave that is of deep-water type in both depths and, separately, for a wave that is 

of shallow water type in both depths. Calculations are not required. 

 

(b) For a wave with period 𝑇 = 8 s and height 1.2 m at 20 m depth, calculate the wave 

heading and wave height at the 5 m depth contour. 
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2.3 Breaking 
 

As waves move into shallow water, shoaling causes wavelength to decrease, but wave height 

ultimately to increase; i.e. the wave steepens. According to linear theory, 𝐻 would become 

unbounded, but, in reality, linear theory breaks down, waves become unstable and break, 

dissipating their energy in turbulence and subsequently running up the beach at much reduced 

depth accompanied by foam (the post-breaking or swash zone). 

 

Because wave loading on structures depends significantly on wave height, design and siting of 

nearshore structures requires knowledge of the breaking point. 

 

 

2.3.1 Breaking Criteria 
 

Wave breaking depends on the ratio of wave height (𝐻) to wavelength (𝐿) and/or depth (ℎ), 

and on the slope of the beach (𝑚). 

 

Miche Criterion (Steepness, or Height-to-Wavelength Ratio) 

 

An early criterion was that of Miche (1944): 

(
𝐻

𝐿
)
𝑏
= 0.14 tanh(𝑘ℎ)𝑏 

where subscript 𝑏 denotes breaking conditions. Note that wavelength 𝐿 and the corresponding 

wavenumber 𝑘 = 2π/𝐿 are the local conditions, i.e. at the breaking point.  

 

A useful interpretation is that waves break when fluid particles moving at the wave crest speed 

𝑢max begin to catch up with the wave speed 𝑐: 

𝑢max
𝑐

=
(𝐴𝑔𝑘 𝜔⁄ )

(ω 𝑘⁄ )
     =

𝐴𝑔𝑘2

𝜔2
     =  

𝐴𝑘

tanh 𝑘ℎ
     =

π𝐻/𝐿

tanh 𝑘ℎ
   

Thus, 𝑢max/𝑐 reaches some critical value when 

𝐻

𝐿
= constant × tanh(𝑘ℎ) 

with the constant being determined empirically. 

 

In deep water (tanh 𝑘ℎ → 1) the Miche criterion yields a critical steepness 

(
𝐻

𝐿
)
𝑏
= 0.14 ,         or about  

1

7
 

 

In shallow water (tanh𝑘ℎ~𝑘ℎ) this gives, with 𝑘 = 2π/𝐿, 

(
𝐻

𝐿
)
𝑏
= 0.14 ×

2πℎ

𝐿
 

or a breaker depth index (see below) 

𝛾𝑏 = (
𝐻

ℎ
)
𝑏
 = 0.88 
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This is slightly on the high side. 

 

 

Breaker Height Index 

 

The breaker height index is 

Ω𝑏 =
𝐻𝑏
𝐻0
          (

wave height at breaking

deep-water height
) 

The deep-water wave height 𝐻0 can be determined from height at any known location via the 

shoaling equation (see example below). 

 

A commonly-used correlation is 

Ω𝑏 = 0.56 (
𝐻0
𝐿0
)
−1 5⁄

 

where deep-water wave height 𝐻0 is established from shoaling and the deep-water wavelength 

𝐿0 is calculated from the wave period: 𝐿0 = 𝑔𝑇
2/2π. 

  

 

Breaker Depth Index 

 

The breaker depth index is 

𝛾𝑏 = (
𝐻

ℎ
)
𝑏
              (

wave height at breaking

water depth at breaking
) 

 

McCowan (1894) gave a critical value 𝛾𝑏 = 0.78, which is still widely used for shallow-water 

breaking on mild slopes. However, use of a constant value fails to recognise the role of beach 

slope, m. A reanalysis of data by Weggel (1972) produced the following empirical formulae 

for the critical breaker depth index: 

𝛾𝑏 = 𝑏 − 𝑎
𝐻𝑏
𝑔𝑇2

        = 𝑏 − 𝑎
𝐻𝑏
2π𝐿0

 

where 

𝑎 = 43.8(1 − 𝑒−19𝑚),          𝑏 =
1.56

1 + 𝑒−19.5𝑚
 

Again, this bases the measure of steepness 𝐻𝑏/𝐿0 on the deep-water wavelength 𝐿0. Note that 

this gives 𝛾𝑏 = 0.78 when the beach slope 𝑚 → 0, consistent with the earlier approximation. 

 

 

2.3.2 Types of Breakers 
 

The type of breaker which ensues depends on the beach slope m compared with the wave 

steepness 𝐻/𝐿0 (again based on the deep-water wavelength) and has been found to correlate 

well with the Irribarren number (aka surf-similarity parameter): 

𝜉0 =
𝑚

√𝐻0/𝐿0
               or               𝜉𝑏 =

𝑚

√𝐻𝑏/𝐿0
                  ( 

beach slope

√wave steepness
) 
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(Note the two possibilities, depending on whether the breaking height 𝐻𝑏 or deep-water height 

𝐻0 is used.) 

 

Then: 

 𝜉0 < 0.5 spilling breakers 

 0.5 < 𝜉0 < 3.3 plunging breakers 

 3.3 < 𝜉0 surging or collapsing breakers 

 

If 𝜉𝑏 is used instead then the limiting numbers are 0.4 and 2.0 (Battjes, 1974). 

 

 

Spilling breakers occur for steep waves or mildly-sloping beaches (typically less than 1 in 

100). Foam spills down the front of the crest (“white horses”). Gentle, slowly-breaking waves. 

 

Plunging breakers occur on moderately steep beaches. The steepening wave front curls over 

the preceding trough and crashes down into it. Sudden, violent, dissipative breaking. 

 

Collapsing breakers occur for very long waves or very steep beaches. Crest never fully rolls 

over but the steep front face collapses from the bottom. 

 

Surging breakers occur for long-period, low-steepness waves on steep beaches. The wave 

may not break, but forms a front, with extensive run-up on the beach. Lack of dissipation means 

these are quite reflective. 

 

 

 

 
 

  

Spilling

Plunging

Collapsing

Surging
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Example. 

Waves propagate towards a long straight coastline that has a constant bed slope of 1 in 100. 

Consider the x-axis to be normal to the coastline and the y-axis parallel to the coastline. Waves 

propagate at an angle θ to the x-axis. 

 

(a) A wave with period 7 s and height 1.2 m crosses the 36 m depth contour at angle 𝜃 =
22°. 

 (i) Determine the direction, height and power per metre width of wave crest at the 

4 m depth contour. 

 (ii) Explain how height changes between these depths. 

 

(b) A wave with period 7 s and height 1.0 m crosses the 4 m depth contour at angle 𝜃 = 0°. 
Determine the breaking wave height and breaking depth from their corresponding 

indices and identify the type of breaker expected. 

 

(c) Further along the coast, waves propagate over the outflow of a river. In water depth of 

14 m, measurements indicate a period of 7 s and depth-averaged flow velocity of 

0.8 m s–1 against the wave direction. Determine the wavelength. 

 

 

 

Example. (Exam 2017, part) 

Waves propagate towards a straight shoreline. The wave heading is equal to the angle formed 

between wave crests and the bed contours. The bed slope is less than 1 in 100. Waves are 

measured in 30 m depth and wave conditions at 6 m depth are required to inform design of 

nearshore structures. 

 

Regular waves are measured with period of 7 s and height of 3 m. 

(a) Determine the water depth in which waves with this period can be considered as deep-

water waves. 

 

(b) For 30 m depth, determine the breaking height by the Miche criterion and briefly 

describe this type of breaking wave. 

 

(c) If the heading is zero degrees, calculate wave height in 6 m depth. State your 

assumptions. 

 

(d) If the heading of the measured conditions is 30°, calculate the wave heading and height 

in 6 m depth. Hence calculate the change of wave power per unit width of wave crest 

(kW m–1) between the two depths. 
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2.4 Diffraction 
 

When an obstacle, for example a harbour breakwater or offshore structure, impedes the passage 

of a wave it creates a region of geometric shadow. Since the water waves still cause oscillations 

in the “illuminated zone” (note the analogy with light waves!) disturbances must propagate into 

the region of shadow to avoid discontinuities in the water surface. 

 

Diffraction is the spreading of waves into a region of geometric shadow. 

 

 
 

 

 

 

 

 

2.4.1 Diffraction Coefficients 
 

Diffraction behaviour is difficult to calculate (see the optional summary at the end of this 

section if you are interested) and data is usually presented either as charts (e.g. Shore Protection 

Manual (1984), or USACE Coastal Engineering Manual), tables, or computer software in terms 

of diffraction coefficients: 

𝐾𝐷(x) =
𝐻(x)

𝐻0
 

the ratio of wave heights (or amplitudes) at a particular point to those in an incident plane wave. 

wave
reflection

illuminated zone geometric shadow

breakwater
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Semi-infinite plane breakwater; 90° wave incidence 

 

 
 

Note that the wave height along the line behind the breakwater tip is exactly half that in the 

incident wave. This continues (as an approximation) for other angles of incidence. 

 

 

Breakwater with a 2L gap 
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Offshore finite breakwater; length 10L 

 
 

 

2.4.2 (Optional) Calculation of Diffraction Coefficients 
 

For the interested, diffraction patterns are the result of solving for a complex velocity potential 

of the form 

𝜙 =
cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
𝐹(𝑥, 𝑦)𝑒−i𝜔𝑡 

(The actual physical solution would just be the real part of this complex number). For an 

incident plane wave with wavenumber vector k and unit amplitude, 𝜙 will satisfy the Laplace 

equation if 𝐹 satisfies a Helmholtz equation of the form 

𝜕2𝐹

𝜕𝑥2
+
𝜕2𝐹

𝜕𝑦2
= −𝑘2𝐹 

with boundary conditions 

𝐹~eik●x    at infinity 

𝜕𝐹

𝜕𝑛
= 0     on solid boundaries 

The first boundary condition defines the incident unit-amplitude plane wave and the latter the 

kinematic condition of no velocity through the boundary. 

 

As a complex number, the amplitude of 𝐹 gives the diffraction coefficient (ratio of wave height 

at a point to that in the incident wave), whilst its phase can be used to find the wave crests. 
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Penney and Price (1952)2 give the exact solution for oblique incidence on a semi-infinite plane 

breakwater (based on a classical solution for light waves by Sommerfeld, 1896) and 

approximate, but fairly accurate, solutions for finite-length breakwaters and breakwater gaps. 

The diagrams in these notes have been plotted from the solutions in that paper. 

 

Further chart-based solutions are available from the Shore Protection Manual3 or the US Army 

Corps of Engineers Coastal Engineering Manual4. 

. 

 

Example. 

A harbour is to be protected by an L-shaped 

breakwater as sketched. Determine the 

length 𝑋 of the outer arm necessary for the 

wave height at point P to be 0.3 m when 

incident waves have a height of 3 m and a 

period of 5 s. 

 

The depth is everywhere uniform at 5 m. 

The diffraction diagram for the appropriate 

approach angle is shown. Neglect reflections 

within the harbour. 

 

 

 

 

 
 

  

 
2 Penney, W.G. and Price, A.T., 1952, The diffraction theory of sea waves and the shelter afforded by breakwaters, 

Phil. Trans. Roy. Soc. London, Ser A, 244, pp. 236-253. 
3 Downloadable from, e.g., http://resolver.tudelft.nl/uuid:98791127-e7ae-40a1-b850-67d575fa1289 
4 Downloadable from, e.g., Chapter 7 in: 

https://www.publications.usace.army.mil/Portals/76/Publications/EngineerManuals/EM_1110-2-1100_Part-

02.pdf 

P 90 m

90 m

X

incident
wave crests

75o

http://resolver.tudelft.nl/uuid:98791127-e7ae-40a1-b850-67d575fa1289
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2.5 Reflection 
 

2.5.1 Combining Incident and Reflected Waves 
 

When a wave reaches a rigid impermeable vertical wall it is reflected, with boundary condition 

𝑢 = 0     at the wall 

 

Consider the superposition of two progressive waves with similar frequencies and 

wavenumbers, but travelling in opposite directions: an incoming one (coming from the right) 

and an outgoing one. For example, the water surface elevation: 

𝜂 = 𝐴 cos(𝑘𝑥 − 𝜔𝑡) + 𝐴 cos(−𝑘𝑥 − 𝜔𝑡)

= 𝐴[cos(𝑘𝑥 − 𝜔𝑡) + cos(𝑘𝑥 + 𝜔𝑡)]

= 2𝐴 cos 𝑘𝑥 cos𝜔𝑡

 

This produces a standing wave (at any point in space it oscillates harmonically in time) with 

double the amplitude, with nodes (points of zero displacement) at 𝑘𝑥 = π 2⁄ , 3π 2⁄ , 5π 2⁄ ,…  
corresponding to 1/4, 3/4, 5/4 … wavelengths back from the reflective wall. 

 

 
 

The corresponding velocity superposition gives 

𝑢 =
𝐴𝑔𝑘

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡) +

𝐴𝑔(−𝑘)

𝜔

cosh[(−𝑘)(ℎ + 𝑧)]

cosh[(−𝑘)ℎ]
cos(−𝑘𝑥 − 𝜔𝑡)

=
𝐴𝑔𝑘

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
[cos(𝑘𝑥 − 𝜔𝑡) − cos(𝑘𝑥 + 𝜔𝑡)]

=
2𝐴𝑔𝑘

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
sin 𝑘𝑥 sin𝜔𝑡

 

Again, this corresponds to a standing wave. The points of zero horizontal velocity are 𝑘𝑥 = 𝑛π 

and hence this could describe reflection at any of these points. 

 

Hence: 

• (Complete) reflection can be represented by the superposition of two equal and opposite 

progressive waves to form a standing wave. 

• The standing wave has the same wavelength and frequency but twice the amplitude. 

• There are nodes (positions of zero surface displacement η) separated by distance π 𝑘⁄  

or 𝐿 2⁄  (i.e. half a wavelength), with velocity nodes half way between them. 

• The point of reflection corresponds to a point of zero velocity and double-amplitude 

displacement. This is important when we consider wave forces on structures. 

 

  

node
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2.5.2 Seiching (Basin Oscillations) 
 

Just like musical instruments, standing waves may occur in enclosed basins (reflection from 

both ends) as a resonance condition if the wind-speed and basin dimensions are favourable. 

The first few modal shapes are illustrated below. 

 

 
 

The basin length is a whole number of half-wavelengths: 

𝐵 = 𝑛𝑠(
1

2
𝐿) 

or 

𝐿 =
2𝐵

𝑛𝑠
 

 

The enclosure means that these are typically shallow-water waves with speed 

𝐿

𝑇
= √𝑔ℎ 

with seiching period (Merian formula): 

𝑇 =
2𝐵

𝑛𝑠√𝑔ℎ
 

 

Only the fundamental mode (𝑛𝑠 = 1) is usually established. 

 

 

 

Example. 

Lake Baikal in Siberia contains about one fifth of the world’s fresh-water resources. It is 

636 km long, with an average depth of 744 m. Find the fundamental period for seiching. 

 

Fundamental
(mode 1)

Mode 2

Mode 3

B


