ANSWERS (WAVES EXAMPLES)

Q1.
Given:

$$
\begin{aligned}
& h=20 \mathrm{~m} \\
& A=4 \mathrm{~m} \quad(H=8 \mathrm{~m}) \\
& T=13 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=0.4833 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.4762=k h \tanh k h
\end{aligned}
$$

The LHS is small, so iterate as

$$
k h=\frac{1}{2}\left(k h+\frac{0.4762}{\tanh k h}\right)
$$

to get

$$
\begin{aligned}
& k h=0.7499 \\
& k=\frac{0.7499}{h}=0.03750 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=167.6 \mathrm{~m} \\
& c=\frac{\omega}{k}\left(\text { or } \frac{L}{T}\right)=12.89 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: wavelength 168 m , phase speed $12.9 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) By formula:

$$
\begin{aligned}
& u=\frac{g k A}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t) \\
& a_{x}=\frac{\partial u}{\partial t}(+ \text { neglected non-linear terms }) \quad=g k A \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
\end{aligned}
$$

Hence

$$
a_{x, \max }=1.137 \cosh k(h+z)
$$

Then:

$$
\begin{array}{ll}
\operatorname{surface}(z=0): & a_{x, \max }=1.137 \cosh k h=1.472 \mathrm{~m} \mathrm{~s}^{-2} \\
\operatorname{mid}-\operatorname{depth}(z=-h / 2): & a_{x, \max }=1.137 \cosh (k h / 2)=1.218 \mathrm{~m} \mathrm{~s}^{-2}
\end{array}
$$

$$
\text { bottom: }(z=-h): \quad a_{x, \max }=1.137 \mathrm{~m} \mathrm{~s}^{-2}
$$

Answer: $(1.47,1.22,1.14) \mathrm{m} \mathrm{s}^{-2}$.

Q2.
Waves A and B (no current)
In the absence of current the dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h
\end{aligned}
$$

This may be iterated as either

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

	Wave A	Wave B
h	20 m	3 m
T	10 s	12 s
$\omega=\frac{2 \pi}{T}$	$0.6283 \mathrm{rad} \mathrm{s}^{-1}$	$0.5236 \mathrm{rad} \mathrm{s}^{-1}$
$\frac{\omega^{2} h}{g}$	0.8048	0.08384
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.8048}{\tanh k h}\right)$	$k h=\frac{1}{2}\left(k h+\frac{0.08384}{\tanh k h}\right)$
$k h$	1.036	0.2937
k	$0.0518 \mathrm{~m}^{-1}$	$0.0979 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$12.13 \mathrm{~m} \mathrm{~s}^{-1}$	5.348
Type:	Intermediate $(\pi / 10<k h<\pi)$	Shallow $(k h<\pi / 10)$

Wave C (with current)

$$
\begin{aligned}
& T_{a}=6 \mathrm{~s} \\
& h=24 \mathrm{~m} \\
& U=-0.8 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Then

$$
\omega_{a}=\frac{2 \pi}{T_{a}}=1.047 \mathrm{rad} \mathrm{~s}^{-1}
$$

With current, the dispersion relation is

$$
\left(\omega_{a}-k U_{0}\right)^{2}=\omega_{r}^{2}=g k \tanh k h
$$

Rearrange for iteration as

$$
k=\frac{\left(\omega_{a}-k U_{0}\right)^{2}}{g \tanh k h}
$$

i.e.

$$
k=\frac{(1.047+0.8 k)^{2}}{9.81 \tanh (24 k)}
$$

Solve:

$$
\begin{aligned}
& k=0.1367 \mathrm{~m}^{-1} \\
& k h=3.2808
\end{aligned}
$$

The speed relative to the fixed-position sensor is the absolute speed:

$$
c_{a}=\frac{\omega_{a}}{k}=\frac{1.047}{0.1367}=7.659 \mathrm{~m} \mathrm{~s}^{-1}
$$

Since $k h>\pi$ this is a deep-water wave.
Answer: A: intermediate, $12.1 \mathrm{~m} \mathrm{~s}^{-1} ; ~ B$: shallow, $5.348 \mathrm{~m} \mathrm{~s}^{-1} ; ~ C:$ deep, $7.66 \mathrm{~m} \mathrm{~s}^{-1}$.

Q3.
Given:

$$
\begin{aligned}
& h=15 \mathrm{~m} \\
& f=0.1 \mathrm{~Hz} \\
& p_{\text {range }}=9500 \mathrm{~N} \mathrm{~m}^{-2}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T}=2 \pi f=0.6283 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.6036=k h \tanh k h
\end{aligned}
$$

The LHS is small, so iterate as

$$
k h=\frac{1}{2}\left(k h+\frac{0.6036}{\tanh k h}\right)
$$

to get

$$
\begin{aligned}
& k h=0.8642 \\
& k=\frac{0.8642}{h}=0.05761 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k} \quad=109.1 \mathrm{~m}
\end{aligned}
$$

By formula, the wave part of the pressure is

$$
p=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

and hence the range $(\max -\min)$ at the seabed sensor $(z=-h)$ is

$$
p_{\text {range }}=\frac{2 \rho g A}{\cosh k h}=\frac{\rho g H}{\cosh k h}
$$

Hence,

$$
H=p_{\text {range }} \times \frac{\cosh k h}{\rho g}=9500 \times \frac{\cosh 0.8642}{1025 \times 9.81}=1.32 \mathrm{~m}
$$

Answer: 1.32 m .

Q4.
On the seabed $(z=-h)$ the gauge pressure distribution is

$$
p=\rho g h+\frac{\rho g A}{\cosh k h} \cos \left(k x-\omega_{a} t\right)
$$

The average and the fluctuation of this will give the water depth and wave amplitude, respectively:

$$
\bar{p}=\rho g h, \quad \Delta p=\frac{\rho g A}{\cosh k h}
$$

i.e.

$$
h=\frac{\bar{p}}{\rho g}, \quad A=\frac{\Delta p}{\rho g} \cosh k h
$$

Here,

$$
\begin{aligned}
& \bar{p}=\frac{98.8+122.6}{2} \times 1000=110400 \mathrm{~Pa} \\
& \Delta p=\frac{122.6-98.8}{2} \times 1000=11900 \mathrm{~Pa}
\end{aligned}
$$

Hence,

$$
h=\frac{110400}{1025 \times 9.81}=10.98 \mathrm{~m}
$$

For the amplitude, we require also $k h$, which must be determined, via the dispersion relation, from the period. From, e.g., the difference between the peaks of 5 cycles,

$$
\begin{aligned}
& T=\frac{49.2-6.8}{5}=8.48 \mathrm{~s} \\
& \omega_{a}=\frac{2 \pi}{T}=0.7409 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

(a) No current.

The dispersion relation rearranges as

$$
\begin{aligned}
& \frac{\omega_{a}^{2} h}{g}=k h \tanh k h \\
& 0.6144=k h \tanh k h
\end{aligned}
$$

Rearrange for iteration. Since the LHS < 1 the most effective form is

$$
k h=\frac{1}{2}\left(k h+\frac{0.6144}{\tanh k h}\right)
$$

Iteration from, e.g., $k h=1$, gives

$$
k h=0.8737
$$

Then the amplitude is

$$
A=\frac{\Delta p}{\rho g} \cosh k h=\frac{11900}{1025 \times 9.81} \times \cosh 0.8737=1.665 \mathrm{~m}
$$

corresponding to a wave height

$$
H=2 A \quad=3.33 \mathrm{~m}
$$

Finally, for the wavelength,

$$
\begin{aligned}
& k=\frac{k h}{h}=\frac{0.8737}{10.98}=0.07957 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=78.96 \mathrm{~m}
\end{aligned}
$$

Answer: water depth $=11.0 \mathrm{~m} ; \quad$ wave height $=3.33 \mathrm{~m} ; \quad$ wavelength $=79.0 \mathrm{~m}$.

(b) With current $U=2 \mathrm{~m} \mathrm{~s}^{-1}$

The dispersion relation is

$$
\left(\omega_{a}-k U\right)^{2}=g k \tanh k h
$$

Rearrange as

$$
k=\frac{\left(\omega_{a}-k U\right)^{2}}{g \tanh k h}
$$

Here,

$$
k=\frac{(0.7409-2 k)^{2}}{9.81 \tanh (10.98 k)}
$$

This does not converge very easily. An alternative using under-relaxation is

$$
k=\frac{1}{2}\left[k+\frac{(0.7409-2 k)^{2}}{9.81 \tanh (10.98 k)}\right]
$$

Iteration from, e.g., $k=0.1 \mathrm{~m}^{-1}$, gives

$$
k=0.06362 \mathrm{~m}^{-1}
$$

and, with $h=10.98 \mathrm{~m})$,

$$
k h=0.6985
$$

Then the amplitude is

$$
A=\frac{\Delta p}{\rho g} \cosh k h=\frac{11900}{1025 \times 9.81} \times \cosh 0.6985=1.484 \mathrm{~m}
$$

corresponding to a wave height

$$
H=2 A \quad=2.968 \mathrm{~m}
$$

Finally, for the wavelength,

$$
L=\frac{2 \pi}{k}=98.76 \mathrm{~m}
$$

Answer: water depth $=11.0 \mathrm{~m}$; wave height $=2.97 \mathrm{~m} ;$ wavelength $=98.8 \mathrm{~m}$.

Q5.
There are three depths to be considered:
deep / transducer (22 m) / shallow (8 m)
The shoreward rate of energy transfer is constant; i.e.

$$
\left(H^{2} n c\right)_{\text {deep }}=\left(H^{2} n c\right)_{\text {transducer }}=\left(H^{2} n c\right)_{\text {shallow }}
$$

We can find n and c from the dispersion relation at all locations, and the height H from the transducer pressure measurements.

Given:

$$
T=12 \mathrm{~s}
$$

Then

$$
\omega=\frac{2 \pi}{T}=0.5236 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h
\end{aligned}
$$

Solve for $k h$, and thence k by iterating either

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or (better here) } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

together with

$$
c=\frac{\omega}{k}, \quad n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]
$$

In shallow water $(h=8 \mathrm{~m}), \omega^{2} h / g=0.2236$, and hence:

$$
k h=0.4912, \quad k=0.06140 \mathrm{~m}^{-1}, \quad c=8.528 \mathrm{~m} \mathrm{~s}^{-1}, \quad n=0.9278
$$

At the transducer $(h=22 \mathrm{~m}), \omega^{2} h / g=0.6148$, and hence:

$$
k h=0.8740, \quad k=0.03973 \mathrm{~m}^{-1}, \quad c=13.18 \mathrm{~m} \mathrm{~s}^{-1}, \quad n=0.8139
$$

In deep water, $\tanh k h \rightarrow 1$ and so

$$
\omega^{2}=g k
$$

whence

$$
k=\frac{\omega^{2}}{g}=0.02795
$$

The phase speed is

$$
c=\frac{\omega}{k}=\frac{g}{\omega}=18.74 \mathrm{~m} \mathrm{~s}^{-1}
$$

and, in deep water,

$$
n=\frac{1}{2}
$$

At the pressure transducer we have

$$
\rho g A \frac{\cosh k(h+z)}{\cosh k h}=10000
$$

with $\rho=1025 \mathrm{~kg} \mathrm{~m}^{-3}$ (seawater) and $z=-20 \mathrm{~m}$ in water of depth $h=22 \mathrm{~m}$. Hence,

$$
A=\frac{10000 \times \cosh 0.8740}{1025 \times 9.81 \times \cosh [0.03973 \times 2]} \quad=1.395 \mathrm{~m}
$$

and hence

$$
H_{\text {transducer }}=2 A \quad=2.790 \mathrm{~m}
$$

Then, from the shoaling equation:

$$
\begin{aligned}
& H_{\text {deep }}=H_{\text {transducer }} \sqrt{\frac{(n c)_{\text {transducer }}}{(n c)_{\text {deep }}}}=2.790 \times \sqrt{\frac{0.8139 \times 13.18}{0.5 \times 18.74}}=2.985 \mathrm{~m} \\
& H_{\text {shallow }}=H_{\text {transducer }} \sqrt{\frac{(n c)_{\text {transducer }}}{(n c)_{\text {shallow }}}}=2.790 \times \sqrt{\frac{0.8139 \times 13.18}{0.9278 \times 8.528}}=3.249 \mathrm{~m}
\end{aligned}
$$

Answer: wave heights (a) nearshore: 3.25 m ; (b) deep water: 2.99 m .

Q6.
Given:

$$
\begin{aligned}
h & =1 \mathrm{~m} \\
a & =0.1 \mathrm{~m} \\
b & =0.05 \mathrm{~m}
\end{aligned}
$$

First deduce $k h$, and hence the wavenumber, from the ratio of the semi-axes of the particle orbits:

$$
\begin{aligned}
& \frac{\mathrm{d} X}{\mathrm{~d} t}=u \approx \frac{A g k}{\omega} \frac{\cosh k\left(h+z_{0}\right)}{\cosh k h} \cos \left(k x_{0}-\omega t\right) \\
\Rightarrow \quad & X=x_{0}-\frac{A g k}{\omega^{2}} \frac{\cosh k\left(h+z_{0}\right)}{\cosh k h} \sin \left(k x_{0}-\omega t\right) \\
\Rightarrow \quad & X=x_{0}-A \frac{\cosh k\left(h+z_{0}\right)}{\sinh k h} \sin \left(k x_{0}-\omega t\right) \\
& \frac{\mathrm{d} Z}{\mathrm{~d} t}=w \approx \frac{A g k}{\omega} \frac{\sinh k\left(h+z_{0}\right)}{\cosh k h} \sin \left(k x_{0}-\omega t\right) \\
\Rightarrow \quad & Z=z_{0}+\frac{A g k}{\omega^{2}} \frac{\sinh k\left(h+z_{0}\right)}{\cosh k h} \cos \left(k x_{0}-\omega t\right) \\
\Rightarrow \quad & Z=z_{0}+A \frac{\sinh k\left(h+z_{0}\right)}{\sinh k h} \cos \left(k x_{0}-\omega t\right)
\end{aligned}
$$

Where, in both directions we have used the dispersion relation $\omega^{2}=g k \tanh k h$ to simplify.
Hence,

$$
\begin{aligned}
& a=A \frac{\cosh (k h / 2)}{\sinh k h}=0.1 \\
& b=A \frac{\sinh (k h / 2)}{\sinh k h}=0.05
\end{aligned}
$$

Then

$$
\begin{aligned}
& \frac{b}{a}=\tanh (k h / 2)=0.5 \\
\Rightarrow \quad & k h=2 \tanh ^{-1}(0.5)=1.099 \\
\Rightarrow \quad & k=\frac{1.099}{1}=1.099 \mathrm{~m}^{-1}
\end{aligned}
$$

Then wave height can be deduced from, e.g., the expression for a :

$$
A=a \frac{\sinh k h}{\cosh (k h / 2)} \quad=0.1 \times \frac{\sinh 1.099}{\cosh (1.099 / 2)}=0.1155
$$

$$
H=2 A \quad=0.2310 \mathrm{~m}
$$

From the dispersion relation:

$$
\omega^{2}=g k \tanh k h \quad \Rightarrow \quad \omega=2.937 \mathrm{rad} \mathrm{~s}^{-1}
$$

Finally,

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=2.139 \mathrm{~s} \\
& L=\frac{2 \pi}{k}=5.717 \mathrm{~m}
\end{aligned}
$$

Answer: height $=0.0268 \mathrm{~m} ; \quad$ period $=2.14 \mathrm{~s} ; \quad$ wavelength $=5.72 \mathrm{~m}$.

Q7.
Given

$$
\begin{aligned}
& h=20 \mathrm{~m} \\
& A=1 \mathrm{~m} \quad(H=2 \mathrm{~m})
\end{aligned}
$$

(a) Here,

$$
\begin{aligned}
& U=+1 \mathrm{~m} \mathrm{~s}^{-1} \\
& T_{a}=3 \mathrm{~s} \\
& \omega_{a}=\frac{2 \pi}{T_{a}}=2.094 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Dispersion relation:

$$
\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h
$$

Iterate as

$$
k=\frac{\left(\omega_{a}-k U\right)^{2}}{g \tanh k h}
$$

i.e.

$$
k=\frac{(2.094-k)^{2}}{9.81 \tanh 20 k}
$$

to get

$$
\begin{aligned}
& k=0.3206 \\
& L=\frac{2 \pi}{k}=19.60 \mathrm{~m}
\end{aligned}
$$

The maximum particle velocity occurs at the surface and is the wave-relative maximum velocity plus the current, i.e. from the wave-induced particle velocity

$$
u_{r}=\frac{\operatorname{Agk}}{\omega_{r}} \frac{\cosh k(h+z)}{\cosh k h} \cos \left(k x-\omega_{r} t\right)
$$

we have

$$
\omega_{r}=\omega_{a}-k U=2.094-0.3206 \times 1=1.773 \mathrm{rad} \mathrm{~s}^{-1}
$$

As the wave is travelling in the same direction as the current:

$$
|u|_{\max }=\frac{A g k}{\omega_{r}}+U=\frac{1 \times 9.81 \times 0.3206}{1.773}+1=2.774 \mathrm{~m} \mathrm{~s}^{-1}
$$

Answer: wavelength 19.6 m ; maximum particle speed $2.77 \mathrm{~m} \mathrm{~s}^{-1}$.
(b) Now,

$$
\begin{aligned}
& U=-1 \mathrm{~m} \mathrm{~s}^{-1} \\
& T_{a}=7 \mathrm{~s}
\end{aligned}
$$

$$
\omega_{a}=\frac{2 \pi}{T_{a}}=0.8976 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation is rearranged for iteration as above:

$$
k=\frac{(0.8976+k)^{2}}{9.81 \tanh 20 k}
$$

to get

$$
\begin{aligned}
& k=0.1056 \\
& L=\frac{2 \pi}{k}=59.50 \mathrm{~m}
\end{aligned}
$$

Wave-relative frequency:

$$
\omega_{r}=\omega_{a}-k U=0.8976+0.1056 \times 1=1.003 \mathrm{rad} \mathrm{~s}^{-1}
$$

This time, as the current is opposing, the maximum speed is the magnitude of the backward velocity:

$$
|u|_{\max }=\frac{A g k}{\omega_{r}}+|U|=\frac{1 \times 9.81 \times 0.1056}{1.003}+1=2.033 \mathrm{~m} \mathrm{~s}^{-1}
$$

Answer: wavelength 59.5 m ; maximum particle speed $2.03 \mathrm{~m} \mathrm{~s}^{-1}$.

Q8.
As the waves move from deep to shallow water they refract (change angle θ) according to

$$
k_{0} \sin \theta_{0}=k_{1} \sin \theta_{1}
$$

and undergo shoaling (change height, H) according to

$$
\left(H^{2} n c \cos \theta\right)_{0}=\left(H^{2} n c \cos \theta\right)_{1}
$$

where subscript 0 indicates deep and 1 indicates the measuring station. Period is unchanged.
Given:

$$
T=5.5 \mathrm{~s}
$$

then

$$
\omega=\frac{2 \pi}{T}=1.142 \mathrm{rad} \mathrm{~s}^{-1}
$$

In deep water,

$$
\begin{aligned}
& k_{0}=\frac{\omega^{2}}{g} \quad=0.1329 \\
& n_{0}=\frac{1}{2} \\
& c_{0}=\frac{g T}{2 \pi} \quad\left(\text { or } \frac{\omega}{k}\right)=8.587 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

In the measured depth $h=6 \mathrm{~m}$ the wave height $H_{1}=0.8 \mathrm{~m}$. The dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.7977=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{0.7977}{\tanh k h} \quad \text { or (better here) } \quad k h=\frac{1}{2}\left(k h+\frac{0.7977}{\tanh k h}\right)
$$

to get (adding subscript 1):

$$
\begin{aligned}
& k_{1} h=1.030 \\
& k_{1}=\frac{1.030}{h}=0.1717 \mathrm{~m}^{-1} \\
& c_{1}=\frac{\omega}{k_{1}}=6.651 \mathrm{~m} \mathrm{~s}^{-1} \\
& n_{1}=\frac{1}{2}\left[1+\frac{2 k_{1} h}{\sinh 2 k_{1} h}\right]=0.7669
\end{aligned}
$$

Refraction

$$
k_{0} \sin \theta_{0}=k_{1} \sin \theta_{1}
$$

Hence:

$$
\begin{aligned}
& \sin \theta_{0}=\frac{k_{1}}{k_{0}} \sin \theta_{1}=\frac{0.1717}{0.1329} \sin 47^{\circ}=0.9449 \\
& \theta_{0}=70.89^{\circ}
\end{aligned}
$$

Shoaling

$$
\left(H^{2} n c \cos \theta\right)_{0}=\left(H^{2} n c \cos \theta\right)_{1}
$$

Hence:

$$
H_{0}=H_{1} \sqrt{\frac{(n c \cos \theta)_{1}}{(n c \cos \theta)_{0}}}=0.8 \times \sqrt{\frac{0.7669 \times 6.651 \times \cos 47^{\circ}}{0.5 \times 8.587 \times \cos 70.89^{\circ}}}=1.259 \mathrm{~m}
$$

Answer: deep-water wave height $=1.26 \mathrm{~m} ;$ angle $=70.9^{\circ}$.

Q9.
(a)

Deep water

$$
\begin{aligned}
& L_{0}=300 \mathrm{~m} \\
& H_{0}=2 \mathrm{~m}
\end{aligned}
$$

From the wavelength,

$$
k_{0}=\frac{2 \pi}{L_{0}}=0.02094 \mathrm{~m}^{-1}
$$

From the dispersion relation with $\tanh k h=1$:

$$
\omega^{2}=g k_{0}
$$

whence

$$
\omega=\sqrt{g k_{0}}=0.4532 \mathrm{rad} \mathrm{~s}^{-1}
$$

This stays the same as we move into shallower water.

$$
\begin{aligned}
& c_{0}=\frac{\omega}{k_{0}}=21.64 \mathrm{~m} \mathrm{~s}^{-1} \\
& n_{0}=0.5
\end{aligned}
$$

Depth $h=30 \mathrm{~m}$
The dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.6281=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{0.6281}{\tanh k h} \quad \text { or (better here) } \quad k h=\frac{1}{2}\left(k h+\frac{0.6281}{\tanh k h}\right)
$$

to get (adding subscript 1):

$$
\begin{aligned}
& k h=0.8856 \\
& k=\frac{0.8856}{h}=0.02952 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=212.8 \mathrm{~m} \\
& c=\frac{\omega}{k}=15.35 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.8103
\end{aligned}
$$

$$
c_{g}=n c \quad=12.44 \mathrm{~m} \mathrm{~s}^{-1}
$$

From the shoaling relationship

$$
\left(H^{2} n c\right)_{0}=H^{2} n c
$$

Hence,

$$
H=H_{0} \sqrt{\frac{(n c)_{0}}{n c}}=2 \times \sqrt{\frac{0.5 \times 21.64}{0.8103 \times 15.35}}=1.865 \mathrm{~m}
$$

Answer: wavelength $=213 \mathrm{~m}$; height $=1.87 \mathrm{~m}$; group velocity $=12.4 \mathrm{~m} \mathrm{~s}^{-1}$.
(b)

$$
E=\frac{1}{2} \rho g A^{2}=\frac{1}{8} \rho g H^{2}=\frac{1}{8} \times 1025 \times 9.81 \times 1.865^{2}=4372 \mathrm{~J} \mathrm{~m}^{-2}
$$

Answer: energy $=4370 \mathrm{~J} \mathrm{~m}^{-2}$.
(c) If the wave crests were obliquely oriented then the wavelength and group velocity would not change (because they are fixed by period and depth). However, the direction would change (by refraction) and the height would change (due to shoaling).

Refraction:

$$
k_{0} \sin \theta_{0}=k \sin \theta
$$

Hence:

$$
\begin{aligned}
& \sin \theta=\frac{k_{0}}{k} \sin \theta_{0}=\frac{0.02094}{0.02952} \sin 60^{\circ}=0.6143 \\
& \theta_{0}=37.90^{\circ}
\end{aligned}
$$

Shoaling:

$$
\left(H^{2} n c \cos \theta\right)_{0}=H^{2} n c \cos \theta
$$

Hence:

$$
H=H_{0} \sqrt{\frac{(n c \cos \theta)_{0}}{n c \cos \theta}}=2 \times \sqrt{\frac{0.5 \times 21.64 \times \cos 60^{\circ}}{0.8103 \times 15.35 \times \cos 37.90^{\circ}}}=1.485 \mathrm{~m}
$$

Answer: wavelength and group velocity unchanged; height $=1.48 \mathrm{~m}$.

Q10.
(a) Let subscript 0 denote deep-water conditions and the absence of a subscript denote inshore conditions (at the 9 m depth contour).

Wavenumber (at 9 m depth):

$$
k=\frac{2 \pi}{L} \quad=\frac{2 \pi}{55} \quad=0.1142 \mathrm{~m}^{-1}
$$

From the dispersion relation:

$$
\omega^{2}=g k \tanh k h=9.81 \times 0.1142 \tanh (0.1142 \times 9)=0.8660\left(\mathrm{rad} \mathrm{~s}^{-1}\right)^{2}
$$

Hence, wave angular frequency

$$
\omega=\sqrt{0.8660}=0.9306 \mathrm{rad} \mathrm{~s}^{-1}
$$

and period

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{0.9306}=6.752 \mathrm{~s}
$$

Answer: 6.75 s.
(b) The wave period and angular frequency do not change with depth. In deep water $k h \rightarrow \infty$ and $\tanh k h \rightarrow 1$, so the deep-water wavenumber is given by

$$
\omega^{2}=g k_{0}
$$

Hence

$$
k_{0}=\frac{0.8660}{9.81}=0.08828 \mathrm{~m}^{-1}
$$

and the deep-water wavelength is

$$
L_{0}=\frac{2 \pi}{k_{0}}=71.17 \mathrm{~m}
$$

(Note: one could also use $L_{0}=\frac{g T^{2}}{2 \pi}$ directly for this part if preferred. However, k_{0} is needed in the next part, so it is useful to calculate it here.)

Answer: 71.2 m .
(c) Refraction. By Snell's law:

$$
k_{0} \sin \theta_{0}=k \sin \theta
$$

Hence,

$$
\begin{aligned}
& \sin \theta_{0}=\frac{k}{k_{0}} \sin \theta=\frac{0.1142}{0.08828} \sin 25^{\circ}=0.5467 \\
& \theta_{0}=33.14^{\circ}
\end{aligned}
$$

Answer: 33.1 ${ }^{\circ}$.
(d) Shoaling:

$$
\left(H^{2} n c \cos \theta\right)_{0}=\left(H^{2} n c \cos \theta\right)
$$

Here, in deep water:

$$
\begin{aligned}
& n_{0}=\frac{1}{2} \\
& c_{0}=\frac{L_{0}}{T}=\frac{71.17}{6.752}=10.54 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

whilst at the inshore depth:

$$
\begin{aligned}
& k h=0.1142 \times 9=1.028 \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.7675 \\
& c=\frac{L}{T}=\frac{55}{6.752}=8.146 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Hence:

$$
H_{0}=H \sqrt{\frac{(n c \cos \theta)}{(n c \cos \theta)_{0}}}=1.8 \times \sqrt{\frac{0.7675 \times 8.146 \times \cos 25^{\circ}}{0.5 \times 10.54 \times \cos 33.14^{\circ}}}=2.040 \mathrm{~m}
$$

Answer: 2.04 m.

Q11.
(a)

$$
\begin{aligned}
& T=8 \mathrm{~s} \\
& \omega=\frac{2 \pi}{T} \quad=0.7854 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Shoaling from 10 m depth to 3 m depth. Need wave properties at these two depths.
The dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h
\end{aligned}
$$

This may be iterated as either

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

	$h=3 \mathrm{~m}$	$h=10 \mathrm{~m}$
$\frac{\omega^{2} h}{g}$	0.1886	0.6288
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.1886}{\tanh k h}\right)$	$k h=\frac{1}{2}\left(k h+\frac{0.6288}{\tanh k h}\right)$
$k h$	0.4484	0.8862
k	$0.1495 \mathrm{~m}^{-1}$	$0.08862 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$5.254 \mathrm{~m} \mathrm{~s}^{-1}$	$8.863 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.9388	0.8101
H	$?$	1 m

From the shoaling equation:

$$
\left(H^{2} n c\right)_{3 \mathrm{~m}}=\left(H^{2} n c\right)_{10 \mathrm{~m}}
$$

Hence:

$$
H_{3 \mathrm{~m}}=H_{10 \mathrm{~m}} \sqrt{\frac{(n c)_{10 \mathrm{~m}}}{(n c)_{3 \mathrm{~m}}}}=1 \times \sqrt{\frac{0.8101 \times 8.863}{0.9388 \times 5.254}}=1.207 \mathrm{~m}
$$

Answer: 1.21 m .
(b) The wave continues to shoal:

$$
\left(H^{2} n c\right)_{b}=\left(H^{2} n c\right)_{3 \mathrm{~m}}=7.186
$$

(in m-s units). Assuming that it breaks as a shallow-water wave, then

$$
\begin{aligned}
n_{b} & =1 \\
c_{b} & =\sqrt{g h_{b}}
\end{aligned}
$$

and we are given, from the breaker depth index:

$$
H_{b}=0.78 h_{b}
$$

Substituting in the shoaling equation,

$$
\begin{aligned}
& \quad\left(0.78 h_{b}\right)^{2} \sqrt{g h_{b}}=7.186 \\
& \Rightarrow \quad 1.906 h_{b}^{5 / 2}=7.186 \\
& \text { giving } \\
& \\
& \qquad h_{b}=1.700 \mathrm{~m} \\
& \\
& \quad H_{b}=0.78 h_{b} \quad=1.326 \mathrm{~m}
\end{aligned}
$$

Answer: breaking wave height 1.33 m in water depth 1.70 m .

Q12.
Narrow-band spectrum means that a Rayleigh distribution is appropriate, for which

$$
P(\text { wave height }>H)=\exp \left[-\left(\frac{H}{H_{\mathrm{rms}}}\right)^{2}\right]
$$

Central frequency of 0.2 Hz corresponds to a period of 5 seconds; i.e. 12 waves per minute. In 8 minutes there are (on average) $8 \times 12=96$ waves, so the question data says basically that

$$
P(\text { wave height }>2 \mathrm{~m})=\frac{1}{96}
$$

Comparing with the Rayleigh distribution with $H=2 \mathrm{~m}$:

$$
\exp \left[-\left(\frac{2}{H_{\mathrm{rms}}}\right)^{2}\right]=\frac{1}{96}
$$

$\Rightarrow \quad \exp \left[\left(\frac{2}{H_{\mathrm{rms}}}\right)^{2}\right]=96$
$\Rightarrow \quad \frac{4}{H_{\mathrm{rms}}^{2}}=\ln 96$
$\Rightarrow \quad H_{\mathrm{rms}}=\sqrt{\frac{4}{\ln 96}}=0.9361 \mathrm{~m}$
(a)

$$
P(\text { wave height }>3 \mathrm{~m})=\exp \left[-\left(\frac{3}{H_{\mathrm{rms}}}\right)^{2}\right]=3.463 \times 10^{-5}=\frac{1}{28877}
$$

This corresponds to once in every 28877 waves, or, at 12 waves per minute,

$$
\frac{28877}{12}=2406 \mathrm{~min} \quad=40.1 \text { hours }
$$

Answer: about once every 40 hours.
(b) The median wave height, $H_{\text {med }}$, is such that

$$
P\left(\text { wave height }>H_{\text {med }}\right)=\frac{1}{2}
$$

Hence

$$
\exp \left[-\left(\frac{H_{\mathrm{med}}}{H_{\mathrm{rms}}}\right)^{2}\right]=\frac{1}{2}
$$

$\Rightarrow \quad \exp \left[\left(\frac{H_{\mathrm{med}}}{H_{\mathrm{rms}}}\right)^{2}\right]=2$
$\Rightarrow \quad\left(\frac{H_{\text {med }}}{H_{\text {rms }}}\right)^{2}=\ln 2$
$\Rightarrow \quad H_{\mathrm{med}}=H_{\mathrm{rms}} \sqrt{\ln 2} \quad=0.9361 \sqrt{\ln 2} \quad=0.7794 \mathrm{~m}$

Answer: 0.779 m .

Q13.
(a) Narrow-banded, so a Rayleigh distribution is appropriate. Then

$$
H_{\mathrm{rms}}=\frac{H_{s}}{1.416}=\frac{2}{1.416}=1.412 \mathrm{~m}
$$

Answer: 1.41 m.
(b)

$$
H_{1 / 10}=1.800 H_{\mathrm{rms}}=1.800 \times 1.412=2.542 \mathrm{~m}
$$

Answer: 2.54 m.
(c)

$$
\begin{aligned}
P(4 \mathrm{~m}<\text { height }<5 \mathrm{~m}) & =P(\text { height }>4)-P(\text { height }>5) \\
& =\exp \left[-\left(\frac{4}{1.412}\right)^{2}\right]-\exp \left[-\left(\frac{5}{1.412}\right)^{2}\right] \\
& =3.235 \times 10^{-4}
\end{aligned}
$$

or about once in every 3090 waves.
Answer: 3.24×10^{-4}.

Q14.
The Bretschneider spectrum is

$$
S(f)=\frac{5}{16} H_{s}^{2} \frac{f_{p}^{4}}{f^{5}} \exp \left(-\frac{5}{4} \frac{f_{p}^{4}}{f^{4}}\right)
$$

Here we have

$$
\begin{aligned}
& H_{s}=2.5 \mathrm{~m} \\
& f_{p}=\frac{1}{T_{p}}=\frac{1}{6} \mathrm{~Hz}
\end{aligned}
$$

Amplitudes

For a single component the energy (per unit weight) is

$$
\frac{1}{2} a^{2}=S(f) \Delta f
$$

Hence,

$$
a_{i}=\sqrt{2 S(f) \Delta f}
$$

In this instance, $\Delta f=0.25 f_{p}$, so that, numerically,

$$
a_{i}=\sqrt{\frac{0.9766}{\left(f_{i} / f_{p}\right)^{5}} \exp \left[-\frac{1.25}{\left(f_{i} / f_{p}\right)^{4}}\right]}
$$

These are computed (using Excel) in a column of the table below.

Wavenumbers

For deep-water waves,

$$
\begin{gathered}
\omega^{2}=g k \\
\text { or, since } \omega=2 \pi f \\
k_{i}=\frac{4 \pi^{2} f_{i}^{2}}{g}
\end{gathered}
$$

Numerically here:

$$
k_{i}=0.1118\left(\frac{f_{i}}{f_{p}}\right)^{2}
$$

These are computed (using Excel) in a column of the table below.

Velocity
The maximum particle velocity for one component is

$$
u_{i}=\frac{g k_{i} a_{i}}{\omega_{i}} \frac{\cosh k_{i}(h+z)}{\cosh k_{i} h}
$$

or, since the water is deep and hence $\cosh X \sim \frac{1}{2} \mathrm{e}^{X}$:

$$
u_{i}=\frac{g k_{i} a_{i}}{2 \pi f_{i}} \exp k_{i} z
$$

Numerically here, with $z=-5 \mathrm{~m}$:

$$
u_{i}=\frac{9.368 k_{i} a_{i}}{f_{i} / f_{p}} \exp \left(-5 k_{i}\right)
$$

These are computed (using Excel) in a column of the table below.

f_{i} / f_{p}	a_{i}	k_{i}	u_{i}
0.75	0.281410	0.062888	0.161410
1	0.528962	0.111800	0.316769
1.25	0.437929	0.174688	0.239372
1.5	0.316967	0.251550	0.141566
1.75	0.228204	0.342388	0.075503
2	0.168004	0.447200	0.037614
Sum:	1.961475		0.972235

From the table, with all components instantaneously in phase

$$
\begin{aligned}
& \eta_{\max }=\sum a_{i}=1.961 \mathrm{~m} \\
& u_{\max }=\sum u_{i}=0.9722 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Answers: (a), (b): $\left[a_{i}\right]$ and $\left[k_{i}\right]$ given in the table; (c) $\eta_{\max }=1.96 \mathrm{~m}, u_{\max }=0.972 \mathrm{~m} \mathrm{~s}^{-1}$.

Q15.
Given

$$
T_{p}=9.1 \mathrm{~s}
$$

then

$$
f_{p}=\frac{1}{T_{p}}=0.1099 \mathrm{~Hz}
$$

The middle frequency of the given range is $f=0.155 \mathrm{~Hz}$. With $H_{s}=2.1 \mathrm{~m}$ the Bretschneider spectrum gives

$$
S(f)=\frac{5}{16} H_{s}^{2} \frac{f_{p}^{4}}{f^{5}} \exp \left(-\frac{5}{4} \frac{f_{p}^{4}}{f^{4}}\right)=1.638 \mathrm{~m}^{2} \mathrm{~s}
$$

The energy density is then

$$
E=\rho g \times S(f) \Delta f=1025 \times 9.81 \times 1.638 \times 0.01=164.7 \mathrm{~J} \mathrm{~m}^{-2}
$$

The period of this component is

$$
T=\frac{1}{f}=6.452 \mathrm{~s}
$$

And hence, as a deep-water wave:

$$
\begin{aligned}
& c=\frac{g T}{2 \pi}=10.07 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}
\end{aligned}
$$

Hence,

$$
c_{g}=n c=5.035 \mathrm{~m} \mathrm{~s}^{-1}
$$

The power density is then

$$
P=E c_{g}=164.7 \times 5.035=829.3 \mathrm{~W} \mathrm{~m}^{-1}
$$

Answer: $0.829 \mathrm{~kW} \mathrm{~m}^{-1}$.

Q16.
(a) Waves are duration-limited if the wind has not blown for sufficient time for wave energy to propagate across the entire fetch. Otherwise they are fetch-limited, and the precise duration of the storm does not affect wave parameters.
(b) Given

$$
\begin{aligned}
& U=13.5 \mathrm{~m} \mathrm{~s}^{-1} \\
& F=64000 \mathrm{~m} \\
& t=3 \times 60 \times 60=10800 \mathrm{~s}
\end{aligned}
$$

then the relevant non-dimensional fetch is

$$
\hat{F} \equiv \frac{g F}{U^{2}} \quad=3445
$$

The minimum non-dimensional time required for fetch-limited waves is found from

$$
\hat{t}_{\min } \equiv\left(\frac{g t}{U}\right)_{\min }=68.8 \hat{F}^{2 / 3}=15693
$$

but the actual non-dimensional time for which the wind has blown is

$$
\hat{t} \equiv \frac{g t}{U}=7848
$$

which is less. Hence, the waves are duration-limited and in the predictive curves we must use an effective fetch $F_{\text {eff }}$ given by

$$
68.8 \hat{F}_{\mathrm{eff}}^{2 / 3}=7848
$$

whence

$$
\widehat{F}_{\text {eff }}=1218
$$

Then

$$
\begin{aligned}
\frac{g H_{s}}{U^{2}} \equiv \widehat{H}_{s} & =0.0016 \widehat{F}_{\mathrm{eff}}^{1 / 2}=0.05584 \\
\frac{g T_{p}}{U} \equiv \widehat{T}_{p} & =0.286 \hat{\mathrm{~F}}_{\mathrm{eff}}^{1 / 3}=3.054
\end{aligned}
$$

from which the corresponding significant wave height and peak period are

$$
\begin{aligned}
& H_{s}=1.037 \mathrm{~m} \\
& T_{p}=4.203 \mathrm{~s}
\end{aligned}
$$

The significant wave period is estimated as

$$
T_{s}=0.945 T_{p}=3.972 \mathrm{~s}
$$

Answer: duration-limited; significant wave height $=1.04 \mathrm{~m}$ and period 3.97 s .

Q17.

Wave Properties

Given:

$$
\begin{aligned}
& h=6 \mathrm{~m} \\
& T=6 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=1.047 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.6705=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{0.6705}{\tanh k h} \quad \text { or (better here) } \quad k h=\frac{1}{2}\left(k h+\frac{0.6705}{\tanh k h}\right)
$$

to get

$$
\begin{aligned}
& k h=0.9223 \\
& k=\frac{0.9223}{h}=0.1537 \mathrm{~m}^{-1}
\end{aligned}
$$

Forces and Moments

The height of the fully reflected wave is $2 H$, where H is the height of the incident wave. Thus the maximum crest height above SWL is $H=1.5 \mathrm{~m}$. Since the SWL depth is 6 m , the maximum crest height does not overtop the caisson.

The modelled pressure distribution is as shown, consisting of
hydrostatic (from $p_{1}=0$ at the crest to $p_{2}=\rho g H$ at the SWL);
linear (from p_{2} at the SWL to the wave value p_{3} at the base);
linear underneath (from p_{3} at the front of the caisson to 0 at the rear).
To facilitate the computation of moments, the linear distribution on the front face can be decomposed into a constant distribution $\left(p_{3}\right)$ and a triangular distribution with top $p_{2}-p_{3}$.

The relevant pressures are:

$$
\begin{aligned}
& p_{1}=0 \\
& p_{2}=\rho g H=1025 \times 9.81 \times 1.5=15080 \mathrm{~Pa} \\
& p_{3}=\frac{\rho g H}{\cosh k h}=\frac{1025 \times 9.81 \times 1.5}{\cosh (0.1537 \times 6)}=10360 \mathrm{~Pa}
\end{aligned}
$$

This yields the equivalent forces and points of application shown in the diagram below. Sums of forces and moments (per metre width) are given in the table.

Region	Force, F_{x} or F_{z}	Clockwise turning moment about heel
1	$F_{x 1}=\frac{1}{2} p_{2} \times H=11310 \mathrm{~N} / \mathrm{m}$	$F_{x 1} \times\left(h+\frac{1}{3} H\right)=73520 \mathrm{Nm} / \mathrm{m}$
2	$F_{x 2}=p_{3} \times h=62160 \mathrm{~N} / \mathrm{m}$	$F_{x 2} \times \frac{1}{2} h=186480 \mathrm{Nm} / \mathrm{m}$
3	$F_{x 3}=\frac{1}{2}\left(p_{2}-p_{3}\right) \times h=14160 \mathrm{~N} / \mathrm{m}$	$F_{x 3} \times \frac{2}{3} h=56640 \mathrm{~N} \mathrm{~m} / \mathrm{m}$
4	$F_{z 4}=\frac{1}{2} p_{3} \times w=20720 \mathrm{~N} / \mathrm{m}$	$F_{z 4} \times \frac{2}{3} w=55250 \mathrm{~N} \mathrm{~m} / \mathrm{m}$

The sum of the horizontal forces

$$
F_{x 1}+F_{x 2}+F_{x 3}=87630 \mathrm{~N} / \mathrm{m}
$$

The sum of all clockwise moments

$$
371900 \text { N m / m }
$$

Answer: per metre, horizontal force $=87.6 \mathrm{kN}$; overturning moment $=372 \mathrm{kN} \mathrm{m}$.

Q18.
Period:

$$
T=\frac{1}{f}=\frac{1}{0.1}=10 \mathrm{~s}
$$

The remaining quantities require solution of the dispersion relationship.

$$
\omega=\frac{2 \pi}{T}=0.6283 \mathrm{rad} \mathrm{~s}^{-1}
$$

Rearrange the dispersion relation $\omega^{2}=g k \tanh k h$ to give

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

Here, with $h=18 \mathrm{~m}$,

$$
0.7243=k h \tanh k h
$$

Since the LHS < 1, rearrange for iteration as

$$
k h=\frac{1}{2}\left[k h+\frac{0.7243}{\tanh k h}\right]
$$

Iteration from, e.g., $k h=1$ produces

$$
\begin{aligned}
& k h=0.9683 \\
& k=\frac{0.9683}{h}=0.05379 \mathrm{~m}^{-1}
\end{aligned}
$$

The wavelength is then

$$
L=\frac{2 \pi}{k} \quad=116.8 \mathrm{~m}
$$

and the phase speed and ratio of group to phase velocities are

$$
\begin{aligned}
& c=\frac{\omega}{k}\left(\text { or } \frac{L}{T}\right)=11.68 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.7852
\end{aligned}
$$

For the wave power,

$$
\begin{aligned}
\operatorname{power}(\text { per } \mathrm{m})=\frac{1}{8} \rho g H^{2} n c & =\frac{1}{8} \times 1025 \times 9.81 \times 2.1^{2} \times 0.7852 \times 11.68 \\
& =50840 \mathrm{~W} \mathrm{~m}^{-1}
\end{aligned}
$$

Answer: period $=10 \mathrm{~s} ; \quad$ wavelength $=117 \mathrm{~m} ; \quad$ phase speed $=11.68 \mathrm{~m} \mathrm{~s}^{-1}$; power $=50.8 \mathrm{~kW} \mathrm{~m}^{-1}$.
(b) First need new values of k, n and c in 6 m depth.

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

Here, with $h=6 \mathrm{~m}$,

$$
0.2414=k h \tanh k h
$$

Since the LHS < 1 , rearrange for iteration as

$$
k h=\frac{1}{2}\left[k h+\frac{0.2414}{\tanh k h}\right]
$$

Iteration from, e.g., $k h=1$ produces

$$
\begin{aligned}
& k h=0.5120 \\
& k=\frac{0.5120}{h}=0.08533 \mathrm{~m}^{-1} \\
& c=\frac{\omega}{k}=7.363 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.9222
\end{aligned}
$$

For direction, use Snell's Law:

$$
(k \sin \theta)_{18 \mathrm{~m}}=(k \sin \theta)_{6 \mathrm{~m}}
$$

whence

$$
(\sin \theta)_{6 \mathrm{~m}}=\frac{(k \sin \theta)_{18 \mathrm{~m}}}{k_{6 \mathrm{~m}}}=\frac{0.05379 \times \sin 25^{\circ}}{0.08533}=0.2664
$$

and hence the wave direction in 6 m depth is 15.45°.
For wave height, use the shoaling equation:

$$
\left(H^{2} n c \cos \theta\right)_{6 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{18 \mathrm{~m}}
$$

Hence,

$$
H_{6 \mathrm{~m}}=H_{18 \mathrm{~m}} \sqrt{\frac{(n c \cos \theta)_{18 \mathrm{~m}}}{(n c \cos \theta)_{6 \mathrm{~m}}}}=2.1 \sqrt{\frac{0.7852 \times 11.68 \times \cos 25^{\circ}}{0.9222 \times 7.363 \times \cos 15.45^{\circ}}}=2.367 \mathrm{~m}
$$

Answer: wave height $=2.37 \mathrm{~m}$; wave direction $=15.5^{\circ}$.
(c) The Miche breaking criterion gives

$$
\left(\frac{H}{L}\right)_{b}=0.14 \tanh (k h)_{b}
$$

If we are to assume shallow-water behaviour, then $\tanh k h \sim k h$ and so

$$
\left(\frac{H k}{2 \pi}\right)_{b}=0.14(k h)_{b}
$$

whence

$$
\left(\frac{H}{h}\right)_{b}=2 \pi \times 0.14=0.8796
$$

or

$$
\begin{equation*}
H_{b}=0.8796 h_{b} \tag{*}
\end{equation*}
$$

This is used to eliminate wave height on the LHS of the shoaling equation

$$
\left(H^{2} n c \cos \theta\right)_{b}=\left(H^{2} n c \cos \theta\right)_{6 \mathrm{~m}}
$$

For refraction, Snell's Law in the form $\sin \theta / c=$ constant, together with the shallow-water phase speed at breaking, gives

$$
\left(\frac{\sin \theta}{\sqrt{g h}}\right)_{b}=\left(\frac{\sin \theta}{c}\right)_{6 \mathrm{~m}}=\frac{\sin 15.45^{\circ}}{7.363}=0.03618
$$

whence

$$
\begin{aligned}
& \sin \theta_{b}=0.1133 \sqrt{h_{b}} \\
& \cos \theta_{b}=\sqrt{1-\sin ^{2} \theta_{b}}=\sqrt{1-0.01284 h_{b}}
\end{aligned}
$$

With the shallow water approximations $n=1, c=\sqrt{g h}$, and the relation $(*)$, the shoaling equation becomes

$$
\left(0.8796 h_{b}\right)^{2} \sqrt{g h_{b}} \sqrt{1-0.01284 h_{b}}=36.67
$$

or

$$
2.423 h_{b}^{5 / 2}\left(1-0.01284 h_{b}\right)^{1 / 2}=36.67
$$

This rearranges for iteration:

$$
h_{b}=2.965\left(1-0.01284 h_{b}\right)^{-1 / 5}
$$

to give

$$
h_{b}=2.988 \mathrm{~m}
$$

Answer: 2.99 m .

Q19.
(a)

$$
\begin{aligned}
U & =35 \mathrm{~m} \mathrm{~s}^{-1} \\
F & =150000 \mathrm{~m}
\end{aligned}
$$

From these,

$$
\widehat{F}=\frac{g F}{U^{2}}=1201
$$

From the JONSWAP curves,

$$
\hat{t}_{\min }=68.8 \hat{F}^{2 / 3}=7774
$$

(i) For $t=4 \mathrm{hr}=14400 \mathrm{~s}$,

$$
\hat{t}=\frac{g t}{U}=4036
$$

This is less than 7774. We conclude that there is insufficient time for wave energy to have propagated right across the fetch; the waves are duration-limited. Hence, instead of \widehat{F}, we use an effective dimensionless fetch $\widehat{F}_{\text {eff }}$ such that

$$
\begin{aligned}
& 68.8 \hat{F}_{\text {eff }}^{2 / 3}=4036 \\
& \widehat{F}_{\text {eff }}=449.3
\end{aligned}
$$

Then

$$
\begin{aligned}
& \widehat{H}_{s}=0.0016 \hat{F}_{\mathrm{eff}}^{1 / 2}=0.03391 \\
& \widehat{T}_{p}=0.2857 \hat{F}_{\mathrm{eff}}^{1 / 3}=2.188
\end{aligned}
$$

The dimensional significant wave height and peak wave period are

$$
\begin{aligned}
& H_{s}=\frac{\widehat{H}_{s} U^{2}}{g}=4.234 \mathrm{~m} \\
& T_{p}=\frac{\widehat{T}_{p} U}{g}=7.806 \mathrm{~s}
\end{aligned}
$$

Answer: significant wave height $=4.23 \mathrm{~m} ;$ peak period $=7.81 \mathrm{~s}$.
(ii) For $t=8 \mathrm{hr}=28800 \mathrm{~s}$,

$$
\hat{t}=\frac{g t}{U}=8072
$$

This is greater than 7774 , so the wave statistics are fetch-limited and we can use $\hat{F}=1201$. Then

$$
\begin{array}{ll}
\widehat{H}_{s}=0.0016 \hat{F}^{1 / 2} & =0.05545 \\
\widehat{T}_{p}=0.2857 \widehat{F}^{1 / 3} & =3.037
\end{array}
$$

The dimensional significant height and peak wave period are

$$
\begin{aligned}
& H_{s}=\frac{\widehat{H}_{s} U^{2}}{g}=6.924 \mathrm{~m} \\
& T_{p}=\frac{\widehat{T}_{p} U}{g}=10.84 \mathrm{~s}
\end{aligned}
$$

Answer: significant wave height $=6.92 \mathrm{~m} ; \quad$ period $=10.8 \mathrm{~s}$.
(b) (i) The wave spectrum is narrow-banded, so it is appropriate to use the Rayleigh probability distribution for wave heights.

In deep water H_{rms} is known: $H_{\mathrm{rms}}=1.8 \mathrm{~m}$. For a single wave:

$$
P(H>3 \mathrm{~m})=\exp \left[-(3 / 1.8)^{2}\right]=0.06218
$$

This is once in every

$$
\frac{1}{p}=16.08 \mathrm{waves}
$$

or, with wave period 9 s , once every 144.7 s .
Answer: every 145 s.
(ii) In this part the wave height is $H=3 \mathrm{~m}$ at depth 10 m , but H_{rms} is given in deep water. So we either need to transform H to deep water or H_{rms} to the 10 m depth. We'll do the former.

Use the shoaling equation (for normal incidence):

$$
\left(H^{2} n c\right)_{0}=\left(H^{2} n c\right)_{10 \mathrm{~m}}
$$

First find c and n in 10 m depth:

$$
\begin{aligned}
& T=9 \mathrm{~s} \\
& \omega=\frac{2 \pi}{T}=0.6981 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Rearrange the dispersion relation $\omega^{2}=g k \tanh k h$ to give

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

Here, with $h=10 \mathrm{~m}$,

$$
0.4968=k h \tanh k h
$$

Since the LHS < 1 , rearrange for iteration as

$$
k h=\frac{1}{2}\left[k h+\frac{0.4968}{\tanh k h}\right]
$$

Iteration from, e.g., $k h=1$ produces

$$
k h=0.7688
$$

Then,

$$
\begin{aligned}
& k=\frac{0.7688}{h}=0.07688 \mathrm{~m}^{-1} \\
& c=\frac{\omega}{k}=9.080 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.8464
\end{aligned}
$$

In deep water:

$$
\begin{aligned}
& c_{0}=\frac{g T}{2 \pi}=14.05 \mathrm{~m} \mathrm{~s}^{-1} \\
& n_{0}=\frac{1}{2}
\end{aligned}
$$

Hence, when the inshore wave height $H_{10}=3 \mathrm{~m}$, the deep-water wave height, from the shoaling equation, is

$$
H_{0}=H_{10} \sqrt{\frac{(n c)_{10}}{(n c)_{0}}}=3 \times \sqrt{\frac{0.8464 \times 9.080}{0.5 \times 14.05}}=3.138 \mathrm{~m}
$$

(If we had transformed H_{rms} to the 10 m depth instead we would have got 1.721 m .)
Now use the Rayleigh distribution to determine wave probabilities. For a single wave:

$$
P\left(H_{10}>3 \mathrm{~m}\right)=P\left(H_{0}>3.138 \mathrm{~m}\right)=\exp \left[-(3.138 / 1.8)^{2}\right]=0.04787
$$

This is once in every

$$
\frac{1}{p}=20.89 \text { waves }
$$

or, with wave period 9 s , once every 188.0 s .
Answer: every 188 s.

Q20.
(a)
(i) Refraction - change of direction as oblique waves move into shallower water;
(ii) Diffraction - spreading of waves into a region of shadow;
(iii) Shoaling - change of height as waves move into shallower water.
(b)

$$
\omega=\frac{2 \pi}{T}=\frac{2 \pi}{12}=0.5236 \mathrm{rad} \mathrm{~s}^{-1}
$$

Deep water

Dispersion relation

$$
\omega^{2}=g k_{0}
$$

Hence:

$$
\begin{aligned}
& k_{0}=\frac{\omega^{2}}{g}=0.02795 \mathrm{~m}^{-1} \\
& L_{0}=\frac{2 \pi}{k_{0}}=224.8 \mathrm{~m} \\
& c_{0}=\frac{\omega}{k_{0}}\left(\text { or } \frac{L_{0}}{T}\right)=18.73 \mathrm{~m} \mathrm{~s}^{-1} \\
& n_{0}=\frac{1}{2}
\end{aligned}
$$

Shallow water

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.1397=k h \tanh k h
\end{aligned}
$$

Iterate as either

$$
\left.k h=\frac{0.1397}{\tanh k h} \quad \text { or (better here }\right) \quad k h=\frac{1}{2}\left(k h+\frac{0.1397}{\tanh k h}\right)
$$

to get

$$
\begin{aligned}
& k h=0.3827 \\
& k=\frac{0.3827}{h}=0.07654 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k} \quad=82.09 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& c=\frac{\omega}{k}\left(\text { or } \frac{L}{T}\right)=6.841 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.9543
\end{aligned}
$$

Refraction

$$
k \sin \theta=k_{0} \sin \theta_{0}
$$

Hence,

$$
\sin \theta=\frac{k_{0} \sin \theta_{0}}{k}=\frac{0.02795 \times \sin 20^{\circ}}{0.07654}=0.1249
$$

$$
\theta=7.175^{\circ}
$$

Shoaling

$$
\left(H^{2} n c \cos \theta\right)_{5 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{0}
$$

Hence:

$$
H_{5 \mathrm{~m}}=H_{0} \sqrt{\frac{(n c \cos \theta)_{0}}{(n c \cos \theta)_{5 \mathrm{~m}}}}=3 \times \sqrt{\frac{0.5 \times 18.73 \times \cos 20^{\circ}}{0.9543 \times 6.841 \times \cos 7.175^{\circ}}}=3.497 \mathrm{~m}
$$

Answer: wavelength $=82.1 \mathrm{~m}$; direction $=7.18^{\circ} ;$ height $=3.50 \mathrm{~m}$.
(c) The breaker height index is

$$
\frac{H_{b}}{H_{0}}=0.56\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5}=0.56 \times\left(\frac{3}{224.8}\right)^{-1 / 5}=1.328
$$

Hence,

$$
H_{b}=1.328 H_{0} \quad=3.984 \mathrm{~m}
$$

The breaker depth index is

$$
\gamma_{b} \equiv\left(\frac{H}{h}\right)_{b}=b-a \frac{H_{b}}{g T^{2}}
$$

where, with a beach slope $m=1 / 20=0.05$:

$$
\begin{aligned}
& a=43.8\left(1-\mathrm{e}^{-19 m}\right)=26.86 \\
& b=\frac{1.56}{1+\mathrm{e}^{-19.5 m}}=1.133
\end{aligned}
$$

Hence,

$$
\gamma_{b}=1.133-26.86 \times \frac{3.984}{9.81 \times 12^{2}} \quad=1.058
$$

giving:

$$
h_{b}=\frac{H_{b}}{\gamma_{b}} \quad=3.766 \mathrm{~m}
$$

Answer: breaker height $=3.98 \mathrm{~m} ; \quad$ breaking depth $=3.77 \mathrm{~m}$.

Q21.
(a)
(i) "Narrow-banded sea state" - narrow range of frequencies.
(ii) "Significant wave height" - either:
average height of the highest one-third of waves or, from the wave spectrum,

$$
H_{m 0}=4 \sqrt{\overline{\eta^{2}}}=4 m_{0}
$$

(iii) "Energy spectrum": distribution of wave energy with frequency; specifically, $S(f) \mathrm{d} f$ is the wave energy (divided by ρg) in the small interval $(f, f+\mathrm{d} f)$.
(iv) "Duration-limited" - condition of the sea state when the storm has blown for insufficient time for wave energy to propagate across the entire fetch.
(b) If the period is $T=10 \mathrm{~s}$ then the number of waves per hour is

$$
n=\frac{3600}{T}=360
$$

(i) For a narrow-banded sea state a Rayleigh distribution is appropriate:

$$
P(\text { height }>H)=\mathrm{e}^{-\left(H / H_{\mathrm{rms}}\right)^{2}}
$$

Hence,

$$
P(\text { height }>3.5)=\mathrm{e}^{-(3.5 / 2.5)^{2}}=0.1409
$$

For 360 waves, the expected number exceeding this is

$$
360 \times 0.1409=50.72
$$

Answer: 51 waves.
(ii)
$P($ height $>5)=\mathrm{e}^{-(5 / 2.5)^{2}}=0.01832$
Corresponding to once in every

$$
\frac{1}{0.01832}=54.59 \text { waves }
$$

With a period of 10 s , this represents a time of

$$
10 \times 54.59=545.9 \mathrm{~s}
$$

(Alternatively, this could be expressed as 6.59 times per hour.)
Answer: 546 s (about 9.1 min) or, equivalently, 6.59 times per hour.
(iii) In deep water the dispersion relation reduces to:

$$
\omega^{2}=g k
$$

or

$$
\left(\frac{2 \pi}{T}\right)^{2}=g\left(\frac{2 \pi}{L}\right)
$$

Hence,

$$
L=\frac{g T^{2}}{2 \pi}
$$

With $T=10 \mathrm{~s}$,

$$
L=156.1 \mathrm{~m}
$$

$$
c=\frac{L}{T}=15.61 \mathrm{~m} \mathrm{~s}^{-1}
$$

and, in deep water

$$
c_{g}=\frac{1}{2} c \quad=7.805 \mathrm{~m} \mathrm{~s}^{-1}
$$

Answer: : wavelength $=156.1 \mathrm{~m} ; \quad$ celerity $=15.6 \mathrm{~m} \mathrm{~s}^{-1} ;$ group velocity $=7.81 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Given

$$
\begin{aligned}
& U=20 \mathrm{~m} \mathrm{~s}^{-1} \\
& F=10^{5} \mathrm{~m} \\
& t=6 \text { hours }=21600 \mathrm{~s}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \hat{F} \equiv \frac{g F}{U^{2}}=2453 \\
& \hat{t}_{\min } \equiv \frac{g t_{\min }}{U}=68.8 F^{2 / 3}=12513
\end{aligned}
$$

But the non-dimensional time of the storm is

$$
\hat{t}=\frac{g t}{U} \quad=10590
$$

This is less than $\hat{t}_{\text {min }}$, hence the sea state is duration-limited.
Hence, we must calculate an effective fetch by working back from \hat{t} :

$$
\hat{F}_{\text {eff }}=\left(\frac{\hat{t}}{68.8}\right)^{3 / 2}=1910
$$

The non-dimensional wave height and peak period then follow from the JONSWAP formulae:

$$
\widehat{H}_{s} \equiv \frac{g H_{s}}{U^{2}} \quad=0.0016 \hat{F}_{\mathrm{eff}}^{1 / 2} \quad=0.06993
$$

$$
\widehat{T}_{p} \equiv \frac{g T_{p}}{U}=0.2857 \widehat{F}_{\mathrm{eff}}^{1 / 3} \quad=3.545
$$

whence, extracting the dimensional variables:

$$
\begin{aligned}
& H_{s}=\frac{U^{2}}{g} \widehat{H}_{s}=2.851 \mathrm{~m} \\
& T_{p}=\frac{U}{g} \widehat{T}_{p}=7.227 \mathrm{~s}
\end{aligned}
$$

Answer: duration-limited; significant wave height $=2.85 \mathrm{~m} ; \quad$ peak period $=7.23 \mathrm{~s}$.

Q22.
(a)
(i) Two of:
spilling breakers: steep waves and/or mild beach slopes;
plunging breakers: moderately steep waves and moderate beach slopes; collapsing breakers: long waves and/or steep beach slopes.
(ii)

$$
\begin{aligned}
& T=7 \mathrm{~s} \\
& \omega=\frac{2 \pi}{T} \quad=0.8976 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

Shoaling from 100 m depth to 12 m depth. Need wave properties at these two depths.
The dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h
\end{aligned}
$$

This may be iterated as either

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

	$h=12 \mathrm{~m}$	$h=100 \mathrm{~m}$
$\frac{\omega^{2} h}{g}$	0.9855	8.213
Iteration:	$k h=\frac{0.9855}{\tanh k h}$	$k h=\frac{8.213}{\tanh k h}$
$k h$	1.188	8.213
k	$0.099 \mathrm{~m}^{-1}$	$0.08213 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$9.067 \mathrm{~m} \mathrm{~s}^{-1}$	$10.93 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.7227	0.5000
θ	0° (necessarily)	0°
H	$?$	1.8 m

From the shoaling equation:

$$
\left(H^{2} n c\right)_{12 \mathrm{~m}}=\left(H^{2} n c\right)_{100 \mathrm{~m}}
$$

Hence:

$$
H_{12 \mathrm{~m}}=H_{100 \mathrm{~m}} \sqrt{\frac{(n c)_{100 \mathrm{~m}}}{(n c)_{12 \mathrm{~m}}}}=1.8 \times \sqrt{\frac{0.5 \times 10.93}{0.7227 \times 9.067}}=1.644 \mathrm{~m}
$$

Answer: wave height $=1.64 \mathrm{~m}$.
(iii)

The relevant pressures are:

$$
\begin{aligned}
& p_{1}=0 \\
& p_{2}=\rho g H=1025 \times 9.81 \times 1.644=16530 \mathrm{~Pa} \\
& p_{3}=\frac{\rho g H}{\cosh k h}=\frac{1025 \times 9.81 \times 1.644}{\cosh (1.188)}=9221 \mathrm{~Pa}
\end{aligned}
$$

This yields the equivalent forces and points of application shown in the diagram.

Region	Force, F_{x} or F_{z}	Moment arm
1	$F_{x 1}=\frac{1}{2} p_{2} \times H=13590 \mathrm{~N} / \mathrm{m}$	$z_{1}=h+\frac{1}{3} H=12.55 \mathrm{~m}$
2	$F_{x 2}=p_{3} \times h=110700 \mathrm{~N} / \mathrm{m}$	$z_{2}=\frac{1}{2} h=6 \mathrm{~m}$
3	$F_{x 3}=\frac{1}{2}\left(p_{2}-p_{3}\right) \times h=43850 \mathrm{~N} / \mathrm{m}$	$z_{3}=\frac{2}{3} h=8 \mathrm{~m}$

The sum of all clockwise moments about the heel:

$$
F_{x 1} z_{1}+F_{x 2} z_{2}+F_{x 3} z_{3}=1186000 \mathrm{Nm} / \mathrm{m}
$$

Answer: overturning moment $=1186 \mathrm{kN}$ m per metre of breakwater.
(b) New waves have revised properties:

$$
T=13 \mathrm{~s}
$$

$$
\omega=\frac{2 \pi}{T}=0.4833 \mathrm{rad} \mathrm{~s}^{-1}
$$

	$h=12 \mathrm{~m}$	$h=100 \mathrm{~m}$
$\frac{\omega^{2} h}{g}$	0.2857	2.381
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.2857}{\tanh k h}\right)$	$k h=\frac{2.381}{\tanh k h}$
$k h$	0.5613	2.419
k	$0.04678 \mathrm{~m}^{-1}$	$0.02419 \mathrm{~m}^{-1}$
$c=\frac{\omega}{k}$	$10.33 \mathrm{~m} \mathrm{~s}^{-1}$	$19.98 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.9086	0.5383
θ	$?$	30°
H	$?$	1.3 m

To estimate travel time of wave groups consider the group velocity.
The previous waves had group velocity

$$
c_{g}=n c \quad=5.465 \mathrm{~m} \mathrm{~s}^{-1}
$$

These longer-period waves have group velocity

$$
c_{g}=n c \quad=10.76 \mathrm{~m} \mathrm{~s}^{-1}
$$

The latter have a larger group velocity and hence have a shorter travel time.
(ii) Refraction:

$$
\begin{aligned}
& (k \sin \theta)_{12 \mathrm{~m}}=(k \sin \theta)_{100 \mathrm{~m}} \\
& 0.04678 \sin \theta=0.02419 \sin 30^{\circ}
\end{aligned}
$$

Hence,

$$
\theta=14.98^{\circ}
$$

From the shoaling equation:

$$
\left(H^{2} n c \cos \theta\right)_{12 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{100 \mathrm{~m}}
$$

Hence:

$$
H_{12 \mathrm{~m}}=H_{100 \mathrm{~m}} \sqrt{\frac{(n c \cos \theta)_{100 \mathrm{~m}}}{(n c \cos \theta)_{12 \mathrm{~m}}}}=1.3 \times \sqrt{\frac{0.5383 \times 19.98 \times \cos 30^{\circ}}{0.9086 \times 10.33 \times \cos 14.98^{\circ}}}=1.318 \mathrm{~m}
$$

The maximum freeboard for a combination of the two waves, allowing for reflection, is twice the sum of the amplitudes, i.e. the sum of the heights.

Hence, the freeboard must be

$$
1.644+1.318=2.962 \mathrm{~m}
$$

or height from the bed:

$$
12+2.962=14.96 \mathrm{~m}
$$

Answer: caisson height 14.96 m (from bed level), or 2.96 m (freeboard).

Q23.
(a)

(b) Given:

$$
\begin{aligned}
& h=8 \mathrm{~m} \\
& T=5 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=1.257 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow & 1.289=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{1.289}{\tanh k h}
$$

to get

$$
\begin{aligned}
& k h=1.442 \\
& k=\frac{1.442}{h}=0.1803 \mathrm{~m}^{-1}
\end{aligned}
$$

$\pi / 10<k h<\pi$, so this is an intermediate-depth wave.
Answer: $k h=1.44$; intermediate-depth wave.
(c)
(i) The velocity potential is

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

Then

$$
u \equiv \frac{\partial \phi}{\partial x} \quad=\frac{\operatorname{Agk}}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

At the $\operatorname{SWL}(z=0)$ the amplitude of the horizontal velocity is

$$
\frac{A g k}{\omega}
$$

(ii) At the sensor height $(z=-6 \mathrm{~m})$ the amplitude of horizontal velocity is

$$
\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h}
$$

and hence, from the given data,

$$
\frac{A \times 9.81 \times 0.1803}{1.257} \times \frac{\cosh [0.1803 \times 2]}{\cosh 1.442}=0.34
$$

Hence,

$$
\begin{aligned}
& A=0.5062 \\
& H=2 A \quad=1.012 \mathrm{~m}
\end{aligned}
$$

Answer: 1.01 m .
(iii) From

$$
u=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

we have

$$
a_{x}=\frac{\partial u}{\partial t}+\text { non }- \text { linear terms }=A g k \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

The maximum horizontal acceleration at the bed $(z=-h)$ is

$$
\frac{A g k}{\cosh k h}=\frac{0.5062 \times 9.81 \times 0.1803}{\cosh 1.442}=0.4010 \mathrm{~m} \mathrm{~s}^{-2}
$$

Answer: $0.401 \mathrm{~m} \mathrm{~s}^{-2}$.

Q24.
(a) "Significant wave height" is the average of the highest $1 / 3$ of waves. For irregular waves,

$$
H_{s}=4 \sqrt{\overline{\eta^{2}}}
$$

whilst for a regular wave

$$
\overline{\eta^{2}}=\frac{1}{2} A^{2}
$$

Hence

$$
H_{s}=4 \sqrt{\frac{A^{2}}{2}}=2 \sqrt{2} A=2 \sqrt{2} \times 0.8=2.263 \mathrm{~m}
$$

Answer: significant wave height $=2.26 \mathrm{~m}$.
(b) "Shoaling" is the change in wave height as a wave moves into shallower water. Linear theory can be applied provided the height-to-depth and height-to-wavelength ratios remain "small" and, in practice, up to the point of breaking.
(c) (i) No current.

Given:

$$
\begin{aligned}
& h=35 \mathrm{~m} \\
& A=0.8 \mathrm{~m} \quad(H=1.6 \mathrm{~m}) \\
& T=9 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=0.6981 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 1.739=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{1.739}{\tanh k h}
$$

to get

$$
k h=1.831
$$

$k=\frac{1.831}{h}=0.05231 \mathrm{~m}^{-1}$
$L=\frac{2 \pi}{k}=120.1 \mathrm{~m}$
$c=\frac{\omega}{k}\left(\right.$ or $\left.\frac{L}{T}\right)=13.35 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.5941$
$P=\frac{1}{8} \rho g H^{2}(n c)=\frac{1}{8} \times 1025 \times 9.81 \times 1.6^{2} \times(0.5941 \times 13.35)=25520 \mathrm{Wm}^{-1}$

Answer: wavelength $=120 \mathrm{~m} ;$ power $=25.5 \mathrm{~kW}$ per metre of crest.
(ii) With current $-0.5 \mathrm{~m} \mathrm{~s}^{-1}$.

$$
\omega_{a}=0.6981 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:
$\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h$
Rearrange as

$$
k=\frac{\left(\omega_{a}-k U\right)^{2}}{g \tanh k h}
$$

or here:

$$
k=\frac{(0.6981+0.5 k)^{2}}{9.81 \tanh 35 k}
$$

to get

$$
\begin{aligned}
& k=0.05592 \mathrm{~m}^{-1} \\
& k h=1.957 \\
& L=\frac{2 \pi}{k}=112.4 \mathrm{~m} \\
& \omega_{r}=\omega_{a}-k U=0.6981+0.05592 \times 0.5=0.7261 \mathrm{rad} \mathrm{~s}^{-1} \\
& c_{r}=\frac{\omega_{r}}{k}=12.98 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.5782 \\
& P=\frac{1}{8} \rho g H^{2}\left(n c_{r}\right)=\frac{1}{8} \times 1025 \times 9.81 \times 1.6^{2} \times(0.5782 \times 12.98)=24150 \mathrm{~W} \mathrm{~m}^{-1}
\end{aligned}
$$

(Since power comes from integrating the product of wave fluctuating properties $p u$ to get rate of working, the group velocity here is that in a frame moving with the current; i.e. the ' r ' suffix).

Answer: wavelength $=112 \mathrm{~m} ;$ power $=24.2 \mathrm{~kW}$ per metre of crest.
(d) For the heading change (refraction), find the new wavenumber and then apply Snell's Law. For the wavenumber at $h=5 \mathrm{~m}$ depth, ω as in part $\mathrm{c}(\mathrm{i})$, but

$$
\frac{\omega^{2} h}{g}=0.2484=k h \tanh k h
$$

This is small, so iterate as

$$
k h=\frac{1}{2}\left(k h+\frac{0.2484}{\tanh k h}\right)
$$

to get

$$
\begin{aligned}
& k h=0.5200 \\
& k=\frac{0.5200}{h}=0.104 \mathrm{~m}^{-1}
\end{aligned}
$$

From Snell's Law:

$$
k \sin \theta=k_{1} \sin \theta_{1}
$$

Hence:

$$
\begin{aligned}
& \sin \theta=\frac{k_{1}}{k} \sin \theta_{1}=\frac{0.05231}{0.104} \sin 25^{\circ}=0.2126 \\
& \theta=12.27^{\circ}
\end{aligned}
$$

For the shoaling, the shoreward component of power is constant; i.e.

$$
P \cos \theta=P_{1} \cos \theta_{1}
$$

Hence,

$$
P=P_{1} \frac{\cos \theta_{1}}{\cos \theta}=25520 \frac{\cos 25^{\circ}}{\cos 12.27^{\circ}}=23020 \mathrm{Wm}^{-1}
$$

Answer: heading $=12.3^{\circ} ;$ power $=23.0 \mathrm{~kW}$ per metre of crest.

Q25.
(a) Given

$$
\begin{aligned}
& h=24 \mathrm{~m} \\
& T=6 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=1.047 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow & 2.682=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{2.682}{\tanh k h}
$$

to get

$$
\begin{aligned}
& k h=2.706 \\
& k=\frac{2.706}{h}=0.1128 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=55.70 \mathrm{~m} \\
& c=\frac{\omega}{k}\left(\text { or } \frac{L}{T}\right)=9.282 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: wavelength 55.7 m , phase speed $9.28 \mathrm{~m} \mathrm{~s}^{-1}$.
(b)
(i) From the velocity potential

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

then the dynamic pressure is

$$
p=-\rho \frac{\partial \phi}{\partial t}=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

(ii) At any particular depth the amplitude of the pressure variation is

$$
\rho g A \frac{\cosh k(h+z)}{\cosh k h}
$$

and hence, from the given conditions at $z=-22.5 \mathrm{~m}$,

$$
1025 \times 9.81 A \times \frac{\cosh (0.1128 \times 1.5)}{\cosh 2.706}=1220
$$

Hence,

$$
\begin{aligned}
& A=0.8993 \mathrm{~m} \\
& H=2 A \quad=1.799 \mathrm{~m}
\end{aligned}
$$

Answer: 1.80 m .
(iii) From the velocity potential

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

the horizontal velocity is

$$
u=\frac{\partial \phi}{\partial x}=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

The maximum horizontal velocity occurs at the surface ($z=0$), and is

$$
u_{\max }=\frac{A g k}{\omega}=\frac{0.8993 \times 9.81 \times 0.1128}{1.047}=0.9505 \mathrm{~m} \mathrm{~s}^{-1}
$$

Answer: $0.950 \mathrm{~m} \mathrm{~s}^{-1}$.
(c) Kinematic boundary condition - the boundary is a material surface (i.e. always composed of the same particles), or, equivalently, there is no flow through the boundary.

Dynamic boundary condition - stress (here, pressure) is continuous across the boundary.
(d) Determine the wave period that would result in the same absolute period if this were recorded in the presence of a uniform flow of $0.6 \mathrm{~m} \mathrm{~s}^{-1}$ in the wave direction.

With current $0.6 \mathrm{~m} \mathrm{~s}^{-1}$.

$$
\omega_{a}=1.047 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h
$$

Rearrange as

$$
k=\frac{\left(\omega_{a}-k U\right)^{2}}{g \tanh k h}
$$

or here:

$$
k=\frac{(1.047-0.6 k)^{2}}{9.81 \tanh 24 k}
$$

to get

$$
\begin{aligned}
& k=0.1008 \mathrm{~m}^{-1} \\
& \omega_{r}=\omega_{a}-k U=1.047-0.1008 \times 0.6=0.9865 \mathrm{rad} \mathrm{~s}^{-1} \\
& T_{r}=\frac{2 \pi}{\omega_{r}}=6.369 \mathrm{~s}
\end{aligned}
$$

Answer: 6.37 s.

Q26.
(a) Given:

$$
\begin{aligned}
& h=1.2 \mathrm{~m} \\
& T=1.5 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=4.189 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 2.147=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{2.147}{\tanh k h}
$$

to get

$$
k h=2.200
$$

These are intermediate-depth waves - particle trajectories sketched below.

(b) From

$$
w=\frac{A g k}{\omega} \frac{\sinh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

we have

$$
a_{z}=\frac{\partial w}{\partial t}+\text { non }- \text { linear terms } \quad=-\operatorname{Agk} \frac{\sinh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

At the free surface $(z=0)$ the amplitude of the vertical acceleration is

$$
a_{z, \max }=A g k \tanh k h
$$

Substituting the dispersion relation $\omega^{2}=g k \tanh k h$,

$$
a_{z, \max }=A \omega^{2}
$$

Here,

$$
k=\frac{2.200}{h}=1.833 \mathrm{~m}^{-1}
$$

Hence

$$
\begin{aligned}
& A=\frac{a_{z, \max }}{\omega^{2}}=\frac{0.88}{4.189^{2}}=0.05015 \mathrm{~m} \\
& H=2 A \quad=0.1003
\end{aligned}
$$

Also

$$
\begin{aligned}
& L=\frac{2 \pi}{k}=3.428 \mathrm{~m} \\
& c=\frac{\omega}{k}=2.285 \mathrm{~m} \mathrm{~s}^{-1} \\
& n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]=0.5540 \\
& P=\frac{1}{8} \rho g H^{2} n c=\frac{1}{8} \times 1025 \times 9.81 \times 0.1003^{2} \times 0.5540 \times 2.285=16.01 \mathrm{~W} \mathrm{~m}^{-1}
\end{aligned}
$$

Answer: wavelength $=3.43 \mathrm{~m}$; wave height $=0.100 \mathrm{~m}$; power $=16.0 \mathrm{~W}$ per metre crest.
(c)

With current $-0.3 \mathrm{~m} \mathrm{~s}^{-1}$.

$$
\omega_{a}=4.189 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\left(\omega_{a}-k U\right)^{2}=\omega_{r}^{2}=g k \tanh k h
$$

Rearrange as

$$
k=\frac{\left(\omega_{a}-k U\right)^{2}}{g \tanh k h}
$$

or here:

$$
k=\frac{(4.189+0.3 k)^{2}}{9.81 \tanh (1.2 k)}
$$

to get

$$
\begin{aligned}
& k=2.499 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=2.514 \mathrm{~m}
\end{aligned}
$$

Answer: 2.51 m .
(d) Spilling breakers occur for steep waves and/or mildly-sloped beaches. Waves gradually dissipate energy as foam spills down the front faces.

Miche criterion in deep water $(\tanh k h \rightarrow 1)$:

$$
\frac{H_{b}}{L}=0.14
$$

where, in deep water, and with period $T=1 \mathrm{~s}$:

$$
L=\frac{g T^{2}}{2 \pi}=1.561 \mathrm{~m}
$$

Hence,

$$
H_{b}=0.14 \times 1.561=0.2185 \mathrm{~m}
$$

Answer: 0.219 m .

Q27.
(a) Period is unchanged:

$$
T=5.5 \mathrm{~s}
$$

Deep-water wavelength

$$
L_{0}=\frac{g T^{2}}{2 \pi}=47.23 \mathrm{~m}
$$

Answer: period $=5.5 \mathrm{~s}$; wavelength $=47.2 \mathrm{~m}$.
(b)

Wave properties:

$$
\begin{aligned}
& h=4 \mathrm{~m} \\
& \omega=\frac{2 \pi}{T} \quad=1.142 \mathrm{rad} \mathrm{~s}^{-1}
\end{aligned}
$$

The dispersion relation is

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 0.5318=k h \tanh k h
\end{aligned}
$$

Since the LHS is small this may be iterated as

$$
k h=\frac{1}{2}\left(k h+\frac{0.5318}{\tanh k h}\right)
$$

to give

$$
k h=0.8005
$$

Hydrodynamic pressure:
Crest:

$$
p_{1}=0
$$

Still-water line: $\quad p_{2}=\rho g H=1025 \times 9.81 \times 0.75=7541 \mathrm{~Pa}$
Bed: $\quad P_{3}=\frac{\rho g H}{\cosh k h}=\frac{p_{2}}{\cosh 0.8005}=5637 \mathrm{~Pa}$
(c) Decompose the pressure forces on the breakwater as shown. Relevant dimensions are:

$$
\begin{aligned}
& h=4 \mathrm{~m} \\
& H=0.75 \mathrm{~m} \\
& b=3 \mathrm{~m}
\end{aligned}
$$

Region	Force, F_{x} or F_{z}	Moment arm
1	$F_{x 1}=\frac{1}{2} p_{2} \times H=2828 \mathrm{~N} / \mathrm{m}$	$z_{1}=h+\frac{1}{3} H=4.25 \mathrm{~m}$
2	$F_{x 2}=p_{3} \times h=22548 \mathrm{~N} / \mathrm{m}$	$z_{2}=\frac{1}{2} h=2 \mathrm{~m}$
3	$F_{x 3}=\frac{1}{2}\left(p_{2}-p_{3}\right) \times h=3808 \mathrm{~N} / \mathrm{m}$	$z_{3}=\frac{2}{3} h=2.667 \mathrm{~m}$
4	$F_{z 4}=\frac{1}{2} p_{3} \times b=8456 \mathrm{~N} / \mathrm{m}$	$z_{4}=\frac{2}{3} b=2 \mathrm{~m}$

The sum of all clockwise moments about the heel:

$$
F_{x 1} z_{1}+F_{x 2} z_{2}+F_{x 3} z_{3}+F_{z 4} x_{4}=84180 \mathrm{~N} \mathrm{~m} / \mathrm{m}
$$

Answer: 84.2 kN m per metre of breakwater.

Q28.
(a)

$$
h=23 \mathrm{~m}
$$

For deep water:

$$
\begin{aligned}
& k h>\pi \\
\Rightarrow & k>\frac{\pi}{h}=0.1366 \mathrm{~m}^{-1} \\
\Rightarrow & L<\frac{2 \pi}{0.1366}=46.00 \mathrm{~m}
\end{aligned}
$$

Also, from the dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \omega>\sqrt{9.81 \times 0.1366 \times \tanh \pi}=1.155 \mathrm{rad} \mathrm{~s}^{-1} \\
\Rightarrow \quad & T<\frac{2 \pi}{1.155}=5.440 \mathrm{~s}
\end{aligned}
$$

Answer: largest wavelength $=46 \mathrm{~m}$; largest period $=5.44 \mathrm{~s}$.
(b)
(i) Given

$$
\begin{aligned}
& h=23 \mathrm{~m} \\
& T=9 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=0.6981 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 1.143=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{1.143}{\tanh k h}
$$

to get

$$
\begin{aligned}
& k h=1.319 \\
& k=\frac{1.319}{h}=0.05735 \mathrm{~m}^{-1}
\end{aligned}
$$

$$
L=\frac{2 \pi}{k} \quad=109.6 \mathrm{~m}
$$

Answer: wavenumber $=0.0573 \mathrm{~m}^{-1}$; wavelength $=110 \mathrm{~m}$.
(ii) From the velocity potential

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

the horizontal velocity is

$$
u=\frac{\partial \phi}{\partial x}=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

Hence, the amplitude of the horizontal particle velocity at height z is

$$
u_{\max }=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h}
$$

From the given data, $u_{\max }=0.31 \mathrm{~m} \mathrm{~s}^{-1}$ when $z=-20 \mathrm{~m}$,

$$
\begin{gathered}
A=\frac{\omega u_{\max }}{g k} \frac{\cosh k h}{\cosh k(h+z)}=\frac{0.6981 \times 0.31}{9.81 \times 0.05735} \times \frac{\cosh 1.319}{\cosh [0.05735 \times 3]}=0.7594 \mathrm{~m} \\
H=2 A=1.519 \mathrm{~m}
\end{gathered}
$$

Answer: 1.52 m .
(iii) At $z=0$,

$$
u_{\max }=\frac{A g k}{\omega}=\frac{0.7594 \times 9.81 \times 0.05735}{0.6981}=0.6120 \mathrm{~m} \mathrm{~s}^{-1}
$$

The wave speed is

$$
c=\frac{\omega}{k}=\frac{0.6981}{0.05735}=12.17 \mathrm{~m} \mathrm{~s}^{-1}
$$

Answer: particle velocity $=0.612 \mathrm{~m} \mathrm{~s}^{-1}$, much less than the wave speed.

Q29.
Given

$$
\begin{aligned}
& H_{s}=1.5 \mathrm{~m} \\
& U=14 \mathrm{~m} \mathrm{~s}^{-1} \\
& t=6 \times 3600=21600 \mathrm{~s}
\end{aligned}
$$

then

$$
\hat{t} \equiv \frac{g t}{U} \quad=15140
$$

If duration-limited then this would imply an effective fetch related to time t by the nondimensional relation

$$
\hat{t}=68.8 \hat{F}_{\mathrm{eff}}^{2 / 3}
$$

or

$$
\hat{F}_{\text {eff }}=\left(\frac{\hat{t}}{68.8}\right)^{3 / 2}=3264
$$

and consequent wave height

$$
\begin{aligned}
& \frac{g H_{s}}{U^{2}} \equiv \widehat{H}_{s} \quad=0.0016 \hat{F}_{\mathrm{eff}}^{1 / 2}=0.09141 \\
& H_{s}=0.09141 \times \frac{U^{2}}{g}=1.826
\end{aligned}
$$

But the actual wave height is less than this, so it is limited by fetch, not duration.

Q30.
(a) Kinematic boundary condition - the boundary is a material surface (i.e. always composed of the same particles), or, equivalently, there is no flow through the boundary.

Dynamic boundary condition - stress (here, pressure) is continuous across the boundary.
(b)
(i) Given:

$$
\begin{aligned}
& h=20 \mathrm{~m} \\
& T=8 \mathrm{~s}
\end{aligned}
$$

Then,

$$
\omega=\frac{2 \pi}{T} \quad=0.7854 \mathrm{rad} \mathrm{~s}^{-1}
$$

Dispersion relation:

$$
\begin{aligned}
& \omega^{2}=g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}=k h \tanh k h \\
\Rightarrow \quad & 1.258=k h \tanh k h
\end{aligned}
$$

Iterate as

$$
k h=\frac{1.258}{\tanh k h}
$$

to get

$$
\begin{aligned}
& k h=1.416 \\
& k=\frac{1.416}{h}=0.07080 \mathrm{~m}^{-1} \\
& L=\frac{2 \pi}{k}=88.75 \mathrm{~m} \\
& c=\frac{\omega}{k}\left(\text { or } \frac{L}{T}\right)=11.09 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Answer: wavelength $=88.7 \mathrm{~m} ;$ speed $=11.1 \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) From the velocity potential

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

then the dynamic pressure is

$$
p=-\rho \frac{\partial \phi}{\partial t} \quad=\rho g A \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

From the given magnitude of the pressure fluctuations at the bed $(z=-h)$:

$$
\frac{\rho g A}{\cosh k h}=6470
$$

Hence

$$
\begin{aligned}
& A=\frac{6470 \times \cosh k h}{\rho g}=\frac{6470 \times \cosh 1.416}{1025 \times 9.81}=1.404 \mathrm{~m} \\
& H=2 A \quad=2.808 \mathrm{~m}
\end{aligned}
$$

Answer: wave height $=2.81 \mathrm{~m}$.
(c)
(i) For $T<5 \mathrm{~s}$,

$$
\omega=\frac{2 \pi}{T} \quad>1.257 \mathrm{rad} \mathrm{~s}^{-1}
$$

At the limiting value on the RHS,

$$
\frac{\omega^{2} h}{g}=3.221
$$

Solving the dispersion relationship in the form

$$
\frac{\omega^{2} h}{g}=k h \tanh k h
$$

by iteration:

$$
k h=\frac{3.221}{\tanh k h}
$$

produces

$$
k h=3.220
$$

This is a deep-water wave $(k h>\pi)$, hence negligible wave dynamic pressure is felt at the bed.
(ii) From the velocity potential

$$
\phi=\frac{A g}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

the horizontal velocity is

$$
u=\frac{\partial \phi}{\partial x}=\frac{A g k}{\omega} \frac{\cosh k(h+z)}{\cosh k h} \cos (k x-\omega t)
$$

and the particle acceleration is

$$
a_{x}=\frac{\partial u}{\partial t}+\text { non }- \text { linear terms } \quad=A g k \frac{\cosh k(h+z)}{\cosh k h} \sin (k x-\omega t)
$$

and the amplitude of horizontal acceleration at $z=0$ is

$$
A g k
$$

Q31.
(a) The irrotationality condition (given in that year's exam paper) is

$$
\frac{\partial k_{y}}{\partial x}-\frac{\partial k_{x}}{\partial y}=0
$$

Wave behaviour is the same all the way along the coast; hence $\partial / \partial y=0$ for all variables. This leaves

$$
\frac{\partial k_{y}}{\partial x}=0
$$

But

$$
k_{y}=k \sin \theta
$$

(see diagram). Hence

$$
k \sin \theta=\text { constant }
$$

or

$$
(k \sin \theta)_{1}=(k \sin \theta)_{2}
$$

for two locations on a wave ray.
(b)

$$
T=7 \mathrm{~s}
$$

Hence

$$
\omega=\frac{2 \pi}{T} \quad=0.8976 \mathrm{rad} \mathrm{~s}^{-1}
$$

The dispersion relation is

$$
\begin{aligned}
\omega^{2} & =g k \tanh k h \\
\Rightarrow \quad & \frac{\omega^{2} h}{g}
\end{aligned}=k h \tanh k h
$$

This may be iterated as either

$$
k h=\frac{\omega^{2} h / g}{\tanh k h} \quad \text { or } \quad k h=\frac{1}{2}\left(k h+\frac{\omega^{2} h / g}{\tanh k h}\right)
$$

	$h=5 \mathrm{~m}$	$h=28 \mathrm{~m}$
$\frac{\omega^{2} h}{g}$	0.4106	2.300
Iteration:	$k h=\frac{1}{2}\left(k h+\frac{0.4106}{\tanh k h}\right)$	$k h=\frac{2.300}{\tanh k h}$
$k h$	0.6881	2.343
k	$0.1376 \mathrm{~m}^{-1}$	$0.08368 \mathrm{~m}^{-1}$

$c=\frac{\omega}{k}$	$6.523 \mathrm{~m} \mathrm{~s}^{-1}$	$10.73 \mathrm{~m} \mathrm{~s}^{-1}$
$n=\frac{1}{2}\left[1+\frac{2 k h}{\sinh 2 k h}\right]$	0.8712	0.5432
θ	$?$	35°
H	$?$	1.2 m

Refraction:

$$
\begin{aligned}
& (k \sin \theta)_{5 \mathrm{~m}}=(k \sin \theta)_{28 \mathrm{~m}} \\
& 0.1376 \sin \theta=0.08368 \sin 35^{\circ}
\end{aligned}
$$

Hence,

$$
\theta=20.41^{\circ}
$$

From the shoaling equation:

$$
\left(H^{2} n c \cos \theta\right)_{5 \mathrm{~m}}=\left(H^{2} n c \cos \theta\right)_{28 \mathrm{~m}}
$$

Hence:

$$
H_{5 \mathrm{~m}}=H_{28 \mathrm{~m}} \sqrt{\frac{(n c \cos \theta)_{28 \mathrm{~m}}}{(n c \cos \theta)_{5 \mathrm{~m}}}}=1.2 \times \sqrt{\frac{0.5432 \times 10.73 \times \cos 35^{\circ}}{0.8712 \times 6.523 \times \cos 20.41^{\circ}}}=1.136 \mathrm{~m}
$$

The power per metre of crest at depth 5 m is

$$
P=\frac{1}{8} \rho g H^{2}(n c)=\frac{1}{8} \times 1025 \times 9.81 \times 1.136^{2} \times(0.8712 \times 6.523)=9218 \mathrm{Wm}^{-1}
$$

Answer: direction 20.4°; wave height $1.14 \mathrm{~m} ;$ power $=9.22 \mathrm{~kW} \mathrm{~m}^{-1}$.
(c) Given

$$
T=7 \mathrm{~s}
$$

and at depth 5 m :

$$
\begin{aligned}
& H=2.8 \mathrm{~m} \\
& \theta=0^{\circ}
\end{aligned}
$$

Breaker Height

Breaker height index (on formula sheet):

$$
H_{b}=0.56 H_{0}\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5}
$$

First find deep-water conditions H_{0} and L_{0}. By shoaling (with no refraction):

$$
\left(H^{2} n c\right)_{0}=\left(H^{2} n c\right)_{5 \mathrm{~m}}
$$

In deep water,

$$
\begin{aligned}
& n_{0}=\frac{1}{2} \\
& c_{0}=\frac{g T}{2 \pi} \quad=10.93 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

whilst n and c at depth 5 m come from part (b). Hence,

$$
H_{0}^{2} \times 0.5 \times 10.93=2.8^{2} \times 0.8712 \times 6.523
$$

whence

$$
H_{0}=2.855 \mathrm{~m}
$$

Also in deep water,

$$
L_{0}=\frac{g T^{2}}{2 \pi}=76.50 \mathrm{~m}
$$

Then from the formula for breaker height:

$$
H_{b}=0.56 H_{0}\left(\frac{H_{0}}{L_{0}}\right)^{-1 / 5}=3.086 \mathrm{~m}
$$

Breaking Depth

From the formula sheet the breaker depth index is

$$
\gamma_{b} \equiv\left(\frac{H}{h}\right)_{b}=b-a \frac{H_{b}}{g T^{2}}
$$

where, with a beach slope $m=1 / 40=0.025$:

$$
\begin{aligned}
& a=43.8\left(1-\mathrm{e}^{-19 m}\right)=43.8\left(1-\mathrm{e}^{-19 \times 0.025}\right)=16.56 \\
& b=\frac{1.56}{1+\mathrm{e}^{-19.5 m}}=\frac{1.56}{1+\mathrm{e}^{-19.5 \times 0.025}}=0.9664
\end{aligned}
$$

Hence, from the breaker depth index:

$$
\frac{3.086}{h_{b}}=0.9664-16.56 \times \frac{3.086}{9.81 \times 7^{2}}
$$

giving depth of water at breaking:

$$
h_{b}=3.588 \mathrm{~m}
$$

Answer: breaker height $=3.09 \mathrm{~m}$; breaking depth $=3.59 \mathrm{~m}$.

