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APPENDICES: MATHEMATICAL DERIVATIONS AUTUMN 2023 
 
A1. Hyperbolic Functions 
 

Definitions: 

sinh(𝑥) ≡
e𝑥 − 𝑒−𝑥

2
 

cosh(𝑥) ≡
e𝑥 + 𝑒−𝑥

2
 

tanh 𝑥 ≡
sinh 𝑥

cosh 𝑥
 

 

 

 

 

 

 

 

 

 

 

Basic Formulae 

These bear more than a passing resemblance to those for trigonometric functions (with 

corresponding definitions for sech, cosech and coth), but beware of signs: 

cosh2 𝑥 − sinh2 x = 1 

cosh 2𝑥 = cosh2 𝑥 + sinh2 𝑥    = 2 cosh2 𝑥 − 1 

sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥 

 

Derivatives 

d

d𝑥
(sinh 𝑥) = cosh 𝑥 

d

d𝑥
(cosh 𝑥) = sinh 𝑥 

d

d𝑥
(tanh𝑥) = sech2 𝑥 

 

Asymptotic Behaviour 

 

Small x:    sinh 𝑥 ~ tanh 𝑥 ~ 𝑥,     cosh 𝑥 → 1     as      𝑥 → 0 

 

Large x:    sinh 𝑥 ~ cosh 𝑥 ~
1

2
e𝑥,     tanh 𝑥 → 1     as      𝑥 → ∞ 
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A2. Fluid-Flow Equations 
 

To start, we need mathematical equations for three fluid-dynamical principles: continuity, 

irrotationality (or, equivalently, use of a velocity potential) and the time-dependent Bernoulli 

equation (mechanical energy). In two dimensions, with coordinates (𝑥, 𝑧) and velocity (𝑢, 𝑤), 
and assuming incompressible and inviscid flow, these are: 

 

(i) Continuity: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0 

 

(ii) Irrotationality: 

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
= 0 or 𝑢 =

𝜕𝜙

𝜕𝑥
 ,     𝑤 =

𝜕𝜙

𝜕𝑧
 

where 𝜙 is a velocity potential. 

 

(iii) Time-dependent Bernoulli equation: 

𝜌
∂𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡),    along a streamline 

where 𝑈 is the speed, or magnitude of velocity: 𝑈2 = 𝑢2 +𝑤2. 

 

Heuristic justifications for these follow. 

 

 

Continuity 

 

Consider flow in the 𝑥 − 𝑧 plane and flow through the sides of a small rectangular control 

volume, with sides Δ𝑥, Δ𝑧. In incompressible flow, the net volume flux out of this volume is 

zero. 

 

Since the volume flux through any surface is (velocity)  (area) then, per unit depth normal to 

this plane, and with the notation in the figure: 

net volume outflow = 𝑢𝑒Δ𝑧 − 𝑢𝑤Δ𝑧 + 𝑤𝑛Δ𝑥 − 𝑤𝑠Δ𝑥 = 0 

Dividing by area Δ𝑥Δ𝑧: 

𝑢𝑒 − 𝑢𝑤
Δ𝑥

+
𝑤𝑛 − 𝑤𝑠
Δ𝑧

= 0 

Δ𝑢

Δ𝑥
+
Δ𝑤

Δ𝑧
= 0 

 

In the limit as Δ𝑥, Δ𝑧 → 0: 

𝜕𝑢

𝜕𝑥
+
𝜕𝑤

𝜕𝑧
= 0 
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Irrotationality 

 

Irrotationality is a consequence of the inviscid approximation. In the absence of viscous forces 

(and density gradients) the only forces acting on a fluid element are pressure and a constant 

gravity force. The former acts perpendicular to the boundary of the element and the latter is 

constant, so neither can impart rotation (or “circulation”). Hence (see figure): 

circulation(≡ line integral of velocity) = 0 

For our 2-d volume, and working clockwise from the top edge: 

𝑢𝑛Δ𝑥 − 𝑤𝑒Δ𝑧 − 𝑢𝑠Δ𝑥 + 𝑤𝑤Δ𝑧 = 0 

Dividing by area Δ𝑥Δ𝑧: 

𝑢𝑛 − 𝑢𝑠
Δ𝑧

−
𝑤𝑒 − 𝑤𝑤
Δ𝑥

= 0 

Δ𝑢

Δ𝑧
−
Δ𝑤

Δ𝑥
= 0 

In the limit as Δ𝑥, Δ𝑧 → 0: 

 𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
= 0 

(1) 

 

If we define the velocity potential 𝜙 as the line integral of velocity from an arbitrary reference 

point to (𝑥, 𝑧), then 𝜙 is well-defined because the no-circulation condition makes this 

independent of route. In particular, considering the change from bottom-left to top-right of our 

representative control volume, by either route, and working directly in infinitesimals: 

d𝜙 = 𝑢 d𝑥 + 𝑤 d𝑧 

But, comparing the expansion for any 2-d function: 

d𝜙 =
𝜕𝜙

𝜕𝑥
 d𝑥 +

𝜕𝜙

𝜕𝑧
 d𝑧 

we have 

𝑢 =
𝜕𝜙

𝜕𝑥
 ,          𝑤 =

𝜕𝜙

𝜕𝑧
 

 

As a check, substitute in the LHS of (1) to get 

𝜕2𝜙

𝜕𝑧 𝜕𝑥
−
𝜕2𝜙

∂𝑥 𝜕𝑧
 

which vanishes by the symmetry of the second derivatives. 

 

It is convenient to write all flow variables (𝑢,  𝑤,  𝑝) in terms of 𝜙, because we then only have 

one equation to solve. However, the ability to do so relies on the assumption of irrotationality 

(here, due to the inviscid approximation) which does not hold in, for example, boundary layers. 
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Time-Dependent Bernoulli Equation 

 

Writing “mass  acceleration = force”, per unit volume, and in the 

direction of a streamline: 

𝜌 (
𝜕𝑈

𝜕𝑡
+ 𝑈

𝜕𝑈

𝜕𝑠
) = −

𝜕𝑝

𝜕𝑠
− 𝜌𝑔 sin θ 

where 𝑈 is the magnitude of velocity, 𝑠 is the distance along a streamline and θ is the angle 

between streamline and horizontal. 

 

From trigonometry, sin 𝜃 = Δ𝑧 Δ𝑠⁄ , or, along a streamline, sin 𝜃 = ∂𝑧 ∂𝑠⁄ , whilst, in terms of 

the velocity potential, 𝑈 = ∂𝜙 ∂𝑠⁄ . Hence, after rearranging (and assuming ρ constant): 

𝜕

𝜕𝑠
[𝜌
𝜕𝜙

𝜕𝑡
+
1

2
𝜌𝑈2 + 𝑝 + 𝜌𝑔𝑧] = 0 

Hence, 

𝜌
∂𝜙

𝜕𝑡
+ 𝑝 +

1

2
𝜌𝑈2 + 𝜌𝑔𝑧 = 𝐶(𝑡),      along any particular streamline 

 

We will use the time-dependent version here. However, note that, in the time-steady case, this 

reduces to the “normal” Bernoulli equation: 

𝑝 + 𝜌𝑔𝑧 +
1

2
𝜌𝑈2 = constant, along a streamline 

 

 

3-d Generalisations (Not Examinable) 

 

The above are very hand-waving arguments. Far better (but more mathematical) derivations 

can be found in any good fluid-mechanics textbook. There are also 3-d generalisations: 

 

Continuity: 

∇ •u ≡
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

 

Irrotationality: 

∇˄u ≡

(

 
 
 
 

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦)

 
 
 
 

= 0 

∇˄u is called vorticity. In this course we are only using the 𝑦 component (i.e. the circulation 

in the 𝑥 − 𝑧 plane). 

 

In terms of the velocity potential: 


U

s
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 u = ∇𝜙 =

(

 
 
 
 

𝜕𝜙

𝜕𝑥
𝜕𝜙

𝜕𝑦
𝜕𝜙

𝜕𝑧)

 
 
 
 

 

 

The time-dependent Bernoulli equation is unchanged.  
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A3. Derivation of Wave Field and Dispersion Equation 
 

A3.1 Laplace’s Equation For the Velocity Potential 
 

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= 0 

 

 

A3.2 Boundary Conditions 
 

Boundary conditions are applied at the bed and the free surface. These are of two types: 

• kinematic (no net flow through a boundary); 

• dynamic (stress is continuous at a boundary). 

 

 

A3.2.1 Kinematic Boundary Conditions 

 

The condition that the curve 

𝑧 = 𝑧surf(𝑥, 𝑡) 

be a material surface (i.e. that the particles constituting it are always the same; or, there is no 

net flow through it) is that the total derivative following the flow (𝑢, 𝑤) satisfies 

D

D𝑡
(𝑧 − 𝑧surf) = 0          on         𝑧 = 𝑧surf(𝑥, 𝑡) 

where, in 2 dimensions, 

D

D𝑡
≡
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑤

𝜕

𝜕𝑧
 

Expanding and rearranging: 

𝑤 =
𝜕𝑧surf
𝜕𝑡

+ 𝑢
𝜕𝑧surf
𝜕𝑥

          on         𝑧 = 𝑧surf(𝑥, 𝑡) 

 

This gives the following kinematic boundary conditions. 

 

 

Bed (KBBC – Kinematic Bed Boundary Condition) 

 

Assuming the bed is horizontal and rigid: 

𝑤 = 0          on         𝑧 = −ℎ 

 

 

Free Surface (KFSBC – Kinematic Free-Surface Boundary Condition) 

 

𝑤 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
          on         𝑧 = 𝜂(𝑥, 𝑡) 
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A3.2.2 Dynamic Boundary Conditions 

 

The stress on either side of a surface must be continuous (or the particles constituting the 

surface would have infinite acceleration). 

 

Free Surface (DFSBC –  Dynamic Free-Surface Boundary Condition) 

 

Neglecting viscosity and surface tension, pressure must be atmospheric at the free surface. 

Hence, in terms of gauge pressure: 

𝑝 = 0     on     𝑧 = 𝜂(𝑥, 𝑡) 

Taken together with Bernoulli’s equation, and noting that the free surface is a streamline, 

𝜌
∂𝜙

𝜕𝑡
+
1

2
𝜌𝑈2 + 𝜌𝑔𝜂 = 𝐶(𝑡)     on     𝑧 = 𝜂(𝑥, 𝑡) 

 

No dynamic boundary condition is applied at the bed, which can absorb any pressure 

distribution impressed on it. 

 

 

A3.3 Linearised Equations 

 

When an expression is expanded in terms of a small quantity 𝜀 it is common to drop quadratic 

and higher terms. i.e. if 

𝑦 = 𝑎 + 𝑏𝜀 + 𝑐𝜀2 +⋯ 

then it is common to neglect terms in 𝜀2 and greater, so leaving the linear terms only: 

𝑦 = 𝑎 + 𝑏𝜀 

Here, we assume that the wave amplitude 𝐴 is small (compared with depth ℎ and wavelength 

𝐿) and hence neglect products and powers above the first of wave-related perturbations. 

Moreover, boundary conditions at 𝑧 = 𝜂(𝑥, 𝑡) can effectively be applied at 𝑧 = 0. 

 

With this assumption, the governing equations are the following. 

 

Laplace’s equation for the velocity potential is already linear: 

𝜕2𝜙

𝜕𝑥2
+
𝜕2𝜙

𝜕𝑧2
= 0 

 

The linearised boundary conditions, written in terms of the velocity potential 𝜙 are: 

KBBC: 

𝜕𝜙

𝜕𝑧
= 0          on         𝑧 = −ℎ 

 

KFSBC: 

𝜕𝜙

𝜕𝑧
=
𝜕𝜂

𝜕𝑡
          on         𝑧 = 0 
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DFSBC: 

∂𝜙

𝜕𝑡
+ 𝑔𝜂 = 𝐶(𝑡)          on          𝑧 = 0 

 

 

A3.4 Solution for a Sinusoidal Wave 
 

The linearised equations above are to be solved for a surface displacement that is a single 

harmonic wave component, noting that, under linearity assumptions, the general solution 

would be a sum over individual wave components: 

𝜂 = 𝐴 cos(𝑘𝑥 − 𝜔𝑡) 

 

Under appropriate boundary conditions, Laplace’s equation has unique solutions. Look for 

separable solutions: 

𝜙 = 𝑋(𝑥, 𝑡)𝑍(𝑧) 

 

From the KFSBC: 

𝑋
d𝑍

d𝑧
|
𝑧=0

= 𝐴𝜔 sin(𝑘𝑥 − 𝜔𝑡) 

Hence, 𝑋 ∝ sin(𝑘𝑥 − ω𝑡) . WLOG, we can take the constant of proportionality as 1 and absorb 

the remainder of the multiplier into 𝑍. Hence, 

𝑋 = sin(𝑘𝑥 − 𝜔𝑡) 

and 

d𝑍

d𝑧
|
𝑧=0

= 𝐴𝜔 

 

From Laplace’s equation: 

−𝑘2𝑋𝑍 + 𝑋
d2𝑍

d𝑧2
= 0 

or 

d2𝑍

d𝑧2
= 𝑘2𝑍 

This has general solution: 

𝑍 = 𝛼e𝑘𝑧 + 𝛽e−𝑘𝑧 

 

From the KFSBC above and the KBBC: 

d𝑍

d𝑧
= 𝐴𝜔     on    𝑧 = 0 

d𝑍

d𝑧
= 0     on    𝑧 = −ℎ 
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These fix α and β to give, after some messy algebra, 

𝑍 =
𝐴𝜔

𝑘

cosh 𝑘(ℎ + 𝑧)

sinh 𝑘ℎ
 

 

The solution for the whole potential is then 

𝜙 =
𝐴𝜔

𝑘

cosh 𝑘(ℎ + 𝑧)

sinh 𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡) 

 

Finally, we have to satisfy the DFSBC. This will gives a relationship between frequency 𝜔 and 

wavenumber 𝑘 (and hence between period 𝑇 and wavelength 𝐿): 

−
𝐴𝜔2

𝑘

cosh 𝑘ℎ

sinh𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡) + 𝐴𝑔 cos(𝑘𝑥 − 𝜔𝑡) = 𝐶(𝑡) 

The LHS has zero spatial mean; hence the RHS must be identically zero. Hence, after dividing 

out 𝐴 cos(𝑘𝑥 − 𝜔𝑡) and rearranging, we arrive at the very famous 

Dispersion Relationship: 

 

 𝜔2 = 𝑔𝑘 tanh𝑘ℎ 

 

 

From this last equation, 

𝜔

𝑘
= (

𝑔

𝜔
)
sinh 𝑘ℎ

cosh 𝑘ℎ
 

and so the velocity potential can also be written 

 

Velocity Potential: 

 
𝜙 =

𝐴𝑔

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡) 

 

Once the velocity potential and dispersion relation are known, the velocity, pressure and other 

quantities follow immediately. 

 

 

Velocity 

 

𝑢 ≡
𝜕𝜙

𝜕𝑥
      =

𝐴𝑔𝑘

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡) 

𝑤 ≡
𝜕𝜙

𝜕𝑧
      =

𝐴𝑔𝑘

𝜔

sinh𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
sin(𝑘𝑥 − 𝜔𝑡) 

 

 

Pressure 

 

From the linearised form of Bernoulli’s equation, 
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𝑝 = −𝜌𝑔𝑧 − 𝜌
∂𝜙

𝜕𝑡

= −𝜌𝑔𝑧 + 𝜌𝑔𝐴
cosh𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)

 

This can also be written 

𝑝 = −𝜌𝑔𝑧 +   𝜌𝑔𝜂
cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
 

where we have used the specified surface displacement, 𝜂. 

 

Note: 

(i) It is common to decompose the pressure field into hydrostatic and hydrodynamic 

components: 

𝑝 = −𝜌𝑔𝑧⏟  
hydrostatic

+   𝜌𝑔𝐴
cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)

⏟                      
hydrodynamic (i.e.  wave)

 

 

(ii) Both 𝑢 and 𝑝 demonstrate the characteristic depth dependence 

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
 

 which varies from 1 at the free surface (𝑧 = 0) to  

1

cosh 𝑘ℎ
 

 at the bed (𝑧 = −ℎ). If 𝑘ℎ is large (say, 𝑘ℎ > π) then wave disturbances do not reach 

the bed.  
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A4. Wave Kinetic and Potential Energy 
 

Kinetic Energy 

 

Wave kinetic energy (per unit horizontal area) is, integrating over the water column: 

KE =
1

2
𝜌∫ (𝑢2 + 𝑤2) d𝑧

𝜂

𝑧=−ℎ

 

The upper limit may be taken as 0 rather than η because of the linear approximation. 

 

From the solution for the velocity components 

𝑢2 + 𝑤2 = (
𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

{cosh2 𝑘(ℎ + 𝑧) cos2(𝑘𝑥 − 𝜔𝑡) + sinh2 𝑘(ℎ + 𝑧) sin2(𝑘𝑥 − 𝜔𝑡)} 

The average value of both cos2(𝑘𝑥 − 𝜔𝑡) and sin2(𝑘𝑥 − 𝜔𝑡) over a wave cycle is ½. Hence, 

the average wave kinetic energy (per unit horizontal area) is 

KE =
1

2
𝜌 (

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

×
1

2
∫ {cosh2 𝑘(ℎ + 𝑧) + sinh2 𝑘(ℎ + 𝑧)}d𝑧
0

−ℎ

=
1

2
𝜌 (

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

×
1

2
∫ cosh 2𝑘(ℎ + 𝑧) d𝑧
0

−ℎ

=
1

2
𝜌 (

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

×
1

2
[
sinh 2𝑘(ℎ + 𝑧)

2𝑘
]
−ℎ

0

=
1

2
𝜌 (

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

×
1

2
[
sinh 2𝑘ℎ

2𝑘
]
−ℎ

0

=
1

2
𝜌 (

𝐴𝑔𝑘

𝜔 cosh 𝑘ℎ
)
2

×
1

2
×
2 sinh 𝑘ℎ cosh 𝑘ℎ

2𝑘

=
1

4
𝜌
𝐴2𝑔2𝑘

𝜔2
tanh𝑘ℎ

 

 

But, from the dispersion relation, 𝜔2 = 𝑔𝑘 tanh𝑘ℎ. Hence, 

KE =
1

4
𝜌𝑔𝐴2 

 

Potential Energy 

 

The potential energy (per unit horizontal area) is 

∫ 𝜌𝑔𝑧 d𝑧
𝜂

𝑧=−ℎ

=
1

2
𝜌𝑔[𝑧2]−ℎ

𝜂

=
1

2
𝜌𝑔(𝜂2 − ℎ2)

=
1

2
𝜌𝑔𝜂2 + constant

 

We are only interested in the wave-varying part of this, and hence the wave potential energy 

per unit area is 
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1

2
𝜌𝑔𝐴2 cos2(𝑘𝑥 − 𝜔𝑡) 

Again, the average value of cos2(𝑘𝑥 − 𝜔𝑡) is ½. Hence, the average wave potential energy is 

PE =
1

4
𝜌𝑔𝐴2 
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A5. Group Velocity 
 

The group velocity (for any wave type) is defined by 

𝑐𝑔 ≡
d𝜔

d𝑘
 

 

The dispersion relationship for gravity waves on still water is 

𝜔2 = 𝑔𝑘 tanh𝑘ℎ 

Differentiating (implicitly) with respect to k: 

2𝜔
d𝜔

d𝑘
= 𝑔 tanh𝑘ℎ + 𝑔𝑘ℎ sech2 𝑘ℎ

=
𝜔2

𝑘
+

𝜔2

tanh 𝑘ℎ
×

ℎ

cosh2 𝑘ℎ

=
𝜔2

𝑘
[1 +

𝑘ℎ

sinh𝑘ℎ cosh 𝑘ℎ
]

 

Hence, using sinh 2𝑥 = 2 sinh 𝑥 cosh 𝑥 (note the factor of 2): 

d𝜔

d𝑘
=
1

2
[1 +

2𝑘ℎ

sinh 2𝑘ℎ
]
𝜔

𝑘
 

or 

𝑐𝑔 = 𝑛𝑐 

where 

𝑐 ≡
𝜔

𝑘
 

is the phase velocity and 

𝑛 =
1

2
[1 +

2𝑘ℎ

sinh 2𝑘ℎ
] 

is the ratio of group to phase velocities. 
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A6. Wave Power 
 

The wave power is the (time-averaged) rate of working of pressure forces over a vertical 

surface. Integrating over the water column, per unit length of wave crest, 

power = ∫ 𝑝𝑢 d𝑧
𝜂

𝑧=−ℎ

 

 

We need only consider the hydrodynamic part of 𝑝, since the time-steady hydrostatic part will, 

in conjunction with 𝑢, give a component integrating to 0 over a cycle. Using the linear wave 

theory expressions for 𝑝 (hydrodynamic) and 𝑢, 

𝑝𝑢 = 𝜌𝑔𝐴
cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡) ×

𝐴𝑔𝑘

𝜔

cosh 𝑘(ℎ + 𝑧)

cosh 𝑘ℎ
cos(𝑘𝑥 − 𝜔𝑡)

=
𝜌𝑔2𝐴2𝑘

𝜔

cosh2 𝑘(ℎ + 𝑧)

cosh2 𝑘ℎ
cos2(𝑘𝑥 − 𝜔𝑡)

 

 

Under the linear approximation, the upper limit of integration may be replaced by 𝑧 = 0. 
The average value of cos2(𝑘𝑥 − 𝜔𝑡) is ½, whilst integrating the 𝑧-dependent part over the 

water column gives 

∫ cosh2 𝑘(ℎ + 𝑧)  d𝑧
0

−ℎ

=
1

2
∫ (cosh2𝑘(ℎ + 𝑧) + 1) d𝑧
0

−ℎ

=
1

2
[
sinh2𝑘(ℎ + 𝑧)

2𝑘
+ 𝑧]

−ℎ

0

=
1

2
(
sinh2𝑘ℎ

2𝑘
+ ℎ)

 

Hence, the wave power is 

𝑃 =
𝜌𝑔2𝑘𝐴2

𝜔 cosh2 𝑘ℎ
×
1

2
(
sinh2𝑘ℎ

2𝑘
+ ℎ) ×

1

2

=
1

2
𝜌𝑔𝐴2 ×

𝑔𝑘

𝜔 cosh2 𝑘ℎ
×
sinh2𝑘ℎ

2𝑘
(1 +

2𝑘ℎ

sinh2𝑘ℎ
) ×

1

2

=
1

2
𝜌𝑔𝐴2 ×

𝑔𝑘

𝜔 cosh2 𝑘ℎ
×
2 sinh𝑘ℎ cosh 𝑘ℎ

2𝑘
× (1 +

2𝑘ℎ

sinh2𝑘ℎ
) ×

1

2

=
1

2
𝜌𝑔𝐴2 × (

𝑔𝑘 tanh 𝑘ℎ

𝜔2
) ×

1

2
(1 +

2𝑘ℎ

sinh 2𝑘ℎ
)
𝜔

𝑘

 

 

But the wave energy density is 

𝐸 =
1

2
𝜌𝑔𝐴2 

the dispersion relationship is 

𝜔2 = 𝑔𝑘 tanh𝑘ℎ 

and the group velocity 

𝑐𝑔 = 𝑛𝑐 
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where  

𝑛 =
1

2
(1 +

2𝑘ℎ

sinh 2𝑘ℎ
)  ,          𝑐 =

𝜔

𝑘
 

 

Hence, the wave power per unit length of crest is 

𝑃 = 𝐸𝑐𝑔 


