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ANSWERS (SEDIMENT TRANSPORT EXAMPLES) AUTUMN 2023 
 

Q1. 

Cheng’s formula: 

 
𝑤𝑠𝑑

𝜈
= [(25 + 1.2𝑑∗2)1/2 − 5] 3/2, where 𝑑∗ = 𝑑 [

(𝑠 − 1)𝑔

𝜈2
]

1/3

 

 

Densities: 

 𝜌sand = 2650 kg m–3 
 𝜌air = 1.2 kg m–3 
 𝜌water = 1000 kg m–3 

 

Kinematic viscosities: 

 𝜈air =  1.5 × 10–5 m2 s–1 
 𝜈water = 1.0 × 10

–6 m2 s–1 

 

 

(a) For sand particles in air:  

𝑠 =
𝜌𝑠
𝜌
    =

2650

1.2
    = 2208 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

𝜈2
]

1/3

    = 0.001 [
(2208 − 1) × 9.81

(1.5 × 10−5)2
]

1/3

    = 45.82 

𝑤𝑠𝑑

𝜈
= [(25 + 1.2𝑑∗2)1/2 − 5] 3/2     = [(25 + 1.2 × 45.822)1/2 − 5] 3/2     = 306.3 

𝑤𝑠 = 306.3 ×
𝜈

𝑑
    = 306.3 ×

1.5 × 10−5

10−3
    = 4.595 m s−1 

 

Answer: settling velocity in air = 4.60 m s–1. 

 

 

(b) For sand particles in water: 

𝑠 =
𝜌𝑠
𝜌
    =

2650

1000
    = 2.65 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

𝜈2
]

1/3

    = 0.001 [
(2.65 − 1) × 9.81

(1.0 × 10−6)2
]

1/3

    = 25.30 

𝑤𝑠𝑑

𝜈
= [(25 + 1.2𝑑∗2)1/2 − 5] 3/2     = [(25 + 1.2 × 25.302)1/2 − 5]

3/2
    = 111.5 

𝑤𝑠 = 111.5 ×
𝜈

𝑑
    = 111.5 ×

1.0 × 10−6

10−3
    = 0.1115 m s−1 

 

Answer: settling velocity in water = 0.112 m s–1. 
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Q2. 

As in Q1(b) above, 

𝑑∗ = 25.30 

 

Soulsby’s formula, 

 𝜏crit
∗ =

0.30

1 + 1.2𝑑∗
+ 0.055  [1 − exp(−0.020𝑑∗)]  where 𝜏∗ =

𝜏𝑏
(𝜌𝑠 − 𝜌)𝑔𝑑

 

Hence, 

𝜏crit
∗ =

0.30

1 + 1.2 × 25.30
+ 0.055  [1 − exp(−0.020 × 25.30)]    = 0.03141 

𝜏crit = 𝜏crit
∗ × (𝜌𝑠 − 𝜌)𝑔𝑑 = 0.03141 × (2650 − 1000) × 9.81 × 0.001 = 0.5084 N m

−2 

 

Answer: critical Shields parameter = 0.0314;   critical shear stress = 0.508 N m–2. 
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Q3. 

From Q1 and Q2 above, the settling velocity and critical shear stress for incipient motion are 

given, respectively, by: 

𝑤𝑠 = 0.1115 m s
−1 

𝜏crit = 0.5084 N m
−2 

 

(a) The bed shear stress is given, in general, by 

𝜏𝑏 = 𝑐𝑓 (
1

2
𝜌𝑉2) 

Rearranging for V: 

𝑉 = √
2

𝑐𝑓

𝜏𝑏
𝜌

 

 

At incipient motion, 𝜏𝑏 = 𝜏crit. Hence, 

𝑉 = √
2

0.005
×
0.5084

1000
    = 0.4510 m s−1 

 

Answer: for incipient motion, velocity = 0.451 m s–1. 

 

 

(b) For incipient suspended load, 

𝑢𝜏 = 𝑤𝑠 

where 𝑢𝜏 is the friction velocity and 𝑤𝑠 is the settling velocity. 

 

By definition, 

𝑢𝜏 = √
𝜏𝑏
𝜌
    = √𝑐𝑓 (

1

2
𝑉2)     = 𝑉√

𝑐𝑓

2
 

Hence, 

𝑉√
𝑐𝑓

2
= 𝑤𝑠 

 𝑉 = 𝑤𝑠√
2

𝑐𝑓
    = 0.1115√

2

0.005
    = 2.23 m s−1 

 

Answer: for incipient suspended load, velocity = 2.23 m s–1. 
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Q4. 

𝑞 = 0.9 m2 s–1 
𝑑 = 0.06 m 

𝜌𝑠 = 2650 kg m–3 

𝜏crit
∗ = 0.056 

𝑐𝑓 = 0.01 

𝑤𝑠 = 0.8 m 𝑠
−1 

 

From the critical Shields stress we can determine the critical bed stress for incipient motion: 

𝜏crit = 𝜏
∗(𝜌𝑠 − 𝜌)𝑔𝑑    = 0.056 × (2650 − 1000) × 9.81 × 0.06

         = 54.39 N m−2 
 

(a) Upstream of the gate: 

 h = 2.5 m 

𝑉 =
𝑞

ℎ
    =

0.9

2.5
    = 0.36  m  s−1 

𝜏𝑏 = 𝑐𝑓 ×
1

2
𝜌𝑉2     = 0.01 ×

1

2
× 1000 × 0.362     = 0.648 N m−2 

The bed stress is (considerably) less than the critical value; the bed is stationary. 

 

 

(b) Sluice gate assumption: total head the same on both sides of the gate. 

𝑧𝑠1 +
𝑉1
2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

For a flat bed: 

ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2 

Substituting values: 

2.507 = ℎ2 +
0.04128

ℎ2
2  

Rearranging for the supercritical solution: 

ℎ2 = √
0.04128

2.507 − ℎ2
 

Iteration (from, e.g., ℎ2 = 0) gives 

ℎ2 = 0.1318  m 

 

Then: 

𝑉 =
𝑞

ℎ2
    =

0.9

0.1318
    = 6.829 m s−1 

𝜏𝑏 = 𝑐𝑓 ×
1

2
𝜌𝑉2     = 0.01 ×

1

2
× 1000 × 6.8292     = 233.2 N m−2 
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𝜏𝑏 exceeds 𝜏crit; the bed is mobile. 

 

Answer: downstream depth = 0.132 m; bed stress exceeds the critical value. 

 

 

(c) Scour will continue with the depth increasing and the velocity and stress decreasing, until 

the stress no longer exceeds the critical value. At this point: 

𝜏𝑏 = 54.39 N m
−2 

𝑐𝑓 ×
1

2
𝜌𝑉2 = 54.39 

𝑉    = √
2

𝑐𝑓
×
54.39

𝜌
    = √

2

0.01
×
54.39

1000
    = 3.298 m s−1 

 

The overall depth downstream is then 

ℎ =
𝑞

𝑉
    =

0.9

3.298
    = 0.2729 m 

Since the water level is fixed by the gate it is the same as before. The depth of scour is then 

0.2729 − 0.1318 = 0.1411 m 

 

Sluice gate assumption: total head the same on both sides of the gate. 

𝑧𝑠1 +
𝑉1
2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

Upstream, 𝑧𝑠1 = ℎ1, but downstream there is a distinction between water level 𝑧𝑠2 = 0.1318 m 

and depth ℎ2 = 0.2729 m. 

ℎ1 +
𝑞2

2𝑔ℎ1
2 = 𝑧𝑠2 +

𝑞2

2𝑔ℎ2
2 

Substituting values: 

ℎ1 +
0.04128

ℎ1
2 = 0.6861 

Rearranging for the subcritical solution: 

ℎ1 = 0.6861 −
0.04128

ℎ1
2  

Iteration (from, e.g., ℎ1 = 0.6861) gives 

ℎ1 = 0.5493 m 

 

Answer: depth of scour = 0.141 m; depth upstream = 0.549 m; depth downstream = 0.273 m. 

 

 

(d) To determine the significance of suspended load compare the settling velocity with the 

maximum friction velocity (which occurs in the initial downstream state). 
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Settling velocity: 

 𝑤𝑠 = 1.1 m s–1 (given) 

 

Friction velocity: 

𝑢𝜏 = √
𝜏

𝜌
    = √

233.2

1000
    = 0.4829 m s−1 

 

Here, the settling velocity greatly exceeds the friction velocity, so suspended load is negligible. 
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Q5. 

𝑏 = 5 m   (width of main channel) 

𝑏min = 3 m   (width of restricted section) 

𝑑 =  0.01 m 

𝜌𝑠 = 2650 kg m–3   (𝑠 = 2.65) 

𝜏crit
∗ = 0.05  

𝑐𝑓 = 0.01 

𝑄 = 5 m3 s–1 
 

The bed is mobile if and only if the bed shear stress exceeds the critical stress for incipient 

motion. Alternatively, one may compare the velocity with a critical velocity found using the 

friction coefficient – this is more convenient here. 

 

The critical shear stress for incipient motion is 

𝜏crit = 𝜏crit
∗ (𝜌𝑠 − 𝜌)𝑔𝑑    = 0.05 × (2650 − 1000) × 9.81 × 0.01     = 8.093 N m

−2  

and the corresponding velocity for incipient motion is given by 

𝜏crit = 𝑐𝑓 (
1

2
𝜌𝑉crit

2 ) 

whence 

𝑉crit = √
2

𝑐𝑓

𝜏crit
𝜌
    = √

2

0.01
×
8.093

1000
    = 1.272 m s−1 

 

 

This is a venturi so we need to determine velocities at various locations. 

 

Upstream, 𝑧𝑠 = ℎ =  1 m and the velocity and total head are, respectively, 

𝑉 =
𝑄

𝑏ℎ
    =

5

5 × 1
    = 1.0 m s−1 

𝐻𝑎 = 𝑧𝑠 +
𝑉2

2𝑔
    = 1 +

12

2 × 9.81
    = 1.051 m 

 

If critical-flow conditions occur at the throat then the total head there would be 

𝐻𝑐 =
3

2
ℎ𝑐     =

3

2
(
𝑞𝑚
2

𝑔
)

1/3

    =
3

2
(
𝑄2

𝑏min
2 𝑔

)

1/3

    =
3

2
(

52

32 × 9.81
)

1/3

    = 0.9850 m 

Since the upstream head exceeds that required for critical-flow conditions the flow remains 

subcritical throughout, with total head in the restricted section, 𝐻 = 1.051 m. The depth ℎ is 

given by: 

𝐻 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏min
2 ℎ2

 

Rearranging as an iterative formula for the subcritical value of ℎ: 
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ℎ = 𝐻 −
𝑄2

2𝑔𝑏min
2 ℎ2

 

Substituting numerical values: 

ℎ = 1.051 −
0.1416

ℎ2
 

Iteration (from, e.g., ℎ = 1.051) gives 

 ℎ = 0.8592 m 

and corresponding velocity 

𝑉 =
𝑄

𝑏minℎ
    =

5

3 × 0.8592
    = 1.940 m s−1 

 

Hence we have: 

• in the 5 m width, 𝑉 = 1.0 m s–1    <  𝑉crit and the bed is stationary; 

• in the 3 m width, 𝑉 = 1.94 m s–1    >  𝑉crit and the bed is mobile. 

 

 

(b) The bed will erode in the restricted section until 𝑉 = 𝑉crit. Then the flow depth is given by 

𝑄 = 𝑉crit × ℎ𝑏min 

 ℎ =
𝑄

𝑏min × 𝑉crit
    =

5

3 × 1.272
    = 1.310 m 

 

If Δ𝑧𝑏 is the change in height of the bed, then the total head is given by 

𝐻 = Δ𝑧𝑏 + 𝐸    = Δ𝑧𝑏 + ℎ +
𝑉2

2𝑔
 

Hence, 

Δ𝑧𝑏 = 𝐻 − ℎ −
𝑉2

2𝑔
    = 1.051 − 1.310 −

1.2722

2 × 9.81
    = −0.3415 m 

 

Answer: depth of scour hole = 0.342 m. 
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Q6. 

𝑏 = 12 m 

𝑆 = 0.003 

𝑄 = 200 m3 s–1 

𝜏crit
∗ = 0.056  

 

Let the minimum stone diameter (corresponding to incipient motion) be 𝑑. Then the critical 

shear stress for incipient motion is given by 

𝜏crit = 𝜏crit
∗ (𝜌𝑠 − 𝜌)𝑔𝑑    = 0.056 × (2650 − 1000) × 9.81 × 𝑑    = 906.4𝑑 

 

For normal flow: 

𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆 

For incipient motion: 

 𝑅ℎ =
𝜏crit
𝜌𝑔𝑆

    =
906.4𝑑

1000 × 9.81 × 0.003
    = 30.80𝑑 (*) 

 

The corresponding depth of flow ℎ is given by the expression for 𝑅ℎ in a rectangular channel, 

30.80𝑑 =
ℎ

1 +
2ℎ
𝑏

 

With 𝑏 = 12 m this gives (after some rearrangement) an expression for ℎ in terms of 𝑑: 

 ℎ =
30.8𝑑

1 − 5.133𝑑
 (**) 

 

From Manning’s equation: 

 𝑄 = 𝑉𝐴    =
1

𝑛
𝑅ℎ
2/3
𝑆1/2 × 𝑏ℎ, where 𝑛 =

𝑑1/6

21.1
 (Strickler’s equation) 

Hence, 

𝑄 =
21.1

𝑑1/6
× (30.80𝑑)2/3𝑆1/2 × 𝑏 ×

30.8𝑑

1 − 5.133𝑑
 

Subtituting numerical values: 

200 = 4198
𝑑3/2

1 − 5.133𝑑
 

Rearranging as an iterative formula for 𝑑: 

𝑑 = [
200(1 − 5.133𝑑)

4198
]

2/3

 

Iteration (from, e.g., 𝑑 = 0) gives 

 𝑑 = 0.08802 m 

 

Substituting in (**) gives 
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ℎ =
30.8𝑑

1 − 5.133𝑑
    =

30.8 × 0.08802

1 − 5.133 × 0.08802
    = 4.945 m 

 

Answer: minimum diameter of stone = 88 mm;   river depth = 4.95 m. 
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Q7. 

(a) Assume rapidly-varied flow with critical conditions over the crest. Neglect upstream 

dynamic head. 

 

Measuring head relative to the top of the weir, noting that the upstream head is just the 

freeboard and the head over the weir is 3/2 times critical depth: 

ℎ0 =
3

2
(
𝑞2

𝑔
)1/3  

Hence, the flow rate (per metre width of embankment) is 

𝑞 = (2/3)3/2𝑔1/2ℎ0
3/2
    = (2/3)3/2 × 9.811/2 × 0.153/2     = 0.09905 m2 s−1 

 

Critical depth: 

ℎ𝑐 =
2

3
ℎ0     =

2

3
× 0.15    = 0.1  m 

 

Answer: flow rate (per metre width) = 0.0990 m2 s–1;   depth over embankment = 0.1 m. 

 

 

(b) 

𝑆 = 0.125 

𝑛 = 0.013 m–1/3 s 
 

Normal Depth 

 𝑞 = 𝑉ℎ, where 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2, 𝑅ℎ = ℎ (wide channel) 

 𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

 ℎ = (
𝑛𝑞

√𝑆
)
3/5

    = (
0.013 × 0.09905

√0.125
)
3/5

    = 0.03442 m 

 

Velocity 

𝑉 =
𝑞

ℎ
    =

0.09905

0.03442
    = 2.878 m s−1 

 

Bed shear stress 

For normal flow, 

 𝜏 = 𝜌𝑔𝑅ℎ𝑆, where 𝑅ℎ = ℎ (wide channel) 

 𝜏 = 1000 × 9.81 × 0.03442 × 0.125    = 42.21 N m−2 

 

Answer: depth = 0.034 m;   velocity = 2.88 m s–1;   bed stress = 42.2 N m–2. 
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(c) For the given bed material, 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

ν2
]

1/3

    = 0.002 × [
(2.65 − 1) × 9.81

(1.0 × 10−6)2
]

1/3

    = 50.59 

𝜏crit
∗ =

0.30

1 + 1.2𝑑∗
+ 0.055 [1 − exp(−0.020𝑑∗)]    = 0.03987 

 

For the actual flow down the slope, 

𝜏∗ =
𝜏

(𝜌𝑠 − 𝜌)𝑔𝑑
    =

42.21

(2650 − 1000) × 9.81 × 0.002
    = 1.304 

 

𝜏∗ is far in excess of 𝜏crit
∗ ; hence the surface will erode. 

 

(Alternatively, one could compute the absolute critical stress 𝜏crit to compare with 𝜏). 
 

Answer: slope erodes. 

 

 

(d) Cost-effective examples include: 

• increasing the size of bed material; e.g. rock armour; 

• semi-immobilising by vegetating the slope or using geotextiles. 
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Q8. 

(a) 

𝑛 =
𝑑1/6

21.1
     = 0.01800  m−1/3 s 

 

Answer: Manning’s 𝑛 =  0.0180 m–1/3 s. 
 

 

(b) 

 𝑞 = 𝑉ℎ, where 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2, 𝑅ℎ = ℎ 

Hence, 

𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

or 

ℎ = (
𝑛𝑞

√𝑆
)
3/5

     = 1.532 m 

 

Answer: depth of flow = 1.53 m. 

 

 

(c) 

𝜏𝑏 = ρ𝑔𝑅ℎ𝑆     = 18.79 N m
−2 

 

Answer: bed shear stress = 18.8 N m–2. 

 

 

(d) 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

𝜈2
]

1/3

     = 75.89 

By Soulsby, 

𝜏crit
∗ =

0.30

1 + 1.2𝑑∗
+ 0.055 [1 − exp(−0.020𝑑∗)]      = 0.04620 

 

Here, 

𝜏∗ =
𝜏𝑏

(𝜌𝑠 − 𝜌)𝑔𝑑
     = 0.3869 

 

As 𝜏∗ > 𝜏crit
∗  the bed is mobile. 
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Meyer-Peter and Müller 

𝑞∗ = 8(𝜏∗ − 𝜏crit
∗ )3/2      = 1.591 

Hence, 

𝑞𝑏 = 𝑞
∗√(𝑠 − 1)𝑔𝑑3      = 1.052 × 10−3 m2 s−1 

 

Van Rijn 

𝑞∗ =
0.053

(𝑑∗0.3) (
𝜏∗

𝜏crit
∗ − 1)

2.1      = 0.9604 

Hence, 

𝑞𝑏 = 𝑞
∗√(𝑠 − 1)𝑔𝑑3      = 6.349 × 10−4 m2 s−1 

 

Answer: bed load = 1.0510–3 m2 s–1 (Meyer-Peter and Müller);  6.3510–4 m2 s–1 (Van Rijn) 

 

 

(e) By Cheng’s formula, 

𝑤𝑠 =
𝜈

𝑑 [(25 + 1.2𝑑∗2)
1/2
− 5]

3/2
     = 0.2309 m s−1 

 

By definition, 

𝑢𝜏 = √
𝜏𝑏
𝜌
     = 0.1371 m s−1 

𝑢𝜏 < 𝑤𝑠, so no significant suspended load occurs. 
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Q9. 

𝑆 = 1/800 = 0.00125 

𝑑 = 0.0005 m 

𝑞 = 5 m2 s–1 

Assume water has density 𝜌 = 1000 kg m–3 and kinematic viscosity 𝜈 = 1.0 × 10–6 m2 s–1. 

 

(a) 

𝑛 =
𝑑1/6

21.1
    =

(5 × 10−4)1/6

21.1
    = 0.01335 m−1/3 s 

 

Answer: Manning’s 𝑛 = 0.0134 m–1/3 s. 
 

 

(b) 

 𝑞 = 𝑉ℎ, where 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2, 𝑅ℎ = ℎ 

Hence, 

𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

 ℎ = (
𝑛𝑞

√𝑆
)
3/5

    = (
0.01335 × 5

√0.00125
)
3/5

    = 1.464 m 

 

Answer: depth of flow = 1.46 m. 

 

 

(c) 

𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆    = 1000 × 9.81 × 1.464 × 0.00125    = 17.95 N m
−2 

 

Answer: bed shear stress = 18.0 N m–2. 

 

 

(d) 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

𝜈2
]

1/3

    = 0.0005 × [
(2.65 − 1) × 9.81

(1.0 × 10−6)2
]

1/3

    = 12.65 

 

By Soulsby, the critical Shields stress is 

𝜏crit
∗ =

0.30

1 + 1.2𝑑∗
+ 0.055  [1 − exp(−0.020𝑑∗)]

         =
0.30

1 + 1.2 × 12.65
+ 0.055  [1 − exp(−0.020 × 12.65)]    = 0.03084

 

 

For this flow the actual Shields stress is 
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𝜏∗ =
𝜏𝑏

(𝜌𝑠 − 𝜌)𝑔𝑑
    =

17.95

(2650 − 1000) × 9.81 × 0.0005
    = 2.218 

 

As 𝜏∗ > 𝜏crit
∗  the bed is mobile. 

 

Meyer-Peter and Müller 

𝑞∗ = 8(𝜏∗ − 𝜏crit
∗ )3/2     = 8 × (2.218 − 0.03084)3/2     = 25.88 

Hence, 

𝑞𝑏 = 𝑞
∗√(𝑠 − 1)𝑔𝑑3  = 25.88 × √1.65 × 9.81 × 0.00053  = 1.164 × 10−3 m2 s−1 

 

Nielsen 

𝑞∗ = 12(𝜏∗ − 𝜏crit
∗ )√𝜏∗     = 12 × (2.218 − 0.03084)√2.218     = 39.09 

Hence, 

𝑞𝑏 = 𝑞
∗√(𝑠 − 1)𝑔𝑑3  = 39.09 × √1.65 × 9.81 × 0.00053 = 1.758 × 10−3 m2 s−1 

 

Answer: bed load = 1.1610–3 m2 s–1 (Meyer-Peter and Müller);   1.7610–3 m2 s–1 (Nielsen). 

 

 

(e) By Cheng’s formula, the settling velocity is given by 

𝑤𝑠 =
𝜈

𝑑 [(25 + 1.2𝑑∗2)
1/2
− 5]

3/2 =
1.0 × 10−6

0.0005[(25 + 1.2 × 12.652)1/2 − 5]3/2

= 0.06072  m  s−1

 

By definition, the friction velocity is 

𝑢𝜏 = √
𝜏𝑏
𝜌
    = √

17.95

1000
    = 0.1340 m s−1 

 

𝑢𝜏 > 𝑤𝑠, so suspended load occurs. 

 

Answer: settling velocity = 0.0607 m s–1. 

 

 

(f) 

𝐶ref = min {
0.117

𝑑∗
(
𝜏∗

𝜏crit
∗ − 1) ,    0.65} = min {

0.117

12.65
(
2.218

0.03084
− 1) ,    0.65}

= min{0.6559,    0.65}     = 0.65
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𝑧ref = 𝑑 × 0.3𝑑
∗0.7 (

𝜏∗

𝜏crit
∗ − 1)

1/2

         = 0.0005 × 0.3 × 12.650.7 (
2.218

0.03084
− 1)

1/2

    = 7.463 × 10−3 m

 

The concentration profile is then 

𝐶

𝐶ref
= (

ℎ
𝑧 − 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
𝜅𝑢𝜏

 

or, with 𝜅 = 0.41, 

 𝐶 = 0.65(

1.464
𝑧 − 1

195.2
)

1.105

 (*) 

 

The velocity profile is 

𝑢(𝑧) =
𝑢𝜏
𝜅
ln (33

𝑧

𝑘𝑠
) 

Taking the roughness length 𝑘𝑠 equal to a diameter, i.e. 𝑘𝑠 = 0.0005 m, gives 

 𝑢(𝑧) = 0.3268 ln(66000𝑧) (**) 

 

The total suspended load (per unit width) is: 

𝑞𝑠 = ∫ 𝐶𝑈 d𝑧
ℎ

𝑧ref

 

With equations (*) and (**) this becomes 

𝑞𝑠 = ∫ (6.255 × 10−4) (
1.464

𝑧
− 1)

1.105

ln(66000𝑧) d𝑧
1.464

0.007463

 

and this can be evaluated using numerical integration (e.g. trapezium rule) to give 

 𝑞𝑠 = 0.044 m2 s–1 

 

Answer: suspended-load flux = 0.044 m3 s–1 per metre width. 

 

 

A simple Fortran code for doing the numerical integration is given on the following page. The 

code can be modified for any alternative values of 𝑘𝑠 or velocity and concentration profiles. 

 

A significant number of trapezia is necessary (probably 200+), although this could be reduced 

by using Simpson’s rule instead. For any numerical method you should always perform the 

calculations with more, shorter, subintervals to confirm that numerical accuracy is sufficient. 

The need to be able to vary the number of intervals is one reason why a spreadsheet alone is 

not particularly good at this, as it would require intervention to change the number of trapezia. 
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PROGRAM SUSPENDED_LOAD 

   IMPLICIT NONE 

   DOUBLE PRECISION, PARAMETER :: KAPPA = 0.41 

   DOUBLE PRECISION CREF, ZREF 

   DOUBLE PRECISION H, KS, WS, UTAU 

   DOUBLE PRECISION ROUSE 

   DOUBLE PRECISION DZ, Z, INTEGRAL 

   INTEGER N, J 

 

   ! Particulate and flow data 

   DATA  CREF,     ZREF,     H,     KS,      WS,   UTAU & 

       / 0.65, 0.007463, 1.464, 0.0005, 0.06072, 0.1340 / 

 

   ROUSE = WS / (KAPPA * UTAU) 

 

   ! Number of intervals and size 

   PRINT *, 'Input N';   READ *, N 

   DZ = (H - ZREF) / N 

 

   ! Integral by trapezium rule 

   INTEGRAL = C(ZREF) *  U(ZREF) + C(H) * U(H) 

   DO J = 1, N - 1 

      Z = ZREF + J * DZ 

      INTEGRAL = INTEGRAL + 2.0 * C(Z) * U(Z) 

   END DO 

   INTEGRAL = INTEGRAL * DZ / 2.0 

 

   WRITE( *, "('Suspended load: ', ES10.3, ' m3/s per metre')" ) INTEGRAL 

 

 

   ! Internal functions giving profiles of concentration and velocity 

   CONTAINS 

 

      !-------------------------------------- 

 

      DOUBLE PRECISION FUNCTION C( Z ) 

         IMPLICIT NONE 

         DOUBLE PRECISION Z 

 

         C = CREF * ( (H / Z - 1.0) / (H / ZREF - 1.0) ) ** ROUSE 

 

      END FUNCTION C 

 

      !-------------------------------------- 

 

      DOUBLE PRECISION FUNCTION U( Z ) 

         IMPLICIT NONE 

         DOUBLE PRECISION Z 

 

         U = (UTAU / KAPPA ) * LOG( 33.0 * Z / KS ) 

 

      END FUNCTION U 

 

 

END PROGRAM SUSPENDED_LOAD 
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Q10. 

(a) 

𝑛 =
𝑑1/6

21.1
    =

(0.0025)1/6

21.1
    = 0.01746  m−1/3 s 

 

Answer: Manning’s 𝑛 = 0.0175 m–1/3 s. 
 

 

(b) 

For normal flow: 

 𝑞 = 𝑉ℎ, where 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2, 𝑅ℎ = ℎ 

 𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

 ℎ = (
𝑛𝑞

√𝑆
)
3/5

    =

(

 
0.01746 × 3.5

√ 1
1500 )

 

3/5

    = 1.677 m 

 

Average velocity: 

𝑉 =
𝑞

ℎ
    =

3.5

1.677
    = 2.087 m s−1 

 

Answer: depth of flow = 1.68 m;   average velocity = 2.09 m s–1. 

 

 

(c) Using the normal-flow relation: 

𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆    = 1000 × 9.81 × 1.677 × (
1

1500
)    = 10.97 N m−2 

The Shields stress is 

𝜏∗ =
𝜏𝑏

(𝜌𝑠 − 𝜌)𝑔𝑑
    =

10.97

(2650 − 1000) × 9.81 × 0.0025
    = 0.2711 

 

To find the critical Shields stress: 

𝑑∗ = 𝑑 [
(𝑠 − 1)𝑔

𝜈2
]

1/3

    = 0.0025 × [
(2.65 − 1) × 9.81

(1.0 × 10−6)2
]

1/3

    = 63.24 

𝜏crit
∗ =

0.30

1 + 1.2𝑑∗
+ 0.055  [1 − exp(−0.020𝑑∗)]

         =
0.30

1 + 1.2 × 63.24
+ 0.055  [1 − exp(−0.020 × 63.24)]    = 0.04338
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As 𝜏∗ > 𝜏crit
∗  the bed is mobile. 

 

Answer: bed shear stress = 11.0 N m–2 and exceeds the critical shear stress. 

 

 

(d) For the bed-load flux: 

𝑞∗ = 8(𝜏∗ − 𝜏crit
∗ )3/2     = 8 × (0.2711 − 0.04338)3/2     = 0.8693 

whence 

𝑞𝑏 = 𝑞
∗√(𝑠 − 1)𝑔𝑑3 = 0.8693 × √1.65 × 9.81 × 0.00253

= 4.372 × 10−4 m2 s−1
   

Answer: bed load = 4.3710–4 m3 s–1 per metre width. 

 

 

(e) 

By Cheng’s formula: 

𝑤𝑠
∗ = [(25 + 1.2𝑑∗2)

1/2
− 5]

3/2

= [(25 + 1.2 × 63.242)
1
2 − 5]

3/2

    = 517.5 

 𝑤𝑠 =
𝜈

𝑑
× 𝑤𝑠

∗     =
1.0 × 10−6

0.0025
× 517.5    = 0.2070 m s−1 

 

By definition, the friction velocity is 

𝑢𝜏 = √
𝜏𝑏
𝜌
    = √

10.97

1000
    = 0.1047 m s−1 

 

𝑢𝜏 < 𝑤𝑠 so significant suspended load would not be expected to occur. 

 

Answer: settling velocity = 0.207 m s–1. 

 

 

(f) If suspended load does occur then it may be computed by summing 

 concentration (𝐶)  volumetric flow rate (𝑈 d𝑧 per unit width) 

over the water column. i.e. 

𝑞𝑠 = ∫ 𝐶𝑈 d𝑧
ℎ

0
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Q11. 

𝑐𝐷 =
24

Re
 

 

Expanding: 

drag

1
2 ρ𝑤𝑠

2 × (projected area)
= 24 ×

𝜈

𝑤𝑠𝑑
 

 

But, at terminal velocity, 

drag = reduced weight    = (𝑚 −𝑚𝑤)𝑔    = (𝜌𝑠 − 𝜌) ×
4

3
π (
𝑑

2
)
3

× 𝑔

                                                  =
1

6
π(𝜌𝑠 − 𝜌)𝑔𝑑

3

 

whilst 

projected area =
π𝑑2

4
 

 

Hence, 

1
6π
(𝜌𝑠 − 𝜌)𝑔𝑑

3

1
2𝜌𝑤𝑠

2 ×
1
4π𝑑

2
= 24

𝜈

𝑤𝑠𝑑
 

 4

3

(
𝜌𝑠
𝜌 − 1)𝑔𝑑

𝑤𝑠2
= 24

𝜈

𝑤𝑠𝑑
 

 
1

18

(𝑠 − 1)𝑔𝑑2

𝜈
= 𝑤𝑠 
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Q12. 

Consider the velocity profile 

𝑈(𝑧) =
𝑢𝜏
𝜅
ln (33

𝑧

𝑘𝑠
) 

 

The total flow per unit span is given by 

𝑞 = ∫ 𝑈(𝑧) d𝑧
ℎ

0

 

Since 𝑞 = 𝑉ℎ (by definition of average velocity 𝑉): 

𝑉ℎ = ∫
𝑢𝜏
𝜅
ln (33

𝑧

𝑘𝑠
)  d𝑧

ℎ

0

 

 

Integrating by parts: 

𝑉ℎ =
𝑢𝜏
𝜅
{[𝑧 ln (33

𝑧

𝑘𝑠
)]
0

ℎ

−∫  d𝑧
ℎ

0

} 

 𝑉ℎ =
𝑢𝜏
𝜅
{ℎ ln (33

ℎ

𝑘𝑠
) − ℎ} 

 𝑉 =
𝑢𝜏
𝜅
{ln (33

ℎ

𝑘𝑠
) − 1} 

or, since 1 = ln e, 

𝑉 =
𝑢𝜏
𝜅
ln (
33

𝑒

ℎ

𝑘𝑠
)    =

𝑢𝜏
𝜅
ln (12

ℎ

𝑘𝑠
) 

(with 2 sig. fig. accuracy for the constant) 
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Q13. 

(a) 

𝑢𝜏 = √
𝜏𝑏
𝜌

 

where 𝜏𝑏 is the bed shear stress and 𝜌 is the fluid density. 

 

 

(b) Linear shear stress profile with 𝜏 = 𝜏𝑏 ≡ 𝜌𝑢𝜏
2 at 𝑧 = 0 and 𝜏 = 0 at 𝑧 = ℎ: 

𝜏 = 𝜌𝑢𝜏
2 (1 −

𝑧

ℎ
) 

 

From the given velocity profile: 

d𝑈

d𝑧
=
𝑢𝜏
𝜅𝑧

 

 

By the definition of eddy viscosity (𝜇𝑡 = 𝜌𝜈𝑡): 

𝜏 = 𝜌𝜈𝑡
d𝑈

d𝑧
 

Rearranging for 𝜈𝑡: 

𝜈𝑡 =
𝜏/𝜌

d𝑈
d𝑧

    =
𝑢𝜏
2 (1 −

𝑧
ℎ
)

𝑢𝜏
𝜅𝑧

    = 𝜅𝑢𝜏𝑧 (1 −
𝑧

ℎ
) 

 

Thus, the kinematic eddy viscosity 𝜈𝑡 is a quadratic function of 𝑧. 
 

 

(c) According to Fick’s gradient-diffusion law the net upward flux of sediment volume across 

a horizontal area A is  

−𝐾
d𝐶

d𝑧
𝐴 

whilst the net downward flux due to settling is volume flux  concentration, or 

𝑤𝑠𝐴𝐶 

At equilibrium these are equal and hence 

−𝐾
d𝐶

d𝑧
𝐴 = 𝑤𝑠𝐴𝐶 

Dividing by A and rearranging: 

𝐾
d𝐶

d𝑧
+ 𝑤𝑠𝐶 = 0 
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It is assumed that, as the same turbulent eddies are responsible for the transport of both 

momentum and particulate material the kinematic eddy viscosity (νt) and eddy diffusivity (K) 

are equal. Hence, 𝐾 = 𝜅𝑢𝜏𝑧 (1 −
𝑧

ℎ
) and so 

𝜅𝑢𝜏𝑧 (1 −
𝑧
ℎ
) d𝐶

d𝑧
+ 𝑤𝑠𝐶 = 0 

 

(d) 

(Note that all sketches below have the independent variable – here the vertical coordinate – on 

the vertical axis.) 

 

Velocity: 

 
 

Eddy viscosity: 

 
 

Concentration (Rouse number = 0.5 here) 

 
(e) 

Bed-load transport: 

• set in motion by the fluid stress; 

• main mechanisms: sliding, rolling, saltating (small jumps). 

 

Suspended-load transport: 

• occurs for sufficiently vigorous turbulent fluid motion; 

• balance between net upward transport by turbulent eddies and downward settling; 

• usually quantified by solving a diffusion equation (see the following question), then 

integrating the resultant flux density (𝐶𝑈) over the flow cross-section. 

 

z

U

z

nt

z

C
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Q14. 

−𝐾
d𝐶

dz
= 𝑤𝑠𝐶 

Substituting the eddy diffusivity 𝐾 = 𝜅𝑢𝜏𝑧 (1 −
𝑧

ℎ
): 

−
𝜅𝑢𝜏𝑧 (1 −

𝑧
ℎ
) d𝐶

d𝑧
= 𝑤𝑠𝐶 

 

Separating variables: 

d𝐶

𝐶
= −

𝑤𝑠
𝜅𝑢𝜏

d𝑧

𝑧 (1 −
𝑧
ℎ
)
 

 

Using partial fractions: 

d𝐶

𝐶
= −

𝑤𝑠
𝜅𝑢𝜏

(
1

𝑧
+

1

ℎ − 𝑧
) d𝑧 

 

Integrating between 𝑧ref, 𝐶ref  and a general 𝑧, 𝐶 pair: 

∫
d𝐶

𝐶

C

𝐶ref

= −
𝑤𝑠
𝜅𝑢𝜏

∫ (
1

𝑧
+

1

ℎ − 𝑧
) d𝑧

𝑧

𝑧ref

 

 ln
𝐶

𝐶ref
= −

𝑤𝑠
𝜅𝑢𝜏

(ln
𝑧

𝑧ref
− ln

ℎ − 𝑧

ℎ − 𝑧ref
) 

 ln
𝐶

𝐶ref
=
𝑤𝑠
𝜅𝑢𝜏

ln (
𝑧ref
𝑧

ℎ − 𝑧

ℎ − 𝑧ref
) 

On the RHS, inside the logarithm divide both numerator and denominator by 𝑧 × 𝑧ref: 

ln
𝐶

𝐶ref
= ln(

ℎ
𝑧 − 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
𝜅𝑢𝜏

 

 
𝐶

𝐶ref
= (

ℎ
𝑧
− 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
𝜅𝑢𝜏

 



 

Hydraulics 3 Answers (Sediment Transport Examples) -26 Dr David Apsley 

 

Q15. 

(a) Due to settling, sediment concentration is greater near the bed. As a result, upward turbulent 

velocity fluctuations tend to carry larger amounts of sediment than downward fluctuations, 

leading to a net upward diffusive flux. An equilibrium concentration distribution is attained 

when this balances the downward settling flux. 

 

 
 

Consider a horizontal surface, where the concentration is 𝐶. An upward turbulent velocity 𝑢′ 
for half the time carries material of concentration (𝐶 –  𝑙 d𝐶/d𝑧), where 𝑙 is a typical size of 

turbulent eddy. The corresponding downward velocity for the other half of the time carries 

material at concentration (𝐶 +  𝑙 d𝐶/d𝑧). The average upward flux of sediment (volume flux 

× concentration) through horizontal area 𝐴 is 

1

2
𝑢′𝐴 (𝐶 − 𝑙

d𝐶

d𝑧
) −

1

2
𝑢′𝐴 (𝐶 + 𝑙

d𝐶

d𝑧
) = −𝑢′𝑙

d𝐶

d𝑧
𝐴 

Writing 𝑢′𝑙 as 𝐾, the net upward flux is 

−𝐾
d𝐶

d𝑧
𝐴 

At equilibrium this is balanced by a net downward flux of material 𝑤𝑠𝐴𝐶 due to settling: 

−𝐾
d𝐶

d𝑧
𝐴 = 𝑤𝑠𝐴𝐶 

Dividing by A: 

−𝐾
d𝐶

d𝑧
= 𝑤𝑠𝐶 

 

(b) 

−
𝜅𝑢𝜏𝑧 (1 −

𝑧
ℎ
) d𝐶

d𝑧
= 𝑤𝑠𝐶 

Separating variables: 

d𝐶

𝐶
= −

𝑤𝑠
𝜅𝑢𝜏

d𝑧

𝑧 (1 −
𝑧
ℎ
)
 

 
d𝐶

𝐶
= −

𝑤𝑠
𝜅𝑢𝜏

(
1

𝑧
+

1

ℎ − 𝑧
)  d𝑧 

Integrating between a reference height 𝑧ref and 𝑧: 

∫
d𝐶

𝐶

C

𝐶ref

= −
𝑤𝑠
𝜅𝑢𝜏

∫ (
1

𝑧
+

1

ℎ − 𝑧
) d𝑧

𝑧

𝑧ref

 

C

C-l
dC
dz

C+l
dC
dz

ws
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 ln
𝐶

𝐶ref
= −

𝑤𝑠
𝜅𝑢𝜏

(ln
𝑧

𝑧ref
− ln

ℎ − 𝑧

ℎ − 𝑧ref
) 

 ln
𝐶

𝐶ref
=
𝑤𝑠
𝜅𝑢𝜏

ln (
𝑧ref
𝑧

ℎ − 𝑧

ℎ − 𝑧ref
) 

Dividing top and bottom of the last fraction by 𝑧 and 𝑧ref: 

ln
𝐶

𝐶ref
= ln(

ℎ
𝑧 − 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
κ𝑢τ

 

 
𝐶

𝐶ref
= (

ℎ
𝑧 − 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
𝜅𝑢𝜏

 

 

 

(c) The sediment flux can be determined by summing contributions 𝐶(𝑈 d𝐴) over a cross-

section, where d𝐴 = 𝑏 d𝑧 and 𝑏 is the width of the channel: 

𝑄𝑠 = 𝑏∫ 𝐶𝑈 d𝑧
ℎ

𝑧ref

 

 

Using the trapezium rule (no need to learn this formula – just sum trapezoidal areas if you 

prefer) on 𝑁 intervals (here, 𝑁 = 3) this is approximated by 

 𝑄𝑠 = 𝑏
Δ𝑧

2(𝑓0 + 2∑ 𝑓𝑖
𝑁−1
𝑖=1 + 𝑓𝑁)

 (*) 

where 𝑓 is the integrand. 

 

In this case, 

 𝑏 = 5 m 

Δ𝑧 =
ℎ − 𝑧ref
𝑁

    =
1.5 − 0.001

3
    = 0.4997 m 

𝐶 = 𝐶ref(

ℎ
𝑧 − 1

ℎ
𝑧ref

− 1
)

𝑤𝑠
𝜅𝑢𝜏

    = 0.65 (

1.5
𝑧 − 1

1499
)

0.3659

 

𝑈 =
𝑢𝜏
𝜅
ln (33

𝑧

𝑘𝑠
)    = 0.4878 ln(33000𝑧) 

𝑓 = 𝐶𝑈 
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𝑧𝑖 𝐶𝑖  𝑈𝑖  𝑓𝑖 
0.0010 0.65000 1.706 1.1089 

0.5007 0.05764 4.738 0.2731 

1.0004 0.03472 5.075 0.1762 

1.5000 0.00000 5.273 0.0000 

 

Using (*), 

𝑄𝑠 = 5 ×
0.4997

2
× (1.1089 + 2 × (0.2731 + 0.1762) + 0)    = 2.508 m3 s−1 

 

Answer: 𝑄𝑠 = 2.5 m3 s–1. 


