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2. RAPIDLY-VARIED FLOW (RVF) AUTUMN 2023 
 

Rapidly-varied flow is a significant change in water depth over a short distance (a few times 

water depth). It occurs where there is a local disturbance to the balance between gravity and 

friction (e.g. at a weir, venturi, sluice, free overfall, sudden change in slope) or a mismatch 

between the depths imposed by upstream and downstream controls (hydraulic jump). 

 

Often there is a flow transition between deep, slow flow (subcritical; Fr < 1) and shallow, fast 

flow (supercritical; Fr > 1). 

 

The assumption that the flow varies rapidly over a relatively short distance means that bed 

friction is unimportant (because the work done is small). Thus, for a smooth transition (e.g. 

weir, venturi or sluice), the total head is usually assumed constant through this short region. 

For an abrupt transition (hydraulic jump) there may be significant head loss, but it is associated 

with high levels of turbulence in the jump, not bed friction. 

 

Note that the hydrostatic pressure assumption can only be applied where near-parallel flow has 

been established, either side of the rapidly-varying-flow region. 

 

 

2.1 Hydraulic Jump 
 

 
 

A hydraulic jump is an abrupt change from a shallow, high-speed flow to a deep, low-speed 

flow of lower energy. 

 

It occurs when a depth difference is imposed by upstream and downstream conditions. Rapid, 

shallow flow may be created by, for example, a steep spillway or sluice. A slower and deeper 

downstream flow may be controlled by a downstream weir or by a reduction in slope. 

 

The triggering of a hydraulic jump at the base of a spillway is desirable to remove surplus 

kinetic energy, in order to reduce downstream erosion. 

 

Across a hydraulic jump: 

• mass is conserved; 

• the momentum principle is satisfied; 

• mechanical energy is lost (mostly as heat). 

 

Assume, for simplicity: 

• velocity uniform over upstream and downstream cross-sections; 

• small slope (so that the downslope component of weight can be neglected); 

• the length of the jump is short (so that bed friction can be neglected); 

• wide or rectangular cross-section (but see the Examples for alternatives). 
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Continuity 

The volume flow rate 𝑄 = 𝑉𝐴 is the same at each section. Velocities can thus be related to 

cross-sectional area 𝐴 (and hence to depth) by 

 
𝑉 =

𝑄

𝐴
 

(1) 

 

Momentum: 

Consider a control volume encompassing the jump. By the momentum principle: 

 net pressure force = rate of change of momentum 

𝑝̅1𝐴1 − 𝑝̅2𝐴2 = 𝜌𝑄(𝑉2 − 𝑉1) 

Since streamlines are parallel there, pressures at inflow and outflow stations 1 and 2 are 

hydrostatic and the average pressure is the pressure at the centroid; i.e. 𝑝̅ = 𝜌𝑔𝑑̅, where 𝑑̅ is 

the depth of the centroid below the surface. Using this, and substituting for velocity, 

 𝜌𝑔𝑑̅1𝐴1 − 𝜌𝑔𝑑̅2𝐴2 = 𝜌𝑄2(
1

𝐴2
−

1

𝐴1
) (2) 

 

At this point we restrict ourselves to a rectangular or wide channel (but, for different shapes, 

see the Examples). With 𝑏 the width of channel (or 𝑏 = 1 unit for a “wide” channel): 

 𝑑̅ =
1

2
ℎ,          𝐴 = ℎ𝑏,          𝑄 = 𝑞𝑏 

and the momentum principle reduces to 

1

2
𝜌𝑔ℎ1

2𝑏 −
1

2
𝜌𝑔ℎ2

2𝑏 = 𝜌𝑞2𝑏  (
1

ℎ2
−

1

ℎ1
) 

Dividing by 𝜌𝑏: 

1

2
𝑔(ℎ1

2 − ℎ2
2) = 𝑞2(

1

ℎ2
−

1

ℎ1
) 

 
1

2
𝑔(ℎ1 − ℎ2)(ℎ1 + ℎ2) = 𝑞2(

ℎ1 − ℎ2

ℎ1ℎ2
)  

Divide through by 𝑔(ℎ1 − ℎ2) (non-zero by assumption) and then multiply by ℎ1ℎ2: 

 
1

2
ℎ1ℎ2(ℎ1 + ℎ2) =

𝑞2

𝑔
 (3) 

Since we are looking for the depth ratio ℎ2 ℎ1⁄ , divide through by ℎ1
3: 

1

2

ℎ2

ℎ1
(1 +

ℎ2

ℎ1
) =

𝑞2

𝑔ℎ1
3 

Since 𝑞 = 𝑉ℎ, the RHS is 𝑉1
2/𝑔ℎ1 or Fr1

2. Hence, 

 
1

2

ℎ2

ℎ1
(1 +

ℎ2

ℎ1
) = Fr1

2 (4) 

 (
ℎ2

ℎ1
)

2

+
ℎ2

ℎ1
− 2Fr1

2 = 0 (5) 
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This is a quadratic equation for the depth ratio ℎ2 ℎ1⁄  and its positive root gives the downstream 

depth in terms of upstream quantities: 

 ℎ2 =
ℎ1

2
(−1 + √1 + 8Fr1

2) (6) 

 

 

Notes. 

(1) Indices 1 and 2 can be exchanged to write the upstream depth in terms of downstream 

quantities: 

 ℎ1 =
ℎ2

2
(−1 + √1 + 8Fr2

2) (7) 

 Thus, the depth formula, being dependent only on mass and momentum, doesn’t care 

which of 1 and 2 refers to upstream or downstream conditions. 

 

(2) The head loss in the jump is 

𝐻1 − 𝐻2 = 𝑧𝑠1 − 𝑧𝑠2 +
𝑉1

2 − 𝑉2
2

2𝑔

                = ℎ1 − ℎ2 +
𝑞2

2𝑔
(

1

ℎ1
2 −

1

ℎ2
2)

 

 Substituting for 𝑞2 𝑔⁄  from (3), then (after a lot of algebra, omitted here): 

 𝐻1 − 𝐻2 =
(ℎ2 − ℎ1)3

4ℎ1ℎ2
 (8) 

 Hence, for mechanical energy to be lost in the jump (𝐻1 bigger than 𝐻2) we require 

ℎ2 > ℎ1; i.e., on energy grounds, a hydraulic jump will always go from shallow to deep 

in the direction of flow. 

 

(3) Since ℎ2 ℎ1⁄ > 1 and ℎ1 ℎ2⁄ < 1 we have, from (4) and its equivalent with indices 

reversed: 

 Fr1 > 1         and        Fr2 < 1 

 i.e. the upstream flow is supercritical and the downstream flow is subcritical. 

 
(4) ℎ1 and ℎ2 are called sequent depths. 
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2.2 Specific Energy 
 

Since the surface level 𝑧𝑠 = 𝑧𝑏 + ℎ, the surface-

elevation part of the total head can be subdivided into the 

bed elevation 𝑧𝑏 and the depth of flow, ℎ: 

 𝐻 ≡ 𝑧𝑠 +
𝑉2

2𝑔
    = 𝑧𝑏 + ℎ +

𝑉2

2𝑔
 (9) 

 

The specific energy 𝐸 is the head relative to the bed of the channel; i.e. 

 𝐸 = ℎ +
𝑉2

2𝑔
 (10) 

Hence, 

 𝐻 = 𝑧𝑏 + 𝐸 (11) 

 

If the bed is horizontal and we choose to measure vertical coordinate 𝑧 from it, then we can 

take 𝑧𝑏 = 0 and 𝐻 = 𝐸. If, however, the bed varies in height then, if total head is constant, 

 increase in 𝑧𝑏        decrease in 𝐸 

 

𝐸 is essentially the flow energy (in length units). It is rather like the kinetic energy of a particle 

rolling up a slope. For a particle, the total energy (𝐻) is the sum of the potential energy (𝑧𝑏 in 

length units) and kinetic energy; in the fluid case the flow energy 𝐸 also contains some potential 

energy associated with the finite depth ℎ. In the particle analogy the particle cannot rise above 

a certain value of 𝑧𝑏 because its kinetic energy cannot drop below zero. We shall see that the 

flow specific energy also cannot drop below a minimum value, although this is greater than 

zero. 

 

 

2.2.1 Specific Energy in a Rectangular or Wide Channel 
 

For a rectangular or wide channel we can work with quantities per unit width. As 𝑉 = 𝑞 ℎ⁄ : 

 𝐸 = ℎ +
𝑞2

2𝑔ℎ2
 (12) 

The first part corresponds to potential energy and the second part to kinetic energy (both in 

length units: energy per unit weight). 

 

For very large ℎ (deep, slow flow, dominated by potential energy), 

𝐸 ≈ ℎ 

 

For very small ℎ (shallow, fast flow, dominated by kinetic energy), 

𝐸 ≈
constant

ℎ2
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For fixed discharge, the complete graph of 𝐸 against ℎ (putting independent variable ℎ on the 

vertical axis because that is more natural for “depth”) is shown below. 

 

 
 

It is clear from the graph that 𝐸 must have a minimum and that it is strictly positive. To find it,  

set d𝐸 dℎ⁄ = 0; i.e. 

𝐸 = ℎ +
𝑞2

2𝑔ℎ2
 

 
d𝐸

dℎ
= 1 −

𝑞2

𝑔ℎ3
 

Hence d𝐸 dℎ⁄ = 0 when 

 
𝑞2

𝑔ℎ3
= 1 

(13) 

 𝐸 = ℎ +
𝑞2

2𝑔ℎ2
    = ℎ +

1

2
(

𝑞2

𝑔ℎ3
) ℎ    = ℎ +

1

2
ℎ    =

3

2
ℎ 

Hence, the specific-energy has a minimum 𝐸𝑐 at a critical depth ℎ𝑐, given by: 

 

 ℎ𝑐 = (
𝑞2

𝑔
)

1/3

 (14) 

 𝐸𝑐 =
3

2
ℎ𝑐 (15) 

 

The reason for the subscripts c (for “critical”) is that Fr = 1 at the minimum specific energy. 

This is readily shown for a rectangular or wide channel. Since 𝑉 = 𝑞/ℎ, we have: 

Fr2 =
𝑉2

𝑔ℎ
    =

𝑞2

𝑔ℎ3
 

Hence, at the depth ℎ where (13) holds: 

Fr = 1 

We show in Section 2.2.4 that this is also true in an arbitrarily-shaped channel. 

 

Since 
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Fr =
𝑉

√𝑔ℎ
 

then, if ℎ is larger than ℎ𝑐 then, to preserve volume flow rate, 𝑉 must be smaller than 𝑉𝑐; both 

changes ensure that, for depths greater than the critical depth, Fr < 1 (subcritical). Similarly, 

for depths smaller than the critical depth, Fr > 1 (supercritical). 

 

● For a given flow rate there is a (strictly positive) minimum specific energy, 𝐸𝑐, 

occurring at the critical depth where Fr = 1. 

 

● For any specific energy 𝐸 > 𝐸𝑐 there are two possible depths with the same 𝐸 and 𝑞: 

 – a shallow (ℎ < ℎ𝑐), high-speed flow with Fr > 1 (supercritical); 

 – a deep (ℎ > ℎ𝑐), low-speed flow with Fr < 1 (subcritical). 

 These are called alternate depths. 

 

 

2.2.2 Calculating the Alternate Depths 
 

For a given specific energy 𝐸 and discharge (per unit width) 𝑞, the alternate depths in a 

rectangular channel are the subcritical and supercritical solutions of 

 𝐸 = ℎ +
𝑞2

2𝑔ℎ2
 (16) 

This can, in principle, be rearranged as a cubic equation and solved directly (see Chanson’s 

book). However, it is easily solved by iteration in a manner that deliberately isolates the deeper 

or shallower positive solution. 

 

For the subcritical (deep, slow) solution the first term on the RHS of (16) dominates, so 

rearrange for iteration as:   

ℎ = 𝐸 −
𝑞2

2𝑔ℎ2
 

and start iterating from a subcritical depth (e.g. ℎ = 𝐸). 

 

For the supercritical (shallow, fast) solution the second term 

on the RHS of (16) dominates, so rearrange for iteration as: 

ℎ =
𝑞

√2𝑔(𝐸 − ℎ)
 

and start iterating from a supercritical depth (e.g. ℎ = 0). 

 

Example. 

A 3 m wide channel carries a total discharge of 12 m3 s–1. Calculate: 

(a) the critical depth; 

(b) the minimum specific energy; 

(c) the alternate depths when 𝐸 = 4 m. 
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2.2.3 Flow Over a Bed Rise 
 

The total head is 

𝐻 = 𝑧𝑏 + 𝐸 

 

Under the rapidly-varied-flow assumption, the total head is 

constant, so that, if the bed height 𝑧𝑏 increases, the specific 

energy 𝐸 must decrease by the same amount. Qualitative 

changes in specific energy 𝐸 and water depth ℎ can be 

determined simply from the shape of the 𝐸 − ℎ graph. 

 

 

• Subcritical: 

 As 𝐸 decreases, ℎ decreases; i.e. water depth 

decreases over a bump. 

 

 

 

• Supercritical: 

 As 𝐸 decreases, ℎ increases; i.e. water depth 

increases over a bump. 

 

 

(You should be able to work out from the specific-energy graph what happens to the depth of 

water if the bed of the channel is depressed rather than elevated.) 

 

Strictly, we have shown in the subcritical case that the depth ℎ decreases over a bump, but this 

does not necessarily imply that the actual water level 𝑧𝑠 does likewise. However, it turns out 

that changes in actual water level (d𝑧𝑠) have the same sign as the changes in depth (dℎ). This 

can be deduced by considering the total head: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔

    = 𝑧𝑠 +
𝑞2

2𝑔ℎ2

 

Considering differential changes: 

d𝐻 = d𝑧𝑠 −
𝑞2

𝑔ℎ3
dℎ

       = d𝑧𝑠 − Fr2dℎ

 

Neglecting friction over short distances, total head is constant (d𝐻 = 0), so that 

d𝑧𝑠 = Fr2dℎ 

Hence: 

(1) at constant head, d𝑧𝑠 and dℎ have the same sign; i.e. depth increases/decreases if and 

only if the water level increases/decreases; 

(2) if the Froude number is very small (Fr ≪ 1) then surface displacement is negligible. 

 

subcritical

supercritical
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2.2.4 Specific Energy in a Non-Rectangular Channel 
 

In this section we consider specific energy for a non-rectangular channel and, in particular, 

deduce that critical conditions (Fr = 1) will occur at the minimum specific energy … provided 

that we use the mean depth ℎ̅ in the definition of the Froude number. 

 

Let the cross-sectional area occupied by fluid be A and the surface width be 𝑏𝑠.  

 

The total head is 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
 

where 𝑉 = 𝑄/𝐴. Hence, 

 𝐻 = 𝑧𝑏 + 𝐸  

where 

𝐸 = ℎ +
𝑄2

2𝑔𝐴2
 

(ℎ is the depth at whichever point of the cross-section is used to determine the bed level 𝑧𝑏: 

usually the lowest point or invert.) 

 

The specific energy has a minimum when d𝐸 dℎ⁄ = 0. Now, by the chain rule, 

d𝐸

dℎ
= 1 +

d

d𝐴
(

𝑄2

2𝑔𝐴2
) ×

d𝐴

dℎ
    = 1 −

𝑄2

𝑔𝐴3

d𝐴

dℎ
 

 
𝑄2

𝑔𝐴3

d𝐴

dℎ
= 1 

 

Consider the area added when the depth is increased by dℎ,  

 d𝐴 = 𝑏𝑠 dℎ 

Hence, at the minimum specific energy,  

𝑄2𝑏𝑠

𝑔𝐴3
= 1 

Since 𝑄 𝐴⁄ = 𝑉 and 𝐴 𝑏𝑠⁄ = ℎ̅ this gives 

𝑉2

𝑔ℎ̅
= 1 

Hence, minimum specific energy for a given discharge occurs at Fr = 1, provided that we 

define 

 Fr =
𝑉

√𝑔ℎ̅
 (17) 

This is the rationale for taking ℎ̅ as the length scale used to define the Froude number. 

  

bs

dh

A

b

A

s
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2.3 Critical-Flow Devices 
 

A simple analysis is presented for 3 critical-flow devices: 

• broad-crested weir; 

• venturi flume; 

• sluice gate; 

and one additional critical-flow control: 

• free overfall. 

 

In each case, under suitable conditions, the flow passes smoothly from subcritical to 

supercritical as it passes through the device. Since there is then a known relationship between 

flow depth and discharge these hydraulic structures can be used to: 

(i) measure the flow rate; 

(ii) provide a control point (i.e. boundary condition) for GVF calculations. 

 

For a broad-crested weir or venturi flume, when critical conditions are established the specific 

energy – and hence the immediate upstream head – is fixed. This must be greater than or equal 

to the head in the absence of the device and hence the fluid must “back up”; i.e. the depth 

increases for some distance upstream. The flow is then said to be controlled or choked by the 

device. 

 

In the analyses below it is assumed that changes take place over a length short enough for 

frictional losses to be negligible; i.e. the total head is constant through the device. In reality, 

departures from this are often accommodated by the use of discharge coefficients in formulae 

for discharge. 

 

 
 

For simplicity, channels will be assumed to have rectangular (or wide) cross-sections. 

WEIR

total-head line
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2.3.1 Broad-Crested Weir 
 

Consider subcritical flow (with specific energy 𝐸𝑎, discharge per unit width 𝑞) approaching a 

region where the bed is raised by Δ𝑧𝑏. This region is sufficiently long for parallel flow to be 

established (hence “broad-crested”), but insufficiently long for significant frictional losses. 

 

As total head (𝐻 = 𝑧𝑏 + 𝐸) is constant, the 

specific energy is reduced over the weir (to 

𝐸𝑎 − Δ𝑧𝑏). If this still exceeds the minimum 

specific energy 𝐸𝑐 for this discharge then the 

flow remains subcritical over the bump and 

resumes its original depth downstream. 

 

If, however, the bed rise is sufficiently large 

then, as the specific energy cannot be less 

than 𝐸𝑐, the upstream flow must “back up”, 

increasing the depth and specific energy 

immediately upstream of the weir. 

 

In the latter case we have the following (writing Δ𝑧𝑏 = 𝑧weir): 

• critical flow over the top of the weir with: 

depth ℎ𝑐 = (
𝑞2

𝑔
)

1/3

 

specific energy 𝐸𝑐 =
3

2
ℎ𝑐 

• smooth acceleration from subcritical to supercritical flow either side of the weir; 

• total head immediately up or downstream of the weir is the same as that over the top:  

𝐻 = 𝑧weir + 𝐸𝑐 

• the depths immediately up or downstream of the weir (where the bed level has returned 

to zero) can be found as the sub- and supercritical solutions, respectively, of 

𝐻 = ℎ +
𝑞2

2𝑔ℎ2
 

 

What happens further up- or downstream depends on other controls (if present), or normal flow 

if there are long fetches. An example for a long channel with subcritical normal flow is shown 

below. Upstream, the flow relaxes via GVF. Downstream, it jumps back to subcritical flow 

following a length of GVF. If any downstream controls are sufficiently far away then the flow 

jumps directly back to its “preferred” depth for the channel; i.e. normal depth. However, this 

cannot always be assumed: for shorter fetches, e.g. in the hydraulics laboratory flumes, the 

downstream depth will not be normal; the flumes are nowhere near long enough. 

 

 

WEIR

normal GVF

normal

hydraulic
jump

hn
ch

1h

2h GVF

CP CP

hn

WEIR

WEIR
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To establish whether the flow becomes critical over the weir, compare total head assuming 

critical conditions at the crest of the weir (𝐻𝑐) with the total head available in the approach 

flow (𝐻𝑎). (Often, but not always, this will be the head associated with normal flow). 

 

In the approach flow find the specific energy 𝐸𝑎. If you are referring heights to the bed of the 

channel near the weir then this will be the same as the approach-flow total head 𝐻𝑎 at the 

position of the weir.  

 

At the weir find the critical depth hc and minimum 

specific energy 𝐸𝑐. Then do one of the following. 

 

(1) Find what the approach-flow specific energy 

would be reduced to following the bed rise: 

  𝐸𝑎 − 𝑧weir 

 If this is less than the critical value 𝐸𝑐 then the 

flow must become choked and a critical-flow 

transition will occur across the weir. 

 

(2) Alternatively, find the total head associated 

with critical flow over the weir; i.e. 

  𝐻𝑐 = 𝑧weir + 𝐸𝑐  

 This is the minimum head needed to pass this discharge over the weir. If it exceeds the 

head available in the approach flow (𝐻𝑎 = 𝐸𝑎) then critical conditions occur and a flow 

transition (sub- to supercritical flow) takes place across the weir. 

 

Neglecting frictional losses, the total head 𝐻 is constant across the device and equal to the 

larger of the head under critical conditions and the head in the approach flow. This head, 

together with the level of the bed and knowledge of whether the flow is subcritical or 

supercritical, will determine the depth at a specific location. 

 

Example. (Exam 2020) 

(a) Define: 

 (i) specific energy 

 (ii) Froude number 

 for open-channel flow. What is special about these quantities in critical conditions? 

 

A long, wide channel has a slope of 1:1000, a Manning’s 𝑛 of 0.015 m–1/3 s and a discharge of 

3 m3 s–1 per metre width. 

(b) Calculate the normal and critical depths. 

(c) In a region of the channel the bed is raised by a height of 0.8 m over a length sufficient 

for the flow to be parallel to the bed over this length. Determine the depths upstream, 

downstream and over the raised bed, ignoring frictional losses. Sketch the key features 

of the flow, indicating all hydraulic transitions caused by the bed rise. 

(d) In the same channel, the bed is lowered by 0.8 m from its original level. Determine the 

depths upstream, downstream and over the lowered bed, ignoring frictional losses. 

Sketch the flow. 
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Supercritical flow downstream of the weir may or may not actually occur. 

 

If the flow far downstream is subcritical then in between there must be a hydraulic jump. If 

conditions downstream of the jump are known (e.g. if normal flow) then the depth just upstream 

of the jump can be calculated from the hydraulic-jump sequent-depth relationship. 

 

A region of supercritical GVF downstream of the weir will exist provided the hydraulic jump 

is not too close. The lectures on GVF will show that depth increases in supercritical flow on a 

mild slope (one for which the normal depth is subcritical). Hence, this will occur if and only if 

the supercritical depth just downstream of the weir is less than the depth upstream of the jump. 

Otherwise, the hydraulic jump will occur immediately at the downstream base of the weir, and 

there is no intervening region of supercritical GVF. 

 

Denote the depth immediately downstream of the weir by ℎ2 and the sequent depth on the 

upstream side of the hydraulic jump by ℎ𝐽. There are two possible cases: 

 

(i) ℎ2 < ℎ𝐽: region of supercritical 

GVF between the weir and the 

jump; 

 

 

(ii) ℎ2 ≥ ℎ𝐽 jump occurs immediately 

downstream of the weir; no region 

of supercritical GVF (and the flow 

depth may never actually reach ℎ2). 

 

It is therefore necessary to calculate and compare ℎ2 (the depth of any supercritical parallel 

flow just downstream of the weir) and ℎ𝐽 (the depth upstream of the jump, which is fixed by 

the hydraulic-jump relation, equation (7), and the depth downstream of the jump). 

 

 

Example. 

A long channel of rectangular cross-section with width 3.5 m and streamwise slope 1 in 800 

carries a discharge of 15 m3 s–1. Manning’s n may be taken as 0.016 m–1/3 s. A broad-crested 

weir of height 0.7 m is constructed at the centre of the channel. Determine: 

(a) the depth far upstream of the weir; 

(b) the depth just upstream of the weir; 

(c) whether or not a region of supercritical gradually-varied flow exists downstream of the 

weir. 

 

hJ
WEIR

h2
h1

hydraulic
jump

WEIR

h1

hydraulic
jump
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Measurement of Discharge 

 

If critical conditions are established over a weir there 

is a fixed relationship between head and flow rate, 

and the weir can be used for flow measurement. 

 

Assuming no loss of head, 

 𝐻weir = 𝐻upstream  

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
 

Because the upstream side is often a deep reservoir rather than a continuous channel (see the 

figure below) it is more common for this purpose to measure the vertical coordinate z from the 

top of the weir. Then, assuming critical flow over the crest of the weir: 

3

2
ℎ𝑐 = ℎ0 +

𝑉2

2𝑔
 

 
3

2
(

𝑞2

𝑔
)

1/3

= ℎ0 +
𝑞2

2𝑔ℎ1
2  

where ℎ0 = ℎ1 − 𝑧weir is the freeboard; i.e. the upstream depth relative to the weir. (If you 

measure 𝑧 from the bed of the channel instead then simply add 𝑧weir to both sides.) 

 

This can be rearranged to give an implicit equation for the discharge per unit width: 

𝑞 = (2/3)3/2√𝑔(ℎ0 +
𝑞2

2𝑔ℎ1
2)3/2 

Losses may be compensated for by a discharge coefficient 𝑐𝑑. Then, in metre-second units, the 

total discharge (𝑄 = 𝑞𝑏) is given by 

 𝑄 = 1.705𝑐𝑑𝑏(ℎ0 +
𝑄2

2𝑔𝑏2ℎ1
2)3/2 (18) 

This must be solved for 𝑄 by iteration (although the dynamic head on the RHS is usually small 

and is often neglected). A straightforward measurement of water level then allows the 

discharge in a channel to be gauged. 

 

 

If the weir is discharging a deep reservoir rather 

than a channel then the upstream head is simply 

the still-water level and no iteration is necessary 

– see the example below. 

 

Example. (Exam 2023, part) 

A reservoir discharge is controlled by a weir of width 8 m and discharge coefficient 0.9. 

(a) Calculate the flow rate over the weir when the freeboard is 0.65 m. 

(b) Assuming negligible inflow and a constant plan area for the reservoir of 1.5 km2, 

calculate the time in hours to reduce the level of the reservoir by 0.4 m. 

h1

WEIR

freeboard, h0

total-head line

WEIR

freeboard, h0

total-head line

RESERVOIR
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2.3.2 Venturi Flume 
 

In a duct or channel a region of contracted width is called a venturi. 

 

As a channel narrows the discharge per unit width, 𝑞 = 𝑄 𝑏⁄ , increases. However: 

For a given specific energy there is a maximum discharge (per unit width), 𝑞max, occurring at 

the critical depth where Fr = 1. 

 

Proof: 

For a rectangular or wide channel we can work with quantities per unit width. As 𝑉 = 𝑞 ℎ⁄ : 

𝐸 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
 

Rearranging for 𝑞2:  

𝑞2 = 2𝑔ℎ2(𝐸 − ℎ)    = 2𝑔(𝐸ℎ2 − ℎ3)  

 

The graph of 𝑞 vs ℎ for constant specific energy has the shape shown. From the graph it is clear 

that q must have a maximum. Since 𝑞2 is largest when 𝑞 is largest it is easier to maximise 𝑞2 

instead: 

d

dℎ
(𝑞2) = 2𝑔(2𝐸ℎ − 3ℎ2) 

Setting d(𝑞2) dℎ⁄ = 0 gives 

2𝐸ℎ − 3ℎ2 = 0 

whence 

𝐸 =
3

2
ℎ 

 

Then, from the expression for 𝑞2: 

𝑞2 = 𝑔ℎ3 

and hence 

Fr2 ≡
𝑉2

𝑔ℎ
    =

𝑞2

𝑔ℎ3
     = 1 

 

 

Thus, at constant specific energy 𝑞 cannot exceed 𝑞max. Where continuity insists that it does 

so, the flow becomes choked and critical conditions are maintained at the venturi throat by the 

flow backing up upstream to provide a greater depth and specific energy. 

  

D
e
p

th
, 

h

Discharge per unit width, q

Fr>1

Fr<1
ch

maxq
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If critical conditions occur we have the following. 

 

• There is smooth acceleration from sub- to supercritical flow through the throat. 

 

• At the venturi throat: 

  depth ℎ𝑐 = (𝑞𝑚
2 /𝑔)1/3       where     𝑞𝑚 = 𝑄/𝑏min 

  specific energy 𝐸𝑐 =
3

2
ℎ𝑐 

 Remember: 𝑞𝑚 is not the same as in the main channel; the throat is narrower. 

 

• The total head through the device is 

𝐻 = 𝐻𝑐     = 𝑧𝑏 + 𝐸𝑐 

 where 𝑧𝑏 is the bed level (often, but not always, 0). 

 

• The depths of parallel flow in the vicinity of the venturi can then be found as the sub- 

or supercritical solutions of 

𝐸 = ℎ +
𝑄2

2𝑔𝑏2ℎ2
 

 where 𝑏 is the width at that particular location. 

 

 

To establish whether critical conditions occur, then, just as for the weir, calculate the head 𝐻𝑐 

corresponding to critical conditions at the throat (the minimum energy required to pass this 

discharge) and compare with the head 𝐻𝑎 in the approach flow (the energy available if 

approach-flow conditions were to occur all the way up to the venturi). If the approach-flow 

head is smaller than that corresponding to critical flow in the throat then the flow must back up 

to provide the extra energy and a critical-flow transition occurs. If the approach-flow head is 

larger than that required by critical flow in the throat then critical conditions do not occur and, 

for subcritical approach flow, the surface just dips and then returns to its original level. 

 

As for the broad-crested weir the total head through the device is constant and equal to the 

larger of the approach-flow and critical heads. 

 

Provided critical flow is established at its throat, a venturi flume can, like a broad-crested weir, 

be used as a flowmeter. 

 

bmin

critical

PLAN VIEW

WATER PROFILE
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Example. 

 

A venturi flume is placed near the middle of a long rectangular channel with Manning’s 𝑛 =

0.012 m−1 3⁄  s. The channel has a width of 5 m, a discharge of 12.5 m3 s–1 and a slope of 

1:2500. 

 

(a) Determine the critical depth and the normal depth in the main channel. 

(b) Determine the venturi flume width which will just make the flow critical at the 

contraction. 

(c) If the contraction width is 2 m find the depths just upstream, downstream and at the 

throat of the venturi flume (neglecting friction in this short section). 

(d) Sketch the surface profile. 
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2.3.3 Sluice Gate 

 
 

At the gate the flow passes smoothly through critical conditions from subcritical to supercritical 

flow. Neglecting frictional losses, the total head is the same on both sides: 

𝐻1 = 𝐻2 

𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

 

Provided the gate is not lifted too high then, in a rectangular channel with 𝑉 = 𝑞 ℎ⁄  and flat 

bed from which 𝑧 is measured, depths ℎ1 and ℎ2 are the subcritical and supercritical solutions 

respectively, of 

 ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2 (19) 

(Note that, because of the hydrostatic assumption implicit in the expression for total head, ℎ2 

is the depth where parallel flow has become established; i.e. at the vena contracta.) 

 

Example. 

The water depth upstream of a sluice gate is 0.8 m and the depth just downstream (at the vena 

contracta) is 0.2 m. Calculate: 

(a) the discharge per unit width; 

(b) the Froude numbers upstream and downstream. 

 

 

 

Example. 

A sluice gate controls the flow in a channel of width 2 m. If the discharge is 0.5 m3 s–1 and the 

upstream water depth is 1.5 m, calculate the downstream depth and velocity. 

 

 
 

In the general case, (19) can be rearranged for 𝑞 and hence the total discharge (𝑄 = 𝑞𝑏): 

 𝑄 = 𝑏ℎ2√
2𝑔ℎ1

1 + ℎ2/ℎ1
 (20) 

In the “ideal” approximation, ℎ2 is approximated by gate opening 𝐷 and ℎ2 ≪ ℎ1, so that 

 𝑄ideal = 𝑏𝐷√2𝑔ℎ1 

D

h1

total head line

h2

gate
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In reality, ℎ2 is smaller than the gate opening (typically, about 0.6 times), ℎ2/ℎ1 is small but 

not insignificant, and there are frictional losses. These modifications are all absorbed into a 

discharge coefficient 𝑐𝑑 such that the actual, measured discharge can be written 

 𝑄 = 𝑐𝑑𝑏𝐷√2𝑔ℎ1 (21) 

 

The gate opening 𝐷 and either upstream total head 𝐻 or depth ℎ1 control the discharge. 

 

 

If the gate is opened too far, or if a downstream obstruction is 

too close, then the hydraulic jump occurs immediately and 

supercritical conditions cannot be attained. The flow on both 

sides is then subcritical, there is energy lost and the sluice gate 

is said to be drowned. 

 

 
 
 
 
2.3.4 Free Overfall 
 

If the approach flow is supercritical (Fr > 1) then 

there is upstream control and the supercritical 

flow simply continues over the overfall. 

 

 

 

 

If the approach flow is subcritical (Fr < 1) then 

the flow accelerates smoothly through critical to 

supercritical flow a short (and usually neglected) 

distance upstream of the overfall. 

 

h1

hc

hc critical
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2.4 Forces On Objects 
 

Obstacles (e.g. bridge piers, baffle blocks) placed in the flow provide a reactive force. 

 

For subcritical approach flow, depth of flow is reduced over a bed rise. This may be enough to 

generate a critical-flow transition similar to that over a weir. 

 

For supercritical approach flow, depth increases over a bed rise. If the flow has insufficient 

head then a hydraulic jump occurs to a subcritical depth, with overall loss of energy. 

 

Baffle blocks are used in stilling basins to provoke a hydraulic jump in a controlled and 

precisely-located manner, so that the high-speed flow and/or the turbulent motions in the jump 

do not cause damaging erosion further downstream. 

 

 

 
 

Forces may be determined using a control-volume analysis and the momentum principle. 

 

Where pressure is hydrostatic, the magnitude of the pressure force is (for a rectangular channel 

of width 𝑏): 

 (average pressure) × area = 𝑝(centroid) × 𝐴    = 𝜌𝑔(
1

2
ℎ) × ℎ𝑏    =

1

2
𝜌𝑔ℎ2𝑏 

Then, from the steady-state momentum principle: 

force = rate of change of momentum

−𝐹 +
1

2
𝜌𝑔ℎ1

2𝑏 −
1

2
𝜌𝑔ℎ2

2𝑏 = 𝜌𝑄(𝑉2 − 𝑉1)
 

Hence, 

 𝐹 = (𝜌𝑄𝑉1 +
1

2
𝜌𝑔ℎ1

2𝑏) − (𝜌𝑄𝑉2 +
1

2
𝜌𝑔ℎ2

2𝑏) (22) 

 

This can also be written 

 𝐹 = (𝑀1 + 𝐹𝑝1) − (𝑀2 + 𝐹𝑝2) (23) 

where   

 𝑀 = 𝜌𝑉2ℎ𝑏    = momentum flux  

 𝐹𝑝 =
1

2
𝜌𝑔ℎ2𝑏    = hydrostatic pressure force  

 

The quantity 𝑀 + 𝐹𝑝 (momentum flux + pressure force) is sometimes called specific force. 

 

A hydraulic jump is just a special case of this analysis with 𝐹 = 0; i.e. the specific force is 

constant: 

BAFFLE
BLOCKh1

V1

h2 V2
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𝑀1 + 𝐹𝑝1 = 𝑀2 + 𝐹𝑝2 

This can be used to establish the jump relation in non-rectangular channels. 

 

 

Example. (Exam 2018) 

Water flows at 0.8 m3 s–1 per metre width down a long, wide spillway of slope 1 in 30 onto a 

wide apron of slope 1 in 1000. Manning’s roughness coefficient 𝑛 = 0.014 m–1/3 s on both 

slopes. 

 

(a) Find the normal depths in both sections and show that normal flow is supercritical on 

the spillway and subcritical on the apron. 

 

(b) Baffle blocks are placed a short distance downstream of the slope transition to provoke 

a hydraulic jump. Assuming that flow is normal on both the spillway and downstream 

of the hydraulic jump, calculate the force per metre width of channel that the blocks 

must impart. 

 

(c) Find the head loss across the blocks. 

 

 

 

 

A hydraulic jump may also be triggered by the drop in velocity associated with a sudden 

expansion – e.g. a downward step or an abrupt increase in width. 

 

This can also be analysed by use of the momentum principle. An important approximation is 

that the reaction force from downstream-facing expansion walls is approximated by a 

hydrostatic-pressure distribution, as in the example below. 

 

 

Example. 

A downward step of height 0.5 m causes a hydraulic 

jump in a wide channel when the depth and velocity 

of the flow upstream are 0.5 m and 10 m s–1,  

respectively. 

 

(a) Find the downstream depth. 

 

(b) Find the head lost in the jump. 

 



h1
2h


