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1. INTRODUCTION AUTUMN 2023 
 

Open-channel flow is an important area of fluid mechanics for civil engineers. It describes the 

flow in rivers, man-made channels and partially-full pipes (sewers, drains), as well as the 

behaviour of hydraulic structures such as weirs, spillways and sluices. 

 

The common feature of all open-channel flows is the free surface, where the gauge pressure 

𝑝 = 0. All such flows are gravity-driven, with the discharge 𝑄 and flow depth ℎ dependent on 

the balance between the downslope component of gravity and bed friction. 

 

 

1.1 Classification 
 

Steady or Unsteady 

 

Open-channel flow is steady if all flow properties are independent of time. The most important 

examples of unsteady flow are waves, surges and tidal flows. Waves are covered in the second 

half of Hydraulics 3. 

 

In this part of the course we consider only steady flow. For a given channel this consists of 

various fetches considered as uniform, rapidly-varied or gradually-varied flow. 

 

 
Uniform Flow 

 

In uniform flow the depth and velocity do not vary in the direction of flow. This can only occur 

in long straight channels of uniform cross-section, constant slope and no side streams. (These 

are called prismatic channels; they are always an approximation for natural water courses like 

rivers). Here, the downslope component of weight exactly balances bed friction. Steady 

uniform flow is called normal flow. Steady downslope flows in uniform channels tend to 

normal flow if there is sufficient undisturbed length. 

 

 

Rapidly-Varied Flow (RVF) 

 

Rapidly-varied flow occurs when the flow adjusts over relatively short distances (a few times 

the flow depth). Examples are hydraulic jumps and flow past hydraulic structures such as weirs 

(local bed rise), venturis (local narrowing) and sluices (variable-opening gates). As the 

streamwise distance is short, changes to the flow are obtained by neglecting bed friction. 
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Gradually-Varied Flow (GVF) 

 

In gradually-varied flow the water depth changes slowly with streamwise distance (typically 

over distances of hundreds or thousands of times the flow depth) because of an imbalance 

between gravitational and friction forces. This may occur as the result of a change in channel 

properties (slope, cross-section or roughness) or an adjustment brought about by upstream or 

downstream disturbances such as weirs and sluices. Because the variation is gradual the flow 

can still be treated as one-dimensional (varying only with x) and the pressure as hydrostatic. 

 

 

1.2 Normal Flow 

 

General Friction Law 

 

Let the cross-sectional area of flow be 𝐴 and the wetted perimeter 

be 𝑃. 

 

 

 

 

The bed shear stress is 𝜏𝑏. Since bed friction 

(stress  wetted area) balances the downslope 

component of weight (𝑚𝑔 sin 𝜃), then, for a 

streamwise length 𝐿, 

 𝜏𝑏 × (𝑃𝐿) = (𝜌𝐴𝐿) × 𝑔 sin 𝜃 

Hence, 

 𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆 (1) 

where the hydraulic radius 𝑅ℎ is defined as1 

 

𝑅ℎ =
𝐴

𝑃
 

(2) 

and 𝑆 is the streamwise slope. (Strictly, 𝑆 = tan 𝜃, but tan 𝜃 ≈ 𝜃 ≈ sin 𝜃 for small slopes). 

 

The skin-friction coefficient 𝑐𝑓 is defined as the ratio of bed shear stress 𝜏𝑏 to dynamic pressure 
1

2
𝜌𝑉2, where 𝑉 is the average velocity over the cross-section. i.e. 

 𝜏𝑏 = 𝑐𝑓(
1

2
𝜌𝑉2) (3) 

 

Equating the two expressions (1) and (3) for 𝜏𝑏, and rearranging for 𝑉: 

 

𝑉 = √
2𝑔

𝑐𝑓
𝑅ℎ𝑆 

(4) 

  

 
1 Just be warned: some textbooks call this the hydraulic mean depth and give it the symbol 𝑚. I don’t like either. 
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There are various possible friction laws, including: 

• Darcy friction factor (𝜆 = 4𝑐𝑓, 𝐷ℎ = 4𝑅ℎ)  𝑉 = √2𝑔
𝐷ℎ

𝜆
𝑆          (pipe flow) 

• Chézy (𝐶 = √2𝑔/𝑐𝑓)  𝑉 = 𝐶√𝑅ℎ𝑆 

• Manning (√2𝑔/𝑐𝑓 =
1

𝑛
𝑅ℎ

1/6
)  𝑉 =

1

𝑛
𝑅ℎ

2/3
𝑆1/2 

 

We will usually use Manning’s equation in this course, but see the Examples for alternatives. 

 

 

Main Calculation Formulae 

 

 Discharge: 𝑄 = 𝑉𝐴 

 Manning’s equation: 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 

 Hydraulic radius: 𝑅ℎ =
𝐴

𝑃
 

 

 

Hydraulic Radius For Particular Channel Shapes 

 

In each case ℎ is the depth of flow (measured from the lowest point, or invert). 

 

• Rectangular (width 𝑏) 

𝑅ℎ =
𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 +
2ℎ
𝑏

 

• Wide (obtained from the above in the limit ℎ/𝑏 ≪ 1): 

  𝑅ℎ = ℎ 

 

• Trapezoidal (bottom width 𝑏; side slope expressed here as 

ℎ𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙: 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 =  𝑚: 1, but could be stated many ways.) 

𝑅ℎ =
ℎ(𝑏 + 𝑚ℎ)

𝑏 + 2ℎ√1 + 𝑚2
 

 

• Circular (radius 𝑅) 

𝑅ℎ =
2(1

2
𝑅2𝜃 − 1

2
𝑅 sin 𝜃 . 𝑅 cos 𝜃)

2𝑅𝜃
    =

𝑅

2
(1 −

sin 2𝜃

2𝜃
) 

   where ℎ = 𝑅 − 𝑅 cos 𝜃 
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Normal Depth 

 

For any given discharge 𝑄 there will be a particular normal depth, ℎ𝑛. (We will drop the 

subscript 𝑛 when the context is clear.) The relationship between them arises from: 

 𝑄 = 𝑉𝐴  

where 

𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 

and 𝐴 and 𝑅ℎ are functions of ℎ. 

 

Thus, 

 𝑄 = 𝑓(ℎ) (5) 

where function 𝑓(ℎ) depends on the shape of the channel, roughness 𝑛 and slope 𝑆. 

 

In most cases, however, we need to know depth ℎ for a particular discharge 𝑄, not vice versa. 

Only for a limited number of channel shapes (e.g. wide or V-shaped) can (5) be rearranged 

explicitly for ℎ. More generally, for a given discharge 𝑄 it may be solved numerically by 

● repeated trial for values of ℎ, or, after suitable rearrangement, 

● iteration. 

 

 

For wide channels it is usual to work in terms of the flow per unit width, 

 𝑞 =
𝑄

𝑏
 (6) 

The corresponding area per unit width is the flow depth ℎ. Then, by Manning, per unit width: 

𝑞 = 𝑉ℎ    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 × ℎ          where          𝑅ℎ = ℎ 

Hence, 

𝑞 =
ℎ5/3𝑆1/2

𝑛
 

or, by inversion, 

ℎ = (
𝑛𝑞

√𝑆
)

3/5

 

 

For rectangular channels, 𝐴 = 𝑏ℎ and 𝑅ℎ = ℎ (1 + 2ℎ 𝑏⁄ )⁄ . Then, 

𝑄 = 𝑉𝐴    =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2 × 𝑏ℎ    =
𝑏√𝑆

𝑛

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

This can be solved by either repeated trial or rearranged to give an iterative formula for ℎ: 

ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Similar iteration formulae may be derived for trapezoidal channels and many other shapes. 



Hydraulics 3 Open-Channel Flow: Introduction - 5 Dr David Apsley 

Example. 

The discharge in a channel with bottom width 3 m is 12 m3 s–1. If Manning’s 𝑛 is 0.013 m−1/3 s 

and the streamwise slope is 1 in 200, find the normal depth if: 

(a) the channel has vertical sides (i.e. rectangular channel); 

(b) the channel is trapezoidal with side slopes 2H:1V. 

 

 

 

1.3 Flow Energy: Fluid Head 

 

In hydraulics, because many flows are gravity-driven, it is common to express energy or 

pressure in height units: 

 total pressure: 𝑝 + 𝜌𝑔𝑧 +
1

2
𝜌𝑉2 (à la Bernoulli’s equation) (7) 

Divide by 𝜌𝑔:  

 total head (H): 
𝑝

𝜌𝑔
+ 𝑧 +

𝑉2

2𝑔
  (8) 

The total head is the energy per unit weight (𝑚𝑔𝐻 divided by 𝑚𝑔) and is convenient because 

it is easily determined from still-water levels (𝐻 = 𝑧 when 𝑝 = 𝑉 = 0). 

 

If there is no vertical acceleration then the pressure at any streamwise location is hydrostatic: 

 𝑝 + 𝜌𝑔𝑧 is constant along a vertical line (9) 

or, dividing by 𝜌𝑔, 

 
𝑝

𝜌𝑔
+ 𝑧 is constant along a vertical line (10) 

 

But 𝑝 = 0 at the free surface. Hence, 

𝑝

𝜌𝑔
+ 𝑧 = (

𝑝

𝜌𝑔
+ 𝑧)

surface

    = 𝑧𝑠 

So, if the pressure is hydrostatic, the sum of pressure and elevation heads is just the level of the 

free surface. 

 

Hence, in regions of uniform or gradually-varied flow the total head is given by2 

 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
 (11) 

The first term is a measure of potential energy; the second term (the dynamic head) is a measure 

of kinetic energy. 

 
2 In advanced analysis it is necessary to precede the kinetic energy term 𝑉2/2𝑔 by a corrective multiplicative 

factor α (the kinetic energy correction coefficient) to account for the fact that the velocity profile is not uniform, 

and hence the mean squared velocity < 𝑈2 > is not equal to the square of the mean velocity < 𝑈 >2. For fully 

turbulent flow, α is typically about 1.02; i.e. very close to 1. Hence, this factor will be ignored here. 

h
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1.4 Froude Number 
 

In Hydraulics 2 we defined a Froude number in general as Fr = 𝑉 √𝑔𝐿⁄ , where 𝑉 and 𝐿 are 

“representative” velocity and length scales. In open-channel flow we invariably take 𝑉 to be 

the average velocity over a cross section and 𝐿 to be the average depth; i.e. 

 Fr ≡
𝑉

√𝑔ℎ̅
 (12) 

 

For a wide or rectangular channel ℎ̅ is simply equal to ℎ. For a non-

rectangular channel ℎ̅ is the mean depth: the depth of a rectangle with 

the same cross-sectional area and surface width: 

 ℎ̅ =
𝐴

𝑏𝑠
 (13) 

where 𝐴 is the water cross-section and 𝑏𝑠 is the surface width. 

 

Where Fr < 1 the flow is said to be subcritical or tranquil. 

Where Fr > 1 the flow is said to be supercritical or rapid. 

Reasons for the term “critical” and this definition of ℎ̅ will be explained in Section 2. Note that 

Fr is not constant, but changes along the channel as the depth changes. 

 

 

Interpretations of the Froude Number 

 

(1) (Square root of) the ratio of inertial forces (i.e. mass  acceleration) to gravitational forces. 

 

For mass 𝑚, velocity 𝑉, lengthscale ℎ (and hence timescale ℎ/𝑉): 

mass × acceleration  ~ 𝑚 ×
𝑉

ℎ/𝑉
    = 𝑚

𝑉2

ℎ
 

gravitational force  ~ 𝑚𝑔 

Hence, 

inertial force

gravitational force
    ~    

𝑉2

𝑔ℎ
    = Fr2 

 

(2) Ratio of water velocity (𝑉) to long-wave speed (√𝑔ℎ) – see Section 4. 

This is important because information can only propagate upstream if the water velocity is less 

than the wave speed; i.e. if Fr < 1. 

 

 Subcritical flow  Fr < 1  downstream control 

 Supercritical flow  Fr > 1  upstream control 

 

Where Fr = 1 the flow is said to be critical.  
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(3) The minimum specific energy (see Section 2) for a given discharge occurs at the critical 

depth where Fr = 1, and separates regions of deep, slow, subcritical flow (Fr < 1) and shallow, 

fast, supercritical flow (Fr > 1).  

 

The flow may pass through such a region at a broad-crested weir, venturi flume or free overfall, 

providing a control point where the relationship between fluid depth and discharge is known. 

 

 

Example. 

The discharge in a rectangular channel of width 6 m with Manning’s 𝑛 = 0.012 m−1 3⁄  s is 

24 m3 s–1. If the streamwise slope is 1 in 200 find: 

(a) the normal depth; 

(b) the Froude number at the normal depth; 

(c) the critical depth. 

 

State whether the normal flow is subcritical or supercritical. 
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Appendix: Typical values of Manning’s 𝒏 (from White, 2011) 
   

𝑛 (m−1 3⁄  s) 

Artificial lined channels  

   Glass 0.01 

   Brass 0.011 

   Steel, smooth 0.012 

      painted 0.014 

      riveted 0.015 

   Cast iron 0.013 

   Concrete, finished 0.012 

      unfinished 0.014 

   Planed wood 0.012 

   Clay tile 0.014 

   Brickwork 0.015 

   Asphalt 0.016 

   Corrugated metal 0.022 

   Rubble masonry 0.025 

Excavated earth channels  

   Clean 0.022 

   Gravelly 0.025 

   Weedy 0.03 

   Stony, cobbles 0.035 

Natural channels  

   Clean and straight 0.03 

   Sluggish, deep pools 0.04 

   Major rivers 0.035 

Floodplains 

   Pasture, farmland 0.035 

   Light brush 0.05 

   Heavy brush 0.075 

   Trees 0.15 

 


