
 

Hydraulics 3 Answers (Open-Channel Flow Examples) -1 Dr David Apsley 

ANSWERS (OPEN-CHANNEL FLOW EXAMPLES) AUTUMN 2024 
 

Q1. 

𝑏 = 5 m 

𝑄 = 20 m3 s−1 

𝑛 = 0.02 m−1 3⁄  s 

 

Discharge: 

𝑄 = 𝑉𝐴 

where, in normal flow: 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

 

Hence, 

𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3
𝑆1/2 

or, rearranging as an iterative formula for h: 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 (*) 

 

 

(a) When 𝑆 = 0.001, substitution of numerical values in (*) yields an iterative formula 

ℎ = 1.745(1 + 0.4ℎ)2/5 

Iteration (from, e.g., ℎ = 1.745) gives 

ℎ = 2.257 m 

 

Then, 

𝑉 =
𝑄

𝐴
    =

𝑄

𝑏ℎ
    =

20

5 × 2.257
    = 1.772 m s−1 

Fr =
𝑉

√𝑔ℎ
    =

1.772

√9.81 × 2.257
    = 0.3766 

 

Answer: normal depth = 2.26 m;   Froude number = 0.377 

 

 

(b) When 𝑆 = 0.01, substitution of numerical values in (*) yields an iterative formula 

ℎ = 0.8747(1 + 0.4ℎ)2/5 

Iteration (from, e.g., ℎ = 0.8747) gives 

ℎ = 1.001 m 
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Then, 

𝑉 =
𝑄

𝐴
    =

𝑄

𝑏ℎ
    =

20

5 × 1.001
    = 3.996 m s−1 

Fr =
𝑉

√𝑔ℎ
    =

3.996

√9.81 × 1.001
    = 1.275 

 

Answer: normal depth = 1.00 m;   Froude number = 1.28 

 

 

(c) For a rectangular channel the critical depth is 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

 

where the discharge per unit width is 

𝑞 =
𝑄

𝑏
    =

20

5
    = 4 m2 s−1 

Hence, 

ℎ𝑐 = (
42

9.81
)

1/3

    = 1.177 m 

 

Answer: 1.18 m 

 

 

(d) The critical slope is that slope 𝑆 at which the normal depth equals the critical depth ℎ𝑐. 

Here, 

𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3 
𝑆1/2 

with ℎ = ℎ𝑐 = 1.177 m. 

 

Rearranging for 𝑆: 

𝑆 = (
𝑛𝑄

𝑏
)

2

×
(1 + 2ℎ/𝑏)4/3

ℎ10/3

   = (
0.02 × 20

5
)

2

×
(1 + 2 × 1.177/5)4/3

1.17710/3 
    = 6.218 × 10−3

 

 

Answer: 0.00622 
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Q2. 

(a) 

𝑛 = 0.012 m−1 3⁄  s 

𝑄 = 2.6 m3 s−1 

𝑆 = 0.0004 

 

Let the bottom width be 𝑏 (= 0.6 m) and the reciprocal of the side slope be 𝑚. The half-width 

changes from 0.3 m to 1.5 m over a depth of 1.6 m. Hence,  

𝑚 =
1.2

1.6
    = 0.75 

 

Area and wetted perimeter: 

𝐴 =
1

2
(𝑏    + 𝑏 + 2 × 𝑚ℎ) × ℎ    = ℎ𝑏(1 + 0.75ℎ/𝑏) 

𝑃 = 𝑏 + 2√1 + 𝑚2ℎ    = 𝑏(1 + 2.5ℎ/𝑏 ) 

Hydraulic radius: 

𝑅ℎ ≡
𝐴

𝑃
= ℎ (

1 + 0.75ℎ/𝑏

1 + 2.5ℎ/𝑏
) 

 

In normal flow, 

𝑄 = 𝑉𝐴    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2𝐴 

Hence, 

 𝑄 =
1

𝑛
ℎ2/3 (

1 + 0.75ℎ/𝑏

1 + 2.5ℎ/𝑏
)

2/3

𝑆1/2ℎ𝑏(1 + 0.75ℎ/𝑏) 

 
𝑛𝑄

𝑏√𝑆
= ℎ5/3

(1 + 0.75ℎ/𝑏)5/3

(1 + 2.5ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5 (1 + 2.5ℎ/𝑏)2/5

1 + 0.75ℎ/𝑏
 

 

Here, with lengths in metres, 

ℎ = 1.774
(1 + 4.167ℎ)2/5

1 + 1.25ℎ
 

Iteration (from, e.g., ℎ = 1.774) gives 

ℎ𝑛 = 1.393 m 

 

Answer: 1.39 m 

 

 

(b) Froude number Fr = 𝑉/√𝑔ℎ̅. Need velocity 𝑉 (= 𝑄 𝐴⁄ ) and mean depth ℎ̅ (= 𝐴 𝑏𝑠⁄ ). 
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𝐴 = ℎ𝑏(1 + 0.75ℎ/𝑏) 

𝑏𝑠 = 𝑏 + 2𝑚ℎ    = 𝑏 + 1.5ℎ 

 

At depth ℎ = 1.393 m, 

𝐴 = ℎ𝑏(1 + 0.75ℎ/𝑏)     = 2.291 m2 

𝑏𝑠 = 𝑏 + 1.5ℎ    = 2.690 m 

Then, 

𝑉 =
𝑄

𝐴
    =

2.6

2.291
    = 1.135 m s−1 

ℎ̅ =
𝐴

𝑏𝑠
    =

2.291

2.690
    = 0.8517 m 

Froude number: 

Fr =
𝑉

√𝑔ℎ̅
    = 0.3927 

 

Answer: 0.393 

 

 

(c) At the critical depth, Fr = 1. But 

 Fr2 =
𝑉2

𝑔ℎ̅
=

𝑄2/𝐴2 

𝑔𝐴/𝑏𝑠
     =

𝑄2𝑏𝑠

𝑔𝐴3
 

 
𝑄2(𝑏 + 1.5ℎ)

𝑔ℎ3𝑏3(1 + 0.75ℎ/𝑏)3
= 1 

 
𝑄2(1 + 1.5ℎ/𝑏)

𝑔𝑏2(1 + 0.75ℎ/𝑏)3
= ℎ3 

 ℎ = (
𝑄2

𝑔𝑏2
)

1/3
(1 + 1.5ℎ/𝑏)1/3

1 + 0.75ℎ/𝑏
 

Here, with lengths in metres, 

ℎ = 1.242
(1 + 2.5ℎ)1/3

1 + 1.25ℎ
 

Iteration (from, e.g., ℎ = 1.242) gives 

ℎ𝑐 = 0.8735 m 

 

Answer: 0.874 m 

 

 

(d) The critical slope is that slope 𝑆 at which the normal depth equals the critical depth ℎ𝑐. 
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From the earlier working for the normal depth: 

𝑛𝑄

𝑏√𝑆
= ℎ5/3

(1 + 0.75ℎ/𝑏)5/3

(1 + 2.5ℎ/𝑏)2/3
 

Making S the subject: 

𝑆 = (
𝑛𝑄

𝑏
)

2 1

ℎ10/3

(1 + 2.5ℎ/𝑏)4/3

(1 + 0.75ℎ/𝑏)10/3
 

Putting ℎ = ℎ𝑐 = 0.8735 m gives 

𝑆 = 2.805 × 10−3 

 

Answer: 0.00281 
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Q3. 

(a) 

𝑅 = 0.7 m 

𝑆 = 0.02 

𝑄 = 0.8 m3 s−1 

𝑛 = 0.013 m−1 3⁄  s 

 

The simplest indicator of fill is the semi-angle 𝜃, which is related to 

the depth by 

ℎ = 𝑅 − 𝑅 cos 𝜃 

 

Area (found by subtracting a triangle from a sector) and wetted perimeter are given by 

𝐴 = 2 × [
1

2
𝑅2𝜃 −

1

2
(𝑅 sin 𝜃)(𝑅 cos 𝜃)]     = 𝑅2(𝜃 − sin 𝜃 cos 𝜃) 

𝑃 = 2𝑅𝜃 

where 𝜃 is in radians, 0 ≤ 𝜃 ≤ π. 

 

A series of trial solutions of 𝜃 is used to target a flow rate of 𝑄 = 0.8 m3 s−1. The sequence of 

calculations is: 

𝑅ℎ ≡
𝐴

𝑃
 

𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 

𝑄 = 𝑉𝐴 

The working is set out in the table below. All values are in metre-second units. Trial values of 

𝜃 after the first two are by interpolation/extrapolation. Obviously, the Solver tool in Excel, or 

similar, could be used to expedite this. 

 

𝜃 𝐴 

= 0.49(𝜃 − sin 𝜃 cos 𝜃) 

𝑃 

= 1.4𝜃 

𝑅ℎ 

= 𝐴/𝑃 

𝑉 

= 10.879𝑅ℎ
2/3

 

𝑄 

= 𝑉𝐴 

1 0.2672 1.400 0.1909 3.607 0.9638 

0.5 0.0388 0.700 0.0554 1.554 0.0585 

0.9095 0.2082 1.273 0.1636 3.254 0.6775 

0.9482 0.2325 1.327 0.1752 3.406 0.7919 

0.9509 0.2342 1.331 0.1760 3.417 0.8003 

 

𝜃 = 0.9509 radians gives 

ℎ = 0.7 − 0.7 cos 0.9509     = 0.2933 m 

 

Answer: 0.293 m 

  

 R

h



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -7 Dr David Apsley 

(b)  

For the Froude number we need the mean depth, ℎ̅, and for that we require first a formula for 

the water-surface width, 𝑏𝑠 . Here, 

𝑏𝑠 = 2𝑅 sin 𝜃     = 2 × 0.7 × sin 0.9509     = 1.140 m 

The mean depth is then 

ℎ̅ =
𝐴

𝑏𝑠
    =

0.2342

1.140
    = 0.2054 m 

and the Froude number is 

Fr =
𝑉

√𝑔ℎ̅
    =

3.417

√9.81 × 0.2054
    = 2.407 

 

Answer: 2.41 

 

 

(c) For the critical depth we use a set of trial values of 𝜃 to get Fr = 1. 

 
𝑉

√𝑔ℎ̅
= 1 

 
𝑉2

𝑔ℎ̅
= 1 

 
(𝑄/𝐴)2

𝑔𝐴/𝑏𝑠
= 1 

 
𝑄2

𝑔

𝑏𝑠

𝐴3
= 1 

 

Substituting expressions for area 𝐴 and width of water surface 𝑏𝑠: 

𝑄2

𝑔

2𝑅 sin 𝜃

𝑅6(𝜃 − sin 𝜃 cos 𝜃)3
= 1 

Substituting numerical values (𝑄 = 0.8 m3 s−1, 𝑅 = 0.7 m): 

0.7763 ×
sin 𝜃

(𝜃 − sin 𝜃 cos 𝜃)3
= 1 

 

Try a sequence of values of 𝜃 and work out the LHS: 

𝜃 𝑓(𝜃) 

1 4.028 

1.5 0.2651 

1.2 1.129 

1.22 1.009 

1.222 0.998 

 

𝜃 = 1.222 radians gives 
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ℎ = 0.7 − 0.7 cos(1.222 rad)     = 0.4608 m 

 

Answer: 0.461 m 
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Q4. 

𝑄 = 1.5 m3 s−1 

𝑛 = 0.02 m−1 3⁄  s 

𝑆 = 0.001 

 

Preliminary 

 

To avoid having to consider alternative formulae for depths above and below the vee a quick 

calculation of flow rate and Froude number with water depth precisely equal to the top of the 

vee (0.8 m) will tell you whether the normal depth (part (a)) and critical depth (part (c)) lie 

above or below this level. 

 

For part (a) calculate the flow rate in normal flow at depth h = 0.8 m (sloping side 1.6 m and 

surface width 2 × 0.8√3): 

𝐴 =
1

2
× 0.8 × 1.6√3     = 1.109 m2 

𝑃 = 2 × 1.6    = 3.2 m 

𝑅ℎ =
𝐴

𝑃
    = 0.3466 m 

𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2     =

1

0.02
× 0.34662/3 × √0.001     = 0.7802 m s−1 

𝑄 = 𝑉𝐴    = 0.7802 × 1.109    = 0.8652 m3 s−1 

This is less than the required 1.5 m3 s–1. Hence, the normal depth is above the vee. 

 

For part (c) calculate the Froude number for the given flow rate and depth 0.8 m: 

 𝑉 =
𝑄

𝐴
    =

1.5

1.109
    = 1.353 m s−1 (note: not normal flow) 

ℎ̅ =
𝐴

𝑏𝑠
    =

0.64√3

1.6√3
    = 0.4 m 

Fr =
𝑉

√𝑔ℎ̅
    =

1.353

√9.81 × 0.4
    = 0.6830 

This is subcritical (“deep and slow”). Hence, the critical depth is below the top of the vee. 

 

 

(a) From the preliminary calculation above, the normal depth ℎ is greater than 0.8 m: 

𝐴 = 1.109 + (ℎ − 0.8) × 1.6√3     = 2.771ℎ − 1.108 

𝑃 = 3.2 + 2(ℎ − 0.8)     = 1.6 + 2ℎ 

 𝑄 = 𝑉𝐴 where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝑅ℎ =

𝐴

𝑃
 

 𝑄 =
𝑆1/2

𝑛

𝐴5/3

𝑃2/3
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 𝑄 = 1.581
(2.771ℎ − 1.108)5/3

(1.6 + 2ℎ)2/3
 (*) 

 

There are many ways of rearranging this for iteration; however, in this case it is straightforward 

to solve by repeated trial of ℎ, aiming for 𝑄 = 1.5 m3 s−1. Trial values of ℎ after the first two 

are guided by interpolation. 

 

ℎ (m) 𝑄 (m3 s−1) 

0.800 0.865 

1.000 1.571 

0.980 1.496 

0.981 1.500 

 

Answer: 0.981 m 

 

 

(b) When ℎ = 0.981 m, 

𝐴 = 2.771ℎ − 1.108    = 1.610 m2 

𝑉 =
𝑄

𝐴
    =

1.5

1.610
    = 0.9317 m s−1 

𝑏𝑠 = 1.6 × √3  m 

ℎ̅ =
𝐴

𝑏𝑠
    =

1.610

1.6√3
    = 0.5810 m 

Fr =
𝑉

√𝑔ℎ̅
    =

0.9317

√9.81 × 0.5810
    = 0.3903 

 

Answer: 0.390 

 

 

(c) The critical depth is defined as that for which Fr = 1 at the given flow rate. 

Fr ≡
𝑉

√𝑔ℎ̅
    =

𝑄/𝐴

√𝑔𝐴/𝑏𝑠

 

Because of the square root it is easier to work with Fr2: 

Fr2 =
𝑄2

𝑔

𝑏𝑠

𝐴3
 

From the preliminary calculations at the top, we know that the critical depth lies inside the vee. 

By geometry: 

𝑏𝑠 = 2 × ℎ√3 

𝐴 =
1

2
× ℎ × 2ℎ√3     = √3ℎ2 
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 Fr2 =
1. 52 × 2√3ℎ

9.81 × 3√3ℎ6
    =

0.1529

ℎ5
 

 

Solving for ℎ when Fr2 = 1, 

ℎ = 0.15291/5     = 0.6869 m 

 

Answer: 0.687 m 
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Q5. 

(a) From the channel geometry: 

𝐴 =
1

2
π𝑅2     =

1

2
π × 0. 62     = 0.5655 m2 

𝑃 = π𝑅    = 1.885 m   

𝑅ℎ ≡
𝐴

𝑃
    =

1

2
𝑅    = 0.3 m 

 

Using Manning’s equation: 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2     =

1

𝑛
× 0. 32/3 × √0.02     =

0.06338

𝑛
 

 𝑄 = 𝑉𝐴    =
0.06338

𝑛
× 0.5655    =

0.03584

𝑛
 

But 𝑄 = 2 m3 s−1; hence, 

 
0.03584

𝑛
= 2 

 𝑛 = 0.01792 m−1/3 s 

 

Alternative method: 

From the flow rate: 

𝑉 =
𝑄

𝐴
    =

2

0.5655
    = 3.537 m s−1 

Equating the two values of 𝑉: 

 
0.06338

𝑛
= 3.537 m s−1 

 𝑛 = 0.01792 m−1/3 s 

 

Answer: 0.0179 m−1 3⁄  s 

 

 

(b) The cross-sectional area and wetted perimeter are augmented by the section with straight 

sides. Write expressions for 𝐴 and 𝑃 in terms of additional depth 𝑥 (so that ℎ = 0.6 + 𝑥) and 

solve for 𝑥 to get a flow rate of 𝑄 = 3 m3 s−1. 

𝐴 = 0.5655 + 1.2𝑥 

𝑃 = 1.885 + 2𝑥 

The remaining formulae, in sequence, are 

𝑅ℎ ≡
𝐴

𝑃
 

𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2     = 7.892𝑅ℎ

2/3
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𝑄 = 𝑉𝐴 

 

Vary 𝑥 by repeated trial to find the value at which 𝑄 = 3 m3 s−1. (Successive trials after the 

first two are guided by linear interpolation.) 

 

𝑥 (m) 𝐴 (m2) 𝑃 (m) 𝑅ℎ (m) 𝑉 (m s−1) 𝑄 (m3 s−1) 

0.0 0.5655 1.885 0.3000 3.537 2.000 

1.0 1.766 3.885 0.4546 4.666 8.240 

0.1603 0.7579 2.206 0.3436 3.872 2.935 

0.1714 0.7712 2.228 0.3461 3.890 3.000 

 

The total depth is 

0.6 + 0.1714 = 0.7714  m 

 

Answer: 0.771 m 

  

 

(c) Using area and velocity from the solution line of the table above, the mean depth is 

ℎ̅ =
𝐴

𝑏𝑠
    =

0.7712

1.2
    = 0.6427 m 

and the Froude number is 

Fr ≡
𝑉

√𝑔ℎ̅
    =

3.890

√9.81 × 0.6427
    = 1.549 

 

Answer: 1.55 

 

 

(d) The normal flow at this discharge is supercritical (Fr > 1); hence, the channel is 

hydraulically steep. 
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Q6. 

𝑏 = 2.5 m 

𝑄 = 25 m3 s−1 

𝑆 = 0.003 

𝐶 = 45 m1 2⁄  s−1 

 

Normal Depth 

From the geometry, the area and wetted perimeter are given by: 

𝐴 =
1

2
(𝑏    + 𝑏 + 2 × ℎ√3) × ℎ    = ℎ𝑏(1 + √3 ℎ/𝑏) 

𝑃 = 𝑏 + 2 × 2ℎ    = 𝑏(1 + 4ℎ/𝑏) 

Hydraulic radius: 

𝑅ℎ ≡
𝐴

𝑃
= ℎ (

1 + √3 ℎ/𝑏

1 + 4ℎ/𝑏
) 

 

In normal flow, 

𝑄 = 𝑉𝐴    = 𝐶√𝑅ℎ𝑆 𝐴 

Hence, 

 𝑄 = 𝐶ℎ1/2 (
1 + √3 ℎ/𝑏

1 + 4ℎ/𝑏
)

1/2

𝑆1/2ℎ𝑏(1 + √3 ℎ/𝑏) 

 
𝑄

𝑏𝐶√𝑆
= ℎ3/2

(1 + √3 ℎ/𝑏)3/2

(1 + 4ℎ/𝑏)1/2
 

 ℎ = (
𝑄

𝑏𝐶√𝑆
)

2/3 (1 + 4ℎ/𝑏)1/3

1 + √3 ℎ/𝑏
 

 

Here, with lengths in metres, 

ℎ = 2.544
(1 + 1.6ℎ)1/3

1 + 0.6928ℎ
 

Iteration (from, e.g., ℎ = 2.544) gives 

ℎ𝑛 = 1.784 m 

 

 

Critical Depth 

Froude number Fr = 𝑉/√𝑔ℎ̅. Need velocity 𝑉 (= 𝑄/𝐴) and mean depth ℎ̅ (= 𝐴/𝑏𝑠):

 𝐴 = ℎ𝑏(1 + √3 ℎ/𝑏)       (as above) 

𝑏𝑠 = 𝑏 + 2√3 ℎ 

 

At the critical depth, Fr = 1. But 
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 Fr2 =
𝑉2

𝑔ℎ̅
=

𝑄2/𝐴2

𝑔𝐴/𝑏𝑠
     =

𝑄2𝑏𝑠

𝑔𝐴3
 

 
𝑄2(𝑏 + 2√3 ℎ)

𝑔ℎ3𝑏3(1 + √3 ℎ/𝑏)3
= 1 

 
𝑄2(1 + 2√3 ℎ/𝑏)

𝑔𝑏2(1 + √3 ℎ/𝑏)3
= ℎ3 

 ℎ = (
𝑄2

𝑔𝑏2
)

1/3
(1 + 2√3 ℎ/𝑏)1/3

1 + √3 ℎ/𝑏
 

Here, with lengths in metres, 

ℎ = 2.168
(1 + 1.386ℎ)1/3

1 + 0.6928ℎ
 

Iteration (from, e.g., ℎ = 2.168) gives 

ℎ𝑐 = 1.536 m 

 

Answer: normal depth = 1.78 m;   critical depth = 1.54 m 
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Q7. 

𝑆 = 2 × 10−4 

𝑞 = 1.5 m2 s−1 

𝑛 = 0.015 m−1 3⁄  s 

 

Approach Flow (normal) 

 𝑄 = 𝑉𝐴    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2𝐴, where 𝑅ℎ = ℎ (wide channel) 

 

Per unit width (𝐴 = ℎ): 

𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

Inverting for ℎ: 

ℎ = (
𝑛𝑞

√𝑆
)

3/5

 

Substituting numerical values: 

ℎ𝑛 = (
0.015 × 1.5

√2 × 10−4
)

3/5

    = 1.321 m 

𝑉𝑛 =
𝑞

ℎ𝑛
    =

1.5

1.321
    = 1.136 m s−1 

The approach-flow specific energy is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = 1.321 +

1.1362

2 × 9.81
    = 1.387 m 

 

Critical Conditions 

Critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
1. 52

9.81
)

1/3

    = 0.6121 m 

 

Critical specific energy: 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
× 0.6121    = 0.9182 m 

 

 

(a) The total head required for critical conditions at the weir is 

𝐻𝑐 = 𝑧weir + 𝐸𝑐     = 0.2 + 0.9182    = 1.1182 m 

But this is less than the available head from the normal flow (𝐻𝑎 = 𝐸𝑎 = 1.387 m). Hence, the 

flow does not go critical over the weir and the total head in the vicinity of the weir is that from 

the approach flow; i.e. 𝐻 = 1.387 m. 

 

Upstream and downstream of the weir we have normal depth; i.e. 
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ℎ = 1.321 m 

 

Over the weir itself the specific energy is 

𝐸 = 𝐻 − 𝑧weir     = 1.387 − 0.2    = 1.187 m 

and the flow is subcritical. 

 

Now, 

𝐸 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
 

This can be arranged (for a subcritical solution) as the iterative formula 

ℎ = 𝐸 −
𝑞2

2𝑔ℎ2
 

Substituting numerical values, 

ℎ = 1.187 −
0.1147

ℎ2
 

Iteration (from, e.g., ℎ = 1.187) gives 

ℎ = 1.091 m 

 

Answer: depths upstream, over, downstream of the weir: 1.32 m, 1.09 m, 1.32 m 

 

 

(b) The total head required for critical conditions at the weir is 

𝐻𝑐 = 𝑧weir + 𝐸𝑐     = 0.5 + 0.9182    = 1.418 m 

This is greater than the available head from the approach flow (𝐻𝑎 = 𝐸𝑎 = 1.387 m). Hence, 

the flow does go critical over the weir, the flow backs up and the total head in the vicinity of 

the weir is the critical head; i.e. 𝐻 = 1.418 m. 

 

Over the weir the flow is critical: 

ℎ = ℎ𝑐 = 0.6121 m 

 

Just upstream or downstream of the weir (where 𝑧𝑏 = 0): 

𝐻 = 𝐸    = ℎ +
𝑞2

2𝑔ℎ2
 

 

On the upstream side we will have subcritical flow. The first term on the RHS dominates so 

rearrange as 

ℎ = 𝐻 −
𝑞2

2𝑔ℎ2
 

Substituting numerical values, 
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ℎ = 1.418 −
0.1147

ℎ2
 

Iteration (from, e.g., ℎ = 1.418) gives 

ℎ = 1.356 m 

 

On the downstream side we will have supercritical flow. The second term on the RHS 

dominates so rearrange as 

ℎ =
𝑞

√2𝑔(𝐻 − ℎ)
 

Substituting numerical values, 

ℎ =
1.5

√19.62(1.418 − ℎ)
 

Iteration (from, e.g., ℎ = 0) gives 

ℎ = 0.3237 m 

 

Answer: depths upstream, over and downstream of the weir: 1.36 m, 0.612 m, 0.324 m 

 

 

(c) For the flow just to go critical, the total head over the weir must be precisely equal to the 

head in the approach flow. Hence, measuring bed level relative to the undisturbed channel at 

the position of the weir, 

𝐻𝑐 = 𝐻𝑎 

or 

𝑧weir + 𝐸𝑐 = 𝐻𝑎 

 

Hence, 

𝑧weir = 𝐻𝑎 − 𝐸𝑐     = 1.387 − 0.9182    = 0.4688 m 

 

Answer: 0.469 m 
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Q8. 

𝑄 = 9 m3 s−1 

𝑆 = 0.001 

𝑛 = 0.024 m−1 3⁄  s 

𝑏 = 4 m 

 

(a) 

Normal Depth 

𝑄 = 𝑉𝐴 

where 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 1.379(1 + 0.5ℎ)2/5 

Iteration (from, e.g., ℎ = 1.379) gives 

ℎ𝑛 = 1.779 m 

 

 

Critical Depth 

 

Flow rate per unit width: 

𝑞 =
𝑄

𝑏
    =

9

4
    = 2.25 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
2.252

9.81
)

1/3

    = 0.8021 m 

 

Answer: normal depth = 1.78 m;  critical depth = 0.802 m 

 

 

(b) The flow will just go critical if the total head over the weir assuming critical conditions is 

exactly equal to the available head in the approach flow (here, normal flow, since the channel 

is “long”). 
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The specific energy in the approach flow is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

   = 1.779 +
92

2 × 9.81 × 42 × 1.7792
   = 1.861 m 

Hence, relative to the bed in the vicinity of the weir: 

𝐻𝑎 = 𝐸𝑎     = 1.861 m 

 

If the flow just goes critical: 

 𝐻𝑐 = 𝐻𝑎 

 𝑧weir +
3

2
ℎ𝑐 = 𝐻𝑎 

 𝑧weir = 𝐻𝑎 −
3

2
ℎ𝑐     = 1.861 −

3

2
× 0.8021    = 0.6579 m 

 

Answer: 0.658 m 

 

 

(c) The flow will be on the verge of overtopping if the highest water surface (which occurs just 

upstream of the weir) equals that of the sides of the channel. This depth will set the total head, 

which will be the same as the critical head over the weir at that particular weir height. 

 

Total head when ℎ = 2.5 m is: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
    = 2.5 +

92

2 × 9.81 × 42 × 2. 52
    = 2.541 m 

Since this is the same as the critical head over the weir: 

 𝑧weir +
3

2
ℎ𝑐 = 2.541 

 𝑧weir = 2.541 −
3

2
ℎ𝑐     = 2.541 − 1.5 × 0.8021    = 1.338 m 

 

Answer: 1.34 m 
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Q9. 

𝑆 = 0.001 

𝑞 = 3 m2 s−1 

𝑛 = 0.015 m−1 3⁄  s 

 

Normal Depth 

 𝑄 = 𝑉𝐴    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2𝐴, where 𝑅ℎ = ℎ (wide channel) 

 

Per unit width (𝐴 = ℎ): 

𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

Inverting for ℎ: 

ℎ = (
𝑛𝑞

√𝑆
)

3/5

 

Substituting numerical values: 

ℎ𝑛 = (
0.015 × 3

√0.001
)

3/5

    = 1.236 m 

 

In the depression specific energy must increase and there would be no hydraulic transition in 

either subcritical or supercritical flow. The channel is “long”, so the approach flow is normal. 

Hence, the depths at stations A and E are normal. 

 

The total head can be determined from the conditions in the approach flow: 

𝐻 = 𝐻𝑎    = 𝑧𝑠𝑎 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑞2

2𝑔ℎ𝑛
2

  = 1.236 +
32

2 × 9.81 × 1.2362
    = 1.536 m 

The flow at C has the same total head, but we need to know whether it is subcritical or 

supercritical. Since there is no hydraulic transition this depends on whether the normal flow is 

subcritical or supercritical. We could determine this by either finding the Froude number or 

comparing with the critical depth. Since we need the latter in part (b) we’ll find and use it now: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
32

9.81
)

1/3

    = 0.9717 m 

Since ℎ𝑛 > ℎ𝑐, the normal depth, and hence the flow throughout, is subcritical. The depth at C 

is thus the subcritical depth in the depression with the same total head. At C the water surface 

height is 𝑧𝑠 = −0.3 + ℎ, so that 

𝐻 = −0.3 + ℎ +
𝑞2

2𝑔ℎ2
 

For the deep, subcritical solution, rearrange for iteration as 

ℎ = 1.836 −
0.4587

ℎ2
 

Iteration from, e.g., ℎ = 1.836 gives  
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ℎ = 1.672 m 

 

Answer: depths at A, C, E are, respectively, 1.24 m, 1.67 m, 1.24 m 

 

 

(b) If a weir is installed then the minimum head required to surmount it is the critical head 

𝐻𝑐 = −0.3 + 0.7 +
3

2
ℎ𝑐     = 1.858 m 

Note that the height datum must be the same as that of 𝐻𝑎. The critical head 𝐻𝑐 exceeds the 

available head (𝐻𝑎 = 1.536 m), so the flow must back up, a hydraulic transition takes place at 

the weir and the head throughout is 𝐻 = 𝐻𝑐 = 1.858 m. 

 

At all stations, 

 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
 

 𝐻 = 𝑧𝑏 + ℎ +
𝑞2

2𝑔ℎ2
 

 1.858 − 𝑧𝑏 = ℎ +
0.4587

ℎ2
 

 

Station A: subcritical, 𝑧𝑏 = 0: 

ℎ = 1.858 −
0.4587

ℎ2
          →           ℎ = 1.699 m 

Station B: subcritical, 𝑧𝑏 = −0.3: 

ℎ = 2.158 −
0.4587

ℎ2
          →           ℎ = 2.049 m 

Station C: critical 

ℎ = ℎ𝑐     = 0.9717 m 

Station D: supercritical, 𝑧𝑏 = −0.3: 

ℎ = √
0.4587

2.158 − ℎ
          →           ℎ = 0.5310 m 

Station E: supercritical, 𝑧𝑏 = 0: 

ℎ = √
0.4587

1.858 − ℎ
          →           ℎ = 0.6051 m 

 

Answer: depths at stations A, B, C, D, E are 1.70 m, 2.05 m, 0.972 m, 0.531 m, 0.605 m  
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Q10. 

𝑆0 = 2 × 10−5 

𝑛 = 0.01 m−1 3⁄  s 

𝑞 = 0.5 m2 s−1 

𝑧weir = 0.7 m 

 

 

(a) Discharge (per unit width) in normal flow: 

 𝑞 = 𝑉ℎ    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2ℎ, where 𝑅ℎ = ℎ (wide channel) 

 
𝑛𝑞

√𝑆
= ℎ5/3 (*) 

 

For the given slope this gives a normal depth 

ℎ𝑛 = (
𝑛𝑞

√𝑆0

)

3/5

    = (
0.01 × 0.5

√2 × 10−5
)

3/5

    = 1.069 m 

 

Answer: 1.07 m 

 

 

(b) At the normal depth the velocity is 

𝑉𝑛 =
𝑞

ℎ𝑛
    =

0.5

1.069
    = 0.4677 m s−1 

and the approach-flow specific energy is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = 1.069 +

0.46772

2 × 9.81
    = 1.080 m 

 

The critical depth and critical specific energy are: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0. 52

9.81
)

1/3

    = 0.2943 m 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
× 0.2943    = 0.4415 m 

Under critical conditions the total head over the weir is then 

𝐻𝑐 = 𝑧weir + 𝐸𝑐     = 0.7 + 0.4415    = 1.141 m 

This is the minimum possible head for this flow rate over the weir and is greater than the head 

available in the approach flow (𝐻𝑎 = 𝐸𝑎 = 1.080 m). Hence the flow backs up, the water level 

rises just upstream of the weir and the flow over the top is critical. The total head in the vicinity 

of the weir is determined by critical conditions: 𝐻 = 1.141 m. 

 

Answer: 0.294 m 
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(c) Assuming that the flow in the vicinity of the weir is unaffected by the hydraulic jump the 

flow goes smoothly supercritical on the downstream side, with total head 𝐻 = 1.141 m and 

discharge per metre width 𝑞 = 0.5 m2 s−1. Downstream of the weir (where 𝑧𝑏 = 0): 

𝐻 = ℎ +
𝑞2

2𝑔ℎ2
 

Rearrange for an iterative formula for the supercritical solution: 

ℎ =
𝑞

√2𝑔(𝐻 − ℎ)
 

Substituting numerical values: 

ℎ =
0.5

√19.62(1.141 − ℎ)
 

Iteration (from, e.g., ℎ = 0) gives 

ℎ = 0.1112 m 

 

Answer: 0.111 m 

 

 

(d) Denote conditions upstream and downstream of the hydraulic jump by subscripts A and B 

respectively. From the downstream conditions (assuming normal flow since the channel is 

described as “long”): 

ℎ𝐵 = 1.069  m 

Fr𝐵 =
𝑉𝐵

√𝑔ℎ𝐵

    =
𝑞

√𝑔ℎ𝐵
3

    =
0.5

√9.81 × 1.0693
    = 0.1444 

Hence, from the hydraulic-jump relation for the sequent depths: 

ℎ𝐴 =
ℎ𝐵

2
(−1 + √1 + 8𝐹𝑟𝐵

2)     =
1.069

2
(−1 + √1 + 8 × 0.14442)     = 0.04287 m 

 

Answer: 0.043 m 

 

 

(e) Unless subject to control, the supercritical flow at the downstream end of the weir would 

gradually increase in depth until a hydraulic jump occurred (see the lectures on GVF). Since 

the sequent depth upstream of the hydraulic jump is less than the supercritical depth 

downstream of the weir, no such increasing-depth GVF is possible and the hydraulic jump must 

actually occur at (or just before) the downstream end of the weir. 
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Q11. 

(a) 

𝑄 = 8 m3 s−1 

𝑏 = 5 m (main channel);  𝑏min = 2 m  

𝑆 = 1 × 10−4 

𝑛 = 0.015 m−1 3⁄  s 

 

(a) Far upstream of any disturbance the depth will be normal: 

 𝑄 = 𝑉𝐴, where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 1.691(1 + 0.4ℎ)2/5 

Iterate (from, e.g., ℎ = 1.691) to get 

ℎ𝑛 = 2.171 m 

 

Answer: 2.17 m 

 

 

(b) At the narrow point: 

𝑞𝑚 =
𝑄

𝑏min
    =

8

2
    = 4 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = (
42

9.81
)

1/3

    = 1.177 m 

Critical specific energy: 

𝐸𝑐 =
3

2
ℎ𝑐     = 1.766 m 

 

Answer: ℎ𝑐 = 1.18 m;   𝐸𝑐 = 1.77 m 

 

 

(c) To determine the behaviour at the narrow point compare the head available in the approach 

flow with critical conditions at the narrow point. 
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hn hn?

? hc

?

hn hn

?

 

Approach flow: 

ℎ𝑎 = ℎ𝑛     = 2.171 m 

𝑉𝑎 =
𝑄

𝑏ℎ𝑎
    =

8

5 × 2.171
    = 0.7370 m s−1 

𝐻𝑎 = 𝐸𝑎     = ℎ𝑎 +
𝑉𝑎

2

2𝑔
    = 2.171 +

0.73702

2 × 9.81
    = 2.199 m 

(The Froude number 𝐹𝑟𝑎 ≡ 𝑉𝑎/√𝑔ℎ𝑎 = 0.1597, so that the approach flow is subcritical.) 

 

The critical head, the minimum head necessary to pass this flow through the throat, is: 

𝐻𝑐 = 𝐸𝑐 + Δ𝑧𝑏     = 1.766 + Δ𝑧𝑏 

 

First establish the flow behaviour and total head through the venturi in the three cases. 

 

 

Case (i): Δ𝑧𝑏 = 0 

 𝐻𝑐 = 1.766 m, so that 𝐻𝑎 > 𝐻𝑐 

 Doesn’t go critical; 𝐻 = 𝐻𝑎 = 2.199 m 

 

 

 

Case (ii): Δ𝑧𝑏 = +0.75 m 

 𝐻𝑐 = 2.516 m, so that 𝐻𝑎 < 𝐻𝑐  

 Critical flow transition; 𝐻 = 𝐻𝑐 = 2.516 m 

 

 

 

Case (iii): Δ𝑧𝑏 = −0.75 m 

 𝐻𝑐 = 1.016 m, so that 𝐻𝑎 > 𝐻𝑐 

 Doesn’t go critical; 𝐻 = 𝐻𝑐 = 2.199 m 

 

 

 

 

Only in Case (ii) is there a sub- to supercritical flow transition. Only the depths marked 

‘?’ need be found, as the remaining ones are either 𝒉𝒏 or 𝒉𝒄 (found earlier). Because of 

the combination of bed-level change and narrowing in Case (iii) we cannot determine in 

advance whether the surface level rises or falls at the narrow point.  

 

Case (i): Δ𝑧𝑏 = 0 

Since 𝐻 = 𝐻𝑎 throughout, the depths just upstream and downstream are the same as in the 

approach flow; i.e. 2.171 m. 

 

At the narrow point (Δ𝑧𝑏 = 0;   𝑏𝑚 = 2 m,   𝑞𝑚 = 4 m2 s−1): 
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 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = 0 + ℎ +

𝑄2

2𝑔𝑏𝑚
2 ℎ2

 

 2.199 = ℎ +
0.8155

ℎ2
 

As no transition occurs we require the subcritical solution. Rearrange for iteration as 

ℎ = 2.199 −
0.8155

ℎ2
 

Iteration (from, e.g., ℎ = 2.199) gives ℎ = 1.994 m at the throat. 

 

Answer: depths (upstream, throat, downstream) are (2.17, 1.99, 2.17) m 

 

 

Case (ii): Δ𝑧𝑏 = +0.75 m 

At the narrow point the flow is critical, so the depth here is ℎ = ℎ𝑐 = 1.177 m. 

 

Just upstream and downstream (but at full channel width, 𝑏 = 5 m) the total head is the same 

as the critical head at the throat; i.e. 2.516 m. 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

Hence, we need the sub- and supercritical solutions of 

2.516 = ℎ +
82

2 × 9.81 × 52 × ℎ2
    = ℎ +

0.1305

ℎ2
 

 

Upstream (subcritical): 

ℎ = 2.516 −
0.1305

ℎ2
 

Iteration (from, e.g., ℎ = 2.516) gives ℎ = 2.495 m. 

 

Downstream (supercritical): 

ℎ = √
0.1305

2.516 − ℎ
 

Iteration (from, e.g., ℎ = 0) gives ℎ = 0.2394 m. 

 

Answer: depths (upstream, throat, downstream) are (2.50, 1.18, 0.239) m 

 

 

Case (iii): Δ𝑧𝑏 = −0.75 m 

Since 𝐻 = 𝐻𝑎 throughout, the depths just upstream and downstream are the same as in the 

approach flow; i.e. 2.171 m. 

 

At the narrow point (Δ𝑧𝑏 = −0.75 m;   𝑏𝑚 = 2 m,   𝑞𝑚 = 4 m2 s−1): 
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 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = −0.75 + ℎ +

𝑄2

2𝑔𝑏𝑚
2 ℎ2

 

 2.949 = ℎ +
0.8155

ℎ2
 

As no transition occurs we require the subcritical solution. Rearrange for iteration as 

ℎ = 2.949 −
0.8155

ℎ2
 

Iteration (from, e.g., ℎ = 2.921) gives ℎ = 2.848 m at the throat. 

 

Answer: depths (upstream, throat, downstream) are (2.17, 2.85, 2.17) m 
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Q12. 

𝑄 = 12 m3 s−1 

𝑏 = 5 m (main channel);  𝑏min = 2 m 

𝑆 = 10−4 

𝑛 = 0.016 m−1 3⁄  s 

 

(a) Discharge: 

𝑄 = 𝑉𝐴 

where, in normal flow, 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 2.242(1 + 0.4ℎ)2/5 

Iteration (from, e.g., ℎ = 2.242) gives 

ℎ𝑛 = 3.094 m 

 

Answer: 3.09 m 

 

 

(b) The total head in the main channel at the position of the venturi is 

𝐻𝑎     = 𝑧𝑠𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

    = 3.125 m 

 

At the narrow point, 

𝑞𝑚 =
𝑄

𝑏𝑚𝑖𝑛
    = 6 m2 s−1 

Hence the critical depth is 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = 1.542 m 

 

The corresponding critical specific energy is 
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𝐸𝑐 =
3

2
ℎ𝑐     = 2.313 m 

This is the same as the total head 𝐻𝑐 (since the bed is flat) and is less than the approach-flow 

head 𝐻𝑎. Hence, the flow does not go critical. 

 

Answer: 1.54 m 

 

 

(c) The head in the narrow section is the same as that in the main channel; i.e. 𝐻 = 3.125 m. 

At the throat, 𝑞 = 6 m2 s−1. 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
 

Rearrange as an iterative formula for the subcritical (i.e. deep, slow) solution, 

ℎ = 𝐻 −
𝑞2

2𝑔ℎ2
 

Here, with lengths in metres, 

ℎ = 3.125 −
1.835

ℎ2
 

Iterate (from, e.g., ℎ = 3.125) to get 

ℎ = 2.908 m 

 

Answer: 2.91 m 

 

 

(d) The bed must be raised so that the total head under critical conditions equals that in normal 

flow; i.e. 

Δ𝑧𝑏 + 𝐸𝑐 = 𝐻𝑎 

Hence, 

Δ𝑧𝑏 = 𝐻𝑎 − 𝐸𝑐     = 3.125 − 2.313    = 0.812 m 

 

Answer: 0.812 m 

 

 

(e) The total head is 𝐻 = 3.125 m. The depth at the narrow point is ℎ𝑐 = 1.542 m. The depth 

just upstream is the normal depth, ℎ𝑛 = 3.094 m. Up and downstream of the constricted 

section: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

Here, 

3.125 = ℎ +
0.2936

ℎ2
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The downstream (supercritical) solution can be obtained from 

ℎ = √
0.2936

3.125 − ℎ
 

Iterate (e.g. from 0) to get 

ℎ = 0.3237 m 

 

Answer: depths upstream: 3.09 m;  in narrow section: 1.54 m;  downstream: 0.324 m 
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Q13. 

(a) If a hydraulic transition occurs at the narrow point then critical conditions occur here: 

 Fr =
𝑉𝑐

√𝑔ℎ𝑐

= 1 

 ℎ𝑐 =
𝑉𝑐

2

𝑔
    =

2. 72

9.81
    = 0.7431 m 

 

The critical head is 

𝐻𝑐 = 𝑧𝑏 + 𝐸𝑐     = 0 +
3

2
ℎ𝑐     = 1.115 m 

and the flow rate is 

𝑄 = 𝑉𝑐(𝑏𝑚ℎ𝑐)     = 2.7 × 2.0 × 0.7431    = 4.013 m3 s−1 

 

In the upstream and downstream full channel width 𝑏 = 4 m: 

 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
 with 𝑧𝑠 = ℎ 

As there is no energy loss, the total head equals the critical head (𝐻 = 𝐻𝑐 = 1.115 m). 

 

We now have two choices: (i) write ℎ in terms of 𝑉 using 𝑄 = 𝑉(𝑏ℎ) and solve for the two 𝑉 

solutions directly; or (ii) solve for ℎ and deduce 𝑉 from continuity at the end. 

 

Method (i): Solve for 𝑉 directly 

 

Write ℎ in terms of velocity 𝑉 via 𝑄 = 𝑉 × 𝑏ℎ: 

𝐻𝑐 =
𝑄

𝑏𝑉
+

𝑉2

2𝑔
 

Here, with 𝑏 = 4 m in the main channel: 

1.115 =
1.003

𝑉
+

𝑉2

19.62
 

 

Upstream, we require the deep, slow solution, so rearrange for iteration with the first term on 

the RHS dominating: 

𝑉 =
1.003

1.115 − 𝑉2/19.62
 

Iteration (from a “slow” value, e.g., 𝑉 = 0) gives 

𝑉 = 0.9372 m s−1 

 

Downstream, we require the shallow, fast solution, so rearrange for iteration with the second 

term on the RHS dominating: 
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𝑉 = √19.62 (1.115 −
1.003

𝑉
) 

Iteration, starting with the value obtained by neglecting the last term gives 

𝑉 = 4.138 m s−1 

 

Method (ii): Solve for ℎ first 

 

Write 𝑉 in terms of depth ℎ via 𝑄 = 𝑉 × 𝑏ℎ: 

𝐻𝑐 = ℎ +
𝑄2

2𝑔𝑏2ℎ2
 

Here, with 𝑏 = 4 m in the main channel: 

1.115 = ℎ +
0.05130

ℎ2
 

 

Upstream, we require the deep, slow solution, so rearrange for iteration with the first term on 

the RHS dominating: 

ℎ =  1.115 −
0.05130

ℎ2
 

Iteration (from, e.g., ℎ = 1.115) gives ℎ = 1.070, and hence 

𝑉 =  
𝑄

𝑏ℎ
    =

4.013

4 × 1.070
    = 0.9376 m s−1 

 

Downstream, we require the shallow, fast solution, so rearrange for iteration with the second 

term on the RHS dominating: 

ℎ =  √
0.05130

1.115 − ℎ
  

Iteration (from, e.g., ℎ = 0) gives ℎ = 0.2425 m, and hence 

𝑉 =  
𝑄

𝑏ℎ
    =

4.013

4 × 0.2425
    = 4.137 m s−1 

 

Answer: upstream: 0.937 m s–1;   downstream: 4.14 m s–1 

 

 

(b) The total head and the flow rate throughout the device can be found from the given depth 

and velocity at the narrow point: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = 1.0 +

2. 72

2 × 9.81
    = 1.372  m 

𝑄 = 𝑉𝐴    = 𝑉𝑏𝑚ℎ    = 2.7 × 2.0 × 1.0    = 5.4  m3  s−1 
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In the absence of a flow transition, the flow must stay either subcritical or supercritical 

throughout. Depths and velocities will be the same at upstream and downstream locations. The 

Froude number at the narrow point is 

Fr =
𝑉

√𝑔ℎ
    =

2.7

√9.81 × 1
    = 0.8620 

Hence, we shall require only the subcritical solution. 

 

Method (i): Solve for 𝑉 directly 

 

At arbitrary width 𝑏 as above: 

𝐻 =
𝑄

𝑏𝑉
+

𝑉2

2𝑔
 

or, with 𝑏 = 4 m in the main channel: 

1.372 =
1.35

𝑉
+

𝑉2

19.62
 

 

Rearranging for iteration for the slower, subcritical, solution: 

𝑉 =
1.35

1.372 − 𝑉2/19.62
 

Iteration (from, e.g., 𝑉 = 0) gives 

𝑉 = 1.024 m s–1 

 

 

Method (ii): Solve for ℎ first 

 

Write 𝑉 in terms of depth ℎ via 𝑄 = 𝑉(𝑏ℎ): 

𝐻 = ℎ +
𝑄2

2𝑔𝑏2ℎ2
 

Here, with 𝑏 = 4 m in the main channel: 

1.372 = ℎ +
0.09289

ℎ2
 

 

We require only the deep, slow solution, so rearrange for iteration with the first term on the 

RHS dominating: 

ℎ =  1.372 −
0.09289

ℎ2
 

Iteration (from, e.g., ℎ = 1.372) gives ℎ = 1.319, and hence 

𝑉 =  
𝑄

𝑏ℎ
    =

5.4

4 × 1.319
    = 1.024 m s−1 

 

Answer: 1.02 m s–1 (both locations)
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Q14. 

Assumptions: 

● constant total head (main assumption); 

● constricted section long enough to establish parallel flow with critical depth; 

● downstream controls do not prevent supercritical flow being established. 

 

Find the total head from the critical conditions. At the narrow point the critical depth is 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = (
(11/3)2

9.81
)

1/3

= 1.111 m 

For a flat bed, the total head relative to the bed is the corresponding critical specific energy: 

𝐸𝑐     =
3

2
ℎ𝑐     =

3

2
× 1.111    = 1.667 m 

As a flow transition is stated to occur this must be the total head (𝐻) throughout the device. 

 

In any parallel-flow region: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

Outside the contracted section, 𝑏 = 5 m. Here, with lengths in m: 

1.667 = ℎ +
0.2467

ℎ2
 

 

Just upstream, rearrange as an iterative formula for the subcritical solution: 

ℎ = 1.667 −
0.2467

ℎ2
 

Iterate (from, e.g., ℎ = 1.667) to get 

 ℎ = 1.566 m 

 

Just downstream, rearrange as an iterative formula for the supercritical solution: 

ℎ = √
0.2467

1.667 − ℎ
 

Iterate (from, e.g., ℎ = 0) to get 

 ℎ = 0.4503 m 

 

Answer: depth upstream = 1.57 m;  under the bridge = 1.11 m; downstream = 0.450 m 

 

 

(b) Conditions upstream of the hydraulic jump: 

ℎ = 0.4503 m 

𝑉 =
𝑄

𝑏ℎ
    =

11

5 × 0.4503
    = 4.886 m s−1 
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Fr =
𝑉

√𝑔ℎ
    =

4.886

√9.81 × 0.4503
    = 2.325 

Hence, from the hydraulic-jump formula, the downstream depth is: 

ℎdownstream =
0.4503

2
(−1 + √1 + 8 × 2.3252)     = 1.272 m 

 

Answer: 1.27 m 

 

 

(c) If the discharge increases to 22 m3 s–1 then the critical depth at the narrow point is 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = (
(22/3)2

9.81
)

1/3

= 1.763 m 

This exceeds the clearance of the bridge deck (1.70 m). Hence, critical conditions cannot be 

attained and the flow must be choked. 

 

(Alternatively, you could rearrange to find the flow rate that corresponds to a critical depth of 

exactly 1.7 m and show that it is less than 22 m3 s–1.) 
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Q15. 

𝑏 = 0.8 m 

ℎ2 = 0.25 m 

𝑄 = 0.9 m3s−1 

 

(a) Total head from given downstream depth: 

𝐻 = 𝑧𝑠2 +
𝑉2

2

2𝑔
  = ℎ2 +

𝑄2

2𝑔𝑏2ℎ2
2    = 0.25 +

0.92

2 × 9.81 × 0.82 × 0.252
   = 1.282 m 

 

Answer: 1.28 m 

 

 

(b) In the absence of losses the head is the same on the upstream side: 

𝐻 = ℎ1 +
𝑄2

2𝑔𝑏2ℎ1
2 

i.e. 

1.282 = ℎ1 +
0.06451

ℎ1
2  

Rearranging for the subcritical (deep) solution gives, in m: 

ℎ1 = 1.282 −
0.06451

ℎ1
2  

Iteration (from, e.g., ℎ1 = 1.282) gives 

ℎ1 = 1.240 m 

Then 

𝑉1 =
𝑄

𝑏ℎ1
    =

0.9

0.8 × 1.240
    = 0.9073 

 

Answer: ℎ1 = 1.24 m,   𝑉1 = 0.907 m s−1 

 

 

(c) The Froude number on each side is given by 

Fr ≡
𝑉

√𝑔ℎ
   =

𝑄

𝑏ℎ√𝑔ℎ
   =

0.9

0.8ℎ√9.81ℎ
   =

0.3592

ℎ3/2
     (ℎ in metres) 

Upstream: 

ℎ = 1.240   ⇒    Fr1 = 0.2601 

Downstream: 

ℎ = 0.25   ⇒    Fr2 = 2.874 

 

Answer: upstream Fr = 0.260;   downstream Fr = 2.87 
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(d) Momentum principle: 

net (hydrostatic) pressure force + force from gate on fluid = change in momentum flux 

𝜌𝑔 (
1

2
ℎ1) ℎ1𝑏 − 𝜌𝑔 (

1

2
ℎ2) ℎ2𝑏 − 𝐹 = 𝜌𝑄(𝑉2 − 𝑉1) 

 

Here, 𝑉 = 𝑄/𝑏ℎ on each side. Hence, 

𝐹 =
1

2
𝜌𝑔𝑏(ℎ1

2 − ℎ2
2) − 𝜌

𝑄2

𝑏
(

1

ℎ2
−

1

ℎ1
) 

    =
1

2
× 1000 × 9.81 × 0.8 × (1.2402 − 0.252) − 1000 ×

0.92

0.8
(

1

0.25
−

1

1.240
) 

    = 5788 − 3233  = 2555 N 

 

Answer: 2.56 kN 
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Q16. 

(a) Find the force on the gate by using the momentum principle. Depths are given; the velocities 

are found by first finding the flow rate. 

 

Assuming the same total head on either side of the gate: 

 𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

 ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2 

 ℎ1 − ℎ2 =
𝑞2

2𝑔
(

1

ℎ2
2 −

1

ℎ1
2) 

Substituting values ℎ1 = 1.8 m, ℎ2 = 0.3 m: 

1.5 = 0.5506𝑞2 

Hence, the flow per unit width is 

𝑞 = √
1.5

0.5506
    = 1.651 m2 s−1 

The corresponding velocities are: 

 𝑉1 =
𝑞

ℎ1
    =

1.651

1.8
 = 0.9172 m s−1, 𝑉2 =

𝑞

ℎ2
    =

1.651

0.3
    = 5.503 m s−1 

 

If 𝐹 is the force on the gate then, by the momentum principle: 

1

2
𝜌𝑔(ℎ1

2 − ℎ2
2)𝑏 − 𝐹 = 𝜌𝑞𝑏(𝑉2 − 𝑉1) 

Rearranging for 𝐹: 

𝐹 =
1

2
𝜌𝑔(ℎ1

2 − ℎ2
2)𝑏 − 𝜌𝑞𝑏(𝑉2 − 𝑉1)

    =
1

2
× 1000 × 9.81 × (1. 82 − 0. 32) × 2 − 1000 × 1.651 × 2 × (5.503 − 0.9172)

    = 15760  N

 

 

Answer: 15.7 kN 

 

 

(b) Denote conditions upstream and downstream of the hydraulic jump by subscripts A and B 

respectively. Since the hydraulic jump is only a short distance downstream, the depth and 

velocity upstream of the jump are the same as those downstream of the gate; i.e. ℎ𝐴 = 0.3 m, 

𝑉𝐴 = 5.503 m s−1. The corresponding Froude number is 

Fr𝐴 =
𝑉𝐴

√𝑔ℎ𝐴

    =
5.503

√9.81 × 0.3
    = 3.208 
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From the hydraulic jump relation: 

ℎ𝐵 =
ℎ𝐴

2
(−1 + √1 + 8Fr𝐴

2)     =
0.3

2
(−1 + √1 + 8 × 3.2082)     = 1.219 m 

 

Answer: 1.22 m 

 

 

(c) Velocity downstream of the jump: 

𝑉𝐵 =
𝑞

ℎ𝐵
    =

1.651

1.219
    = 1.354 m s−1 

 

The total heads on either side of the jump are, relative to the bed: 

𝐻𝐴 = 𝑧𝑠𝐴 +
𝑉𝐴

2

2𝑔
    = 0.3 +

5.5032

2 × 9.81
    = 1.843 m 

𝐻𝐵 = 𝑧𝑠𝐵 +
𝑉𝐵

2

2𝑔
    = 1.219 +

1.3542

2 × 9.81
    = 1.312 m 

 

The fraction of the total head that is lost is 

Δ𝐻

𝐻𝐴
=

1.843 − 1.312

1.843
    = 0.2881 

 

Answer: 28.8% 
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Q17. 

(a) Assuming the same total head on either side of the sluice: 

 𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

 ℎ1 +
𝑄2

2𝑔𝑏2ℎ1
2 = ℎ2 +

𝑄2

2𝑔𝑏2ℎ2
2 

Substituting values 𝑄 = 1.8 m3 s−1, 𝑏 = 3 m, ℎ2 = 0.22 m: 

ℎ1 +
0.01835

ℎ1
2 = 0.5991 

Rearranging for the deep solution upstream: 

ℎ1 = 0.5991 −
0.01835

ℎ1
2  

Iteration (from, e.g., ℎ1 = 0.5991) gives 

ℎ1 = 0.5350 m 

 

Answer:  0.535 m 

 

 

(b) 

𝑏 = 3 m 

𝑄 = 1.8 m3 s−1 

𝑆 = 0.025 

𝑛 = 0.03 m−1 3⁄  s 

 

Normal Depth 

 𝑄 = 𝑉𝐴, where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝑅ℎ =

ℎ

1 + 2ℎ/𝑏
, 𝐴 = 𝑏ℎ 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 0.2715(1 + 2ℎ/3)2/5 

Iteration (from, e.g., ℎ = 0.2715) gives 

ℎ𝑛 = 0.2915 m 
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Critical Depth 

 

Flow rate per unit width: 

𝑞 =
𝑄

𝑏
    =

1.8

3
    = 0.6 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0. 62

9.81
)

1/3

    = 0.3323 m 

 

Answer: normal depth = 0.291 m;  critical depth = 0.332 m 

 

 

(c) The depth far upstream is normal and supercritical (ℎ𝑛 < ℎ𝑐). The depth just upstream of 

the sluice is subcritical (0.535 m > ℎ𝑐). Hence there must be an upstream hydraulic jump. 

 

Downstream, the flow exiting the sluice is shallower than both normal and critical depths and 

will deepen asymptotically toward the normal depth. Since both the depth downstream of the 

gate and the normal depth are supercritical, there is no downstream hydraulic jump. 

 

 
 

Answer: there is an upstream hydraulic jump. 

 

 

(d) Because of the absence of any other flow control, the depth on the upstream side of the 

jump is normal: 

ℎ𝑛 = 0.2915 m 

The corresponding velocity and Froude number are 

𝑉𝑛 =
𝑄

𝑏ℎ𝑛
    =

1.8

3 × 0.2915
    = 2.058 m s−1 

Fr𝑛 =
𝑉𝑛

√𝑔ℎ𝑛

    =
2.058

√9.81 × 0.2915
    = 1.217 

and, from the hydraulic-jump formula, the depth on the downstream side of the jump is 

ℎ𝐽 =
ℎ𝑛

2
(−1 + √1 + 8𝐹𝑟𝑛

2)     =
0.2915

2
(−1 + √1 + 8 × 1.2172)     = 0.3767 m 

 

Answer: depths on upstream and downstream sides of the hydraulic jump are 0.291 m and 

0.377 m respectively 

normal
S1

2h S3

CP

nh

normal

nh

h1
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Q18. 

The specific energy (= head relative to the bed of the channel) is 

𝐸 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

With 𝑄 = 3 m3 s−1 and 𝑏 = 1.5 m, this gives, in metre-second units: 

𝐸 = ℎ +
0.2039

ℎ2
 

Upstream, 

𝐸1 = 1.8 +
0.2039

1. 82
    = 1.863 m 

Downstream, since the sluice is “controlling the flow” we require the supercritical solution of 

𝐸2 = ℎ +
0.2039

ℎ2
 

i.e. an appropriate iterative solution of 

ℎ = √
0.2039

𝐸2 − ℎ
 

 

(a) If there is no energy loss, 𝐸2 = 𝐸1 = 1.863 m. Hence, 

ℎ = √
0.2039

1.863 − ℎ
 

Iterating from ℎ = 0 gives 

ℎ = 0.3695 m 

 

Then, 

𝑉 =
𝑄

𝑏ℎ
    =

3

1.5 × 0.3695
    = 5.413 m s−1 

Fr =
𝑉

√𝑔ℎ
    =

5.413

√9.81 × 0.3695
    = 2.843 

 

Answer: ℎ2 = 0.369 m;   Fr = 2.84 

 

 

(b) If there is 10% specific energy loss, 𝐸2 = 0.9𝐸1 = 1.677 m. Hence, 

ℎ = √
0.2039

1.677 − ℎ
 

Iterating from ℎ = 0 gives 

ℎ = 0.3995 m 
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Then, 

𝑉 =
𝑄

𝑏ℎ
    =

3

1.5 × 0.3995
    = 5.006 m s−1 

Fr =
𝑉

√𝑔ℎ
    =

5.006

√9.81 × 0.3995
    = 2.529 

 

Answer: ℎ2 = 0.400 m;   Fr = 2.53 



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -45 Dr David Apsley 

Q19. 

ρ = 1000 kg m−3 

𝑄 = 28 m3 s−1 

𝑏 = 6 m 

ℎ1 = 0.6 m 

ℎblock = 0.3 m 

𝑐𝐷 = 0.3 

 

Approach-flow velocity: 

𝑉1 =
𝑄

𝑏ℎ1
    =

28

6 × 0.6
    = 7.778 m s−1 

Force on 2 rows of blocks (height 0.3 m and total width 6 m): 

𝐹 = 2 × 𝑐𝐷 (
1

2
𝜌𝑉1

2) (ℎblock𝑏) = 2 × 0.3 × (
1

2
× 1000 × 7.7782) × (0.3 × 6) 

 = 32670 N 

 

Steady-state momentum principle: 

𝜌𝑄(𝑉2 − 𝑉1) = −𝐹 +
1

2
𝜌𝑔(ℎ1

2 − ℎ2
2)𝑏 

Noting that, by continuity, 𝑉2(𝑏ℎ2) = 𝑉1(𝑏ℎ1), so that 𝑉2 = 𝑉1(ℎ1/ℎ2)  this can be rearranged 

to keep all the terms in the unknown ℎ2 on the LHS: 

𝜌𝑄𝑉1(ℎ1/ℎ2) +
1

2
𝜌𝑔ℎ2

2𝑏 = −𝐹 + 𝜌𝑄𝑉1 +
1

2
𝜌𝑔ℎ1

2𝑏 

Substituting numerical values: 

 
130700

ℎ2
+ 29430ℎ2

2 = 195700 (*) 

 

(a) If a hydraulic jump does not occur, look for the smaller-ℎ2 (supercritical) solution of (*) by 

making the ℎ2 from the first term on the LHS the subject of an iterative formula: 

ℎ2 =
130700

195700 − 29430ℎ2
2 

Iteration (from, e.g., ℎ2 = 0) gives: 

ℎ2 = 0.7252 m 

 

Answer: 0.725 m 

 

 

(b) If a hydraulic jump does occur, look for the larger-ℎ2 (subcritical) solution of (*) by making 

the ℎ2 from the second term on the LHS the subject of an iterative formula: 

ℎ2 =
√195700 −

130700
ℎ2

29430
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i.e. 

ℎ2 = √6.650 −
4.441

ℎ2
 

Iteration (from, e.g.,ℎ2 = √6.650 = 2.579) gives 

ℎ2 = 2.139 m 

 

Answer: 2.14 m 
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Q20. 

(a) Assume rapidly-varied flow with negligible upstream dynamic head in the reservoir. If the 

flow is supercritical on the spillway (check in part(b)) then the flow goes through a critical 

point at the top of the spillway. 

 

Measure head relative to the top of the weir; the head 𝐻 is then the freeboard in the reservoir 

and this is 3/2 times critical depth: 

 𝐻 =
3

2
ℎ𝑐 

 ℎ𝑐 =
2

3
𝐻    =

2

3
× 0.5    = 0.3333 m 

But 

 ℎ𝑐 = (
𝑞2

𝑔
)1/3 

 𝑞 = 𝑔1/2ℎ𝑐
3/2

    = 9.811/2 × 0.33333/2     = 0.6027 m2 s−1 

 𝑄 = 𝑞𝑏    = 0.6027 × 4    = 2.411 m3 s−1 

 

Answer: 2.41 m3 s–1 

 

 

(b) 

𝑏 = 4 m 

𝑆 = 0.05 

𝑛 = 0.012 m−1 3⁄  s 

𝑄 = 2.411 m3 s−1 

 

Normal depth 

Discharge: 

𝑄 = 𝑉𝐴 

where: 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3
𝑆1/2 

Rearranging as an iterative formula for ℎ: 

ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 0.1276(1 + 0.5ℎ)2/5 
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Iteration (from, e.g., ℎ = 0.1276) gives 

ℎ𝑛 = 0.1309 m 

 

 

Criticality 

 

Since ℎ𝑛 < ℎ𝑐 the normal depth is supercritical; i.e. the slope is steep at this discharge. 

(Alternatively, you could demonstrate this by finding the Froude number.) 

 

Answer: 0.131 m 

 

 

(c) As before: 

ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

With 𝑆 = 0.001 this gives: 

ℎ = 0.4127(1 + 0.5ℎ)2/5 

Iteration (from, e.g., ℎ = 0.4127) gives 

ℎ𝑛 = 0.4474 m 

(This is less than ℎ𝑐, hence subcritical.) 

 

Answer: 0.447 m 

 

 

(d) Consider a control volume enclosing the blocks. The flow has depth ℎ1 = 0.1309 m 

upstream and ℎ2 = 0.4474 m downstream. By the steady-state momentum principle: 

 
1

2
𝜌𝑔ℎ1

2𝑏 −
1

2
𝜌𝑔ℎ2

2𝑏 − 𝐹 = 𝜌𝑄(𝑉2 − 𝑉1) 

 𝐹 =
1

2
𝜌𝑔𝑏(ℎ1

2 − ℎ2
2) + 𝜌𝑄(𝑉1 − 𝑉2) 

Here, 

𝑉1 =
𝑞

ℎ1
    =

0.6027

0.1309
    = 4.604 m s−1 

𝑉2 =
𝑞

ℎ2
    =

0.6027

0.4474
    = 1.347 m s−1 

Hence, 

𝐹 =
1

2
× 1000 × 9.81 × 4 × (0.13092 − 0.44742)

                        +1000 × 2.411 × (4.604 − 1.347)
   = 4262 N

 

 

Answer: 4.26 kN 
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Q21. 

(a) Total head is constant, so 

𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

or, in terms of the discharge per unit width, q: 

ℎ1 +
𝑞2

2𝑔ℎ1
2 = ℎ2 +

𝑞2

2𝑔ℎ2
2 

 

Rearranging to collect terms in 𝑞: 

 2𝑔(ℎ1 − ℎ2) = 𝑞2 (
1

ℎ2
2 −

1

ℎ1
2) 

 2 × 9.81 × (2 − 0.3) = 𝑞2 (
1

0. 32
−

1

22
) 

 33.35 = 10.86𝑞2 

Solving gives 

𝑞 = 1.752 m2 s−1 

 

The total discharge (for width 𝑏 = 3 m) is then 

𝑄 = 𝑞𝑏    = 1.752 × 3    = 5.256 m3 s−1 

 

Answer: 5.26 m3 s–1 

 

 

(b) 

Discharge: 

𝑄 = 𝑉𝐴 

where, in normal flow: 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3
𝑆1/2 

or, rearranging as an iterative formula for ℎ: 

ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

 

Substituting values: 

ℎ = 0.8586(1 + 2ℎ/3)2/5 
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Iterating (from, e.g., ℎ = 0) gives 

ℎ = 1.064 m 

 

Answer: 1.06 m 

 

 

(c) Consider a control volume encompassing the blocks. Let subscripts A and B respectively 

denote conditions upstream and downstream of the blocks. Then: 

 ℎ𝐴 = 0.3 m,     ℎ𝐵 = ℎ𝑛 = 1.064 m 

The corresponding velocities are: 

 𝑉𝐴 =
𝑞

ℎ𝐴
    =

1.752

0.3
    = 5.84 m s−1, 𝑉𝐵 =

𝑞

ℎ𝐵
    =

1.752

1.064
    = 1.647 m s−1 

 

If 𝐹 is the force on the blocks then, by the momentum principle: 

1

2
𝜌𝑔(ℎ𝐴

2 − ℎ𝐵
2 )𝑏 − 𝐹 = 𝜌𝑞𝑏(𝑉𝐵 − 𝑉𝐴) 

Rearranging for 𝐹: 

𝐹 =
1

2
𝜌𝑔(ℎ𝐴

2 − ℎ𝐵
2 )𝑏 + 𝜌𝑄(𝑉𝐴 − 𝑉𝐵)

    =
1

2
× 1000 × 9.81 × (0. 32 − 1.0642) × 3 + 1000 × 5.256 × (5.84 − 1.647) = 6704 N

 

 

Answer: 6.70 kN 
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Q22. 

𝑄 = 10 m3 s−1 

ℎ1 = 0.5 m 

𝑏 = 4 m (width prior to expansion) 

𝐵 = 8 m (width after expansion) 

 

Velocity upstream of the expansion: 

𝑉1 =
𝑄

𝑏ℎ1
    =

10

4 × 0.5
    = 5 m s−1 

Velocity downstream of the expansion: 

𝑉2 =
𝑄

𝐵ℎ2
    =

10

8 × ℎ2
    =

1.25

ℎ2
 

 

Assume that a hydraulic jump is triggered immediately at the expansion and that reactions from 

the expansion end walls are in equilibrium with a hydrostatic pressure distribution. Apply the 

steady-state momentum principle from the point of expansion to downstream of the hydraulic 

jump: 

1

2
𝜌𝑔ℎ1

2𝐵 −
1

2
𝜌𝑔ℎ2

2𝐵 = 𝜌𝑄(𝑉2 − 𝑉1) 

(Effectively, it is assumed that a hydrostatic pressure force acts across the expanded width 𝐵 

at both sections.) Dividing by 𝜌: 

1

2
𝑔𝐵(ℎ1

2 − ℎ2
2) = 𝑄(𝑉2 − 𝑉1) 

Substituting numerical values: 

 39.24(0.25 − ℎ2
2) = 10 (

1.25

ℎ2
− 5) 

 59.81 − 39.24ℎ2
2 =

12.5

ℎ2
 

Look for the larger-ℎ2 (subcritical) solution by making the ℎ2 on the LHS (which comes from 

the hydrostatic pressure terms) the subject of an iterative formula: 

ℎ2 =
√

59.81 −
12.5
ℎ2

39.24
 

or 

ℎ2 = √1.524 −
0.3186

ℎ2
 

Iteration (from, e.g., ℎ2 = √1.524) gives 

ℎ2 = 1.112 m 

Answer: 1.11 m 
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Q23. 

(a) 

𝑛 = 0.016 m−1 3⁄  s 

𝑏 = 3.5 m 

𝑆 = 0.003 

𝑄 = 8 m3 s−1 

 

Critical Depth 

Flow rate per unit width: 

𝑞 =
𝑄

𝑏
    =

8

3.5
    = 2.286 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
2.2862

9.81
)

1/3

    = 0.8106 m 

 

Normal Depth 

𝑄 = 𝑉𝐴 

where 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 0.7848(1 + 2ℎ/3.5)2/5 

Iteration (from, e.g., ℎ = 0.7848) gives 

ℎ𝑛 = 0.9308 m 

 

The normal depth is greater than the critical depth, so the Froude number is less than 1; i.e. 

subcritical. 

 

Answer: critical depth = 0.811 m;   normal depth = 0.931 m 

 

 

(b) The flow will go critical in the restricted section if the critical head required to pass the 

given flow rate exceeds that available in the approach flow. 

 

The specific energy in the approach flow (normal, since the channel is “long”) is 
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𝐸𝑎 = ℎ𝑛 +

𝑉𝑛
2

2𝑔
     = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

⬚ = 0.9308 +
82

2 × 9.81 × 3.52 × 0.93082
     = 1.238 m

 

Hence, in the vicinity of the restricted section: 

𝐻𝑎 = 𝐸𝑎     = 1.238 m 

 

Flow rate per unit width in the restricted section: 

𝑞𝑚 =
𝑄

𝑏min
    =

8

2.2
    = 3.636 m2 s−1 

Critical depth in the restricted section: 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = (
3.6362

9.81
)

1/3

    = 1.105 m 

Critical head: 

𝐻𝑐 =
3

2
ℎ𝑐     = 1.658 m 

 

The critical head, 𝐻𝑐, exceeds the head available in the approach flow, 𝐻𝑎. Hence the flow does 

go critical and the total head in the vicinity of this section is the critical head: 

𝐻 = 𝐻𝑐     = 1.658 m 

The depths just up- and downstream of the restricted section are the sub- and supercritical 

depths with this total head and the main channel width (𝑏 = 3.5 m): 

𝐻 = ℎ +
𝑉2

2𝑔
     = ℎ +

𝑄2

2𝑔𝑏2ℎ2
  

For ℎ in metres: 

1.658 = ℎ +
0.2663

ℎ2
 

Rearranging for the shallow (supercritical) solution: 

ℎ = √
0.2663

1.658 − ℎ
 

Iteration (from, e.g., ℎ = 0) gives 

ℎdownstream = 0.4743 m 

 

Answer: 0.474 m 

 

 

(c)  

Velocity upstream of the expansion: 

𝑉1 =
𝑄

𝑏ℎ1
    =

8

3.5 × 0.4743
    = 4.819 m s−1 

Velocity downstream of the expansion: 
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𝑉2 =
𝑄

𝐵ℎ2
    =

8

5 × ℎ2
    =

1.6

ℎ2
 

 

Assume a hydraulic jump is triggered at the expansion and that reactions from the expansion 

end walls are in equilibrium with a hydrostatic pressure distribution. Apply the steady-state 

momentum principle from the point of expansion to downstream of the hydraulic jump: 

1

2
𝜌𝑔ℎ1

2𝐵 −
1

2
𝜌𝑔ℎ2

2𝐵 = 𝜌𝑄(𝑉2 − 𝑉1) 

(Effectively, it is assumed that a hydrostatic pressure force acts across the expanded width 𝐵 at 

both sections.) Multiplying by 2/(𝜌𝑔𝐵): 

ℎ1
2 − ℎ2

2 =
2𝑄

𝑔𝐵
(𝑉2 − 𝑉1) 

Substituting numerical values: 

0.2250 − ℎ2
2 = 0.3262 (

1.6

ℎ2
− 4.819) 

Look for the larger-ℎ2 (subcritical) solution by making the ℎ2 on the LHS the subject of an 

iterative formula. After multiplying out and rearranging: 

ℎ2 = √1.797 −
0.5219

ℎ2
 

Iteration (from, e.g., ℎ2 = √1.797) gives 

ℎ2 = 1.161 m 

 

Answer: 1.16 m 
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Q24. 

(a) With depth ℎ measured from the bottom of the vee, the surface width 𝑏𝑠 and cross-sectional 

area 𝐴 are given by 

𝑏𝑠 = 2ℎ tan 𝛼 

𝐴 =
1

2
𝑏𝑠ℎ    = ℎ2 tan α 

where, in this instance, 𝛼 = 40°. Hence, the average depth (across the width of the channel) is 

ℎ̅ ≡
𝐴

𝑏𝑠
    =

1

2
ℎ 

and the Froude number (squared) is given by 

Fr2 =
𝑉2

𝑔ℎ̅
    =

(𝑄/𝐴)2

𝑔ℎ̅
    =

𝑄2

(ℎ4 tan2 𝛼)𝑔(
1
2 ℎ)

    =
2𝑄2

𝑔( tan2 𝛼)ℎ5
 

The critical depth corresponds to Fr = 1, whence: 

ℎ𝑐 = (
2𝑄2

𝑔 tan2 𝛼
)

1/5

    = (
2 × 162

9.81 ×  tan2 40°
)

1/5

    = 2.366 m 

 

Answer: 2.37 m 

 

 

(b) From the momentum principle: 

 (pressure force)in – (pressure force)out = (momentum flux)out – (momentum flux)in 

 pressure force + momentum flux = constant 

From hydrostatics, with centroidal depth for a triangle, 𝑑̅ =
1

3
ℎ: 

pressure force = 𝜌𝑔𝑑̅ × 𝐴    = (𝜌𝑔
1

3
ℎ) × (ℎ2 tan 𝛼)     =

1

3
𝜌𝑔ℎ3 tan 𝛼 

The momentum flux, with uniform cross-sectional velocity, is 

momentum flux = 𝜌𝑄𝑉    = 𝜌𝑄 ×
𝑄

𝐴
    =

𝜌𝑄2

ℎ2 tan 𝛼
 

Hence, 

1

3
𝜌𝑔ℎ3 tan 𝛼 +

𝜌𝑄2

ℎ2 tan 𝛼
= constant 

or, dividing by 𝜌, 

1

3
𝑔ℎ3 tan 𝛼 +

𝑄2

ℎ2 tan 𝛼
= constant 

Substituting values, fixing the constant from the depth ℎ = 1.85 m on one side, gives: 

2.744ℎ3 +
305.1

ℎ2
= 106.5 

 



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -56 Dr David Apsley 

Since the given depth (ℎ = 1.85 m) is the supercritical upstream solution (since it is smaller 

than the critical depth found in part (a)), we now seek the subcritical (“large ℎ”) solution, for 

which we expect the first term in the equation to dominate. Rearranging for iteration: 

ℎ = [
1

2.744
(106.5 −

305.1

ℎ2
)]

1/3

 

Iteration (from any subcritical value, ℎ > 2.37 m), gives ℎ = 2.970 m. 

 

Answer: 2.97 m 
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Q25. 

From the momentum principle: 

 (pressure force)in – (pressure force)out = (momentum flux)out – (momentum flux)in 

 𝑝̅1𝐴1 − 𝑝̅2𝐴2 = 𝜌𝑄(𝑉2 − 𝑉1) 

 𝜌𝑔𝑑̅1𝐴1 − 𝜌𝑔𝑑̅2𝐴2 = 𝜌𝑄 (
𝑄

𝐴2
−

𝑄

𝐴1
) 

 𝑔(𝑑̅1𝐴1 − 𝑑̅2𝐴2) = 𝑄2 (
1

𝐴2
−

1

𝐴1
) (*) 

where 𝑑̅ is the depth of the centroid. 𝑄 is the only unknown and we simply need to find the 

centroidal depth 𝑑 and cross-sectional area 𝐴 for each given depth. 

 

For a triangle,  

𝑑̅ =
1

3
ℎ 

Hence, 

𝑑̅1 =
1

3
ℎ1     =

1

3
× 1.2    = 0.4 m 

𝑑̅2 =
1

3
ℎ2     =

1

3
× 2.1    = 0.7 m 

 

The surface width is 2 × ℎ tan 30° = 2ℎ/√3 and hence the cross-sectional area 𝐴 is 

𝐴 =
1

2
× ℎ ×

2ℎ

√3
    =

ℎ2

√3
 

Hence, 

𝐴1 =
ℎ1

2

√3
    =

1. 22

√3
    = 0.8314 m2 

𝐴2 =
ℎ2

2

√3
    =

2. 12

√3
    = 2.546  m2 

 

Substituting in (*): 

 9.81(0.4 × 0.8314 − 0.7 × 2.546) = 𝑄2 (
1

2.546
−

1

0.8314
) 

 −14.22 = 𝑄2 × (−0.8100) 

 𝑄 = 4.190 m3 s−1 

 

Answer: 4.19 m3 s–1 
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The head loss is 

𝐻1 − 𝐻2 = 𝑧𝑠1 − 𝑧𝑠2 + (
𝑉1

2

2𝑔
−

𝑉2
2

2𝑔
) 

or, measuring z from the bottom of the vee: 

 𝐻1 − 𝐻2 = ℎ1 − ℎ2 +
1

2𝑔
(𝑉1

2 − 𝑉2
2) (**) 

 

The velocities either side of the jump are 

𝑉1 =
𝑄

𝐴1
    =

4.190

0.8314
    = 5.040 m s−1 

𝑉2 =
𝑄

𝐴2
    =

4.190

2.546
    = 1.646 m s−1 

Hence, the head loss (**) is 

𝐻1 − 𝐻2 = 1.2 − 2.1 +
1

2 × 9.81
(5.0402 − 1.6462)     = 0.2566 m 

 

Answer: 0.257 m 
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Q26. 

Momentum principle: 

𝑝̅1𝐴1 − 𝑝̅2𝐴2 = 𝜌𝑄(𝑉2 − 𝑉1) 

With 𝑝̅ = 𝜌𝑔𝑑̅ and 𝑉 = 𝑄/𝐴, 

𝜌𝑔(𝑑̅1𝐴1 − 𝑑̅2𝐴2) = 𝜌𝑄2 (
1

𝐴2
−

1

𝐴1
) 

Rearranging, and dividing by ρ: 

(𝑔𝑑̅𝐴 +
𝑄2

𝐴
)

1

= (𝑔𝑑̅𝐴 +
𝑄2

𝐴
)

2

     = 𝐶,    say 

Here, for a circular cross-section: 

𝐴 = 2 × (
1

2
𝑅2𝜃 −

1

2
𝑅 sin 𝜃 𝑅 cos 𝜃)    = 𝑅2 (𝜃 −

1

2
sin 2𝜃) 

𝑑̅ = 𝑅 [

2
3 sin3 𝜃

𝜃 −
1
2 sin(2𝜃)

− cos 𝜃] 

Hence, the following quantity has to be the same on both sides of the jump: 

 
𝐶 = 𝑔𝑅3 [

2

3
sin3 𝜃 − cos 𝜃 (𝜃 −

1

2
sin 2𝜃)] +

𝑄2

𝑅2 (𝜃 −
1
2 sin 2𝜃)

 (*) 

 

On the upstream side: 

ℎ = 𝑅 − 𝑅 cos 𝜃 

𝜃 = cos−1 (1 −
ℎ

𝑅
)     = 31.79°   (0.5548 rad) 

With 𝑅 = 2 m and 𝑄 = 1.5 m3 s−1 (*) gives (in m-s units): 

𝐶 = 5.762 

 

Search (e.g. by repeated trial, which would benefit from a short computer program or 

spreadsheet – an example in Python is given at the end of the question) for a second value of 𝜃 

that gives the same value of 𝐶. This gives 

𝜃 = 0.8697 rad     (49.83°) 

ℎ = 𝑅 − 𝑅 cos 𝜃     = 0.7099 m 

 

Answer: 0.710 m 

 

 

(b) The Froude number is given by 

Fr2 =
𝑉2

𝑔ℎ̅
    =

(𝑄/𝐴)2

𝑔(𝐴/𝑏𝑠)
    =

𝑄2𝑏𝑠

𝑔𝐴3
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whence 

Fr = 𝑄√
𝑏𝑠

𝑔𝐴3
 

Here, the surface width is 

𝑏𝑠 = 2𝑅 sin 𝜃 

 

For the upstream side: 

𝜃 = 0.5548 rad (= 31.79°),   𝑏𝑠 = 2.107 m,   𝐴 = 0.4281 m2 

For the downstream side: 

𝜃 = 0.8697 rad (= 49.83°),   𝑏𝑠 = 3.057 m,   𝐴 = 1.507 m2 

These give 

Fr1 = 2.482,     Fr2 = 0.4526 

 

Answer: upstream and downstream Froude numbers are 2.48 and 0.45, respectively 

 

 

A simple Python search script is given overleaf for interest. Modify the search interval to 

home in on the required values. 

 

There are plenty of other numerical or graphical ways of finding the answer. 
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from math import sin, cos, acos, sqrt, pi 

import numpy as np 

 

g = 9.81                               # gravity, m s^-2 

R = 2.0                                # radius, m 

Q = 1.5                                # volume flow rate (m^3 s^-1) 

 

def angle( h ):                        # angle for given h 

    return acos( 1 - h / R ) 

 

def depth( theta ):                    # depth for given angle 

    return R * ( 1 - cos( theta ) ) 

 

def dbar( theta ):                     # centroidal depth 

    return R * ( (2.0/3.0) * sin(theta)**3 / ( theta - 0.5*sin(2.0*theta) ) - cos(theta) ) 

 

def area( theta ):                     # area of segment 

    return R * R * ( theta - 0.5 * sin( 2.0 * theta ) ) 

 

def surfaceWidth( theta ):             # surface width 

    return 2 * R * sin( theta ) 

 

def averageDepth( theta ):             # average depth 

    return area( theta ) / surfaceWidth( theta ) 

 

def Froude( theta ):                   # Froude number 

    return Q / area( theta ) / sqrt( g * averageDepth( theta ) ) 

 

def Cfunc( theta ): 

    A = area( theta ) 

    return g * dbar( theta ) * A + Q ** 2 / A 

 

#---------------------- 

 

# Manual search via depth 

h = float( input( "Input depth in m: " ) ) 

thetaRad = angle( h ) 

print( "theta (rad) = ", thetaRad ) 

print( "C = ", Cfunc( thetaRad ) ) 

print( "Check data ..." ) 

print( "theta (deg) = ", thetaRad * 180 / pi ) 

print( "dbar = ", dbar( thetaRad ) ) 

print( "A = ", area( thetaRad ) ) 

print( "bs = ", surfaceWidth( thetaRad ) ) 

print( "h = ", averageDepth( thetaRad ) ) 

print( "Fr = ", Froude( thetaRad ) ) 

print() 

 

#---------------------- 

 

# Tabular search for theta in interval [a,b] 

N, a, b = 51, thetaRad, 0.5 * pi             # search range - adjust as required 

rad = np.linspace( a, b, N ) 

fmth, fmt = "{:>12}  ", "{:12.5f}  " 

print( ( 4 * fmth ).format( "angle(rad)", "depth", "C", "Fr" ) ) 

for i in range( 0, N ): 

    print( ( 4 * fmt ).format( rad[i], depth(rad[i]), Cfunc(rad[i]), Froude(rad[i]) ) ) 
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Q27. 

𝑆0 = 2 × 10−5 

𝑛 = 0.01 m−1 3⁄  s 

𝑞 = 0.5 m2 s−1 

 

Normal Depth 

 𝑞 = 𝑉ℎ    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2ℎ, where 𝑅ℎ = ℎ (wide channel) 

 
𝑛𝑞

√𝑆
= ℎ5/3 (*) 

 

For the given slope this gives a normal depth 

ℎ𝑛 = (
𝑛𝑞

√𝑆0

)

3/5

    = (
0.01 × 0.5

√2 × 10−5
)

3/5

    = 1.069 m 

 

Critical Depth 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0. 52

9.81
)

1/3

    = 0.2943 m 

 

The normal depth is subcritical, so the slope is mild. The flow is subcritical, but goes critical 

at the free overfall. 

 

Hence, we start a GVF calculation at the free overfall (where ℎ = ℎ𝑐 = 0.2943 m) and work 

upstream. 

 

 

GVF equation: 

 
dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 or 

d𝐸

d𝑥
= 𝑆0 − 𝑆𝑓 

 

(Continued overleaf) 

 



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -63 Dr David Apsley 

Method 1 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of ℎ; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑞

√𝑔ℎ3
  Fr2 =

𝑞2

𝑔ℎ3
    =

0.02548

ℎ3
 

𝑆𝑓 = (
𝑛𝑞

ℎ5/3
)

2

    =
2.5 × 10−5

ℎ10/3
 

Δℎ =
1.0 − 0.2943

2
    = 0.35285 

 

Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
0.02548

ℎ3

(2 −
2.5

ℎ10/3) × 10−5
 Δℎ = 0.35285 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.2943 0    

   0.4707 –2622 –925 

1 0.64715 –925.2    

   0.8236 –34400 –12140 

2 1.0000 –13065    

 

Answer: 13.1 km 

 

(Alternative method overleaf) 
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Method 2 

 

Rewrite the GVF equation as: 

 
d𝑥

d𝐸
=

1

𝑆0 − 𝑆𝑓
, whence Δ𝑥 ≈

𝛥𝐸

(𝑆0 − 𝑆𝑓)av
 

 

For the working, write the friction slope and specific energy as a function of ℎ; (all lengths in 

metres). 

𝑆𝑓 = (
𝑛𝑞

ℎ5/3
)

2

    =
2.5 × 10−5

ℎ10/3
 

𝐸 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
    = ℎ +

0.01274

ℎ2
 

Δℎ =
1.0 − 0.2943

2
    = 0.35285 

 

Working formulae: 

 

Δ𝑥 ≈
Δ𝐸

(𝑆0 − 𝑆𝑓)av
  

where 

 

𝑆0 − 𝑆𝑎𝑣 = (2 −
2.5

ℎ
10
3

) × 10−5, 𝐸 = ℎ +
0.01274

ℎ2
, Δℎ = 0.35285 

 

 

𝑖 ℎ𝑖 𝑥𝑖 𝐸𝑖  (𝑆0 − 𝑆𝑓)
𝑖
 ΔE (𝑆0 − 𝑆𝑓)

𝑎𝑣
 Δ𝑥 

0 0.2943 0 0.4414 –145.4×10–5    

     0.2362 –77.032×10–5 –307 

1 0.64715 –307 0.6776 –8.664×10–5    

     0.3351 –4.582×10–5 –7313 

2 1.0000 –7620 1.0127 –0.500×10–5    

 

Answer: 7.6 km. 

 

Spreadsheet calculations (exercise) yield the following. 

𝑁steps 𝑥final   using    Δ𝑥 = (
1−Fr2

𝑆0−𝑆𝑓
)

mid

Δℎ 𝑥final   using   Δ𝑥 =
Δ𝐸

(𝑆0−𝑆𝑓)av
 

2 –13060 –7620 

5 –17360 –15600 

10 –18630 –18090 

50 –19190 –19163 

100 –19210 –19200 
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Q28. 

𝑏 = 5 m 

𝑆 = 0.0006 

𝑄 = 7 m3 s−1 

𝑛 = 0.035 m−1 3⁄  s 

 

(a) 

 𝑄 = 𝑉𝐴, where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝑅ℎ =

ℎ

1 + 2ℎ/𝑏
, 𝐴 = 𝑏ℎ 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 1.516(1 + 0.4ℎ)2/5 

Iteration (from, e.g., ℎ = 1.516) gives 

ℎ𝑛 = 1.901 m 

 

Answer: 1.90 m 

 

 

(b) The specific energy in the approach flow (normal flow, since the channel is “long”) is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

    = 1.901 +
72

2 × 9.81 × 52 × 1.9012
    = 1.929 m 

Hence, relative to the bed in the vicinity of the weir: 

𝐻𝑎 = 𝐸𝑎     = 1.929 m 

 

The critical depth and critical specific energy are (with 𝑞 = 𝑄/𝑏 = 1.4 m2 s−1): 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
1. 42

9.81
)

1/3

    = 0.5846 m 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
× 0.5846    = 0.8769 m 

Under critical conditions the total head over the weir would be 

𝐻𝑐 = 𝑧weir + 𝐸𝑐     = 1.75 + 0.8769    = 2.627 m 

This is the minimum head for this flow rate over the weir and exceeds the head available in the 

approach flow. Hence, the flow backs up, the water level rises upstream of the weir and the 
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flow over the top is critical. The total head in the vicinity of the weir is determined by critical 

conditions: 𝐻 = 𝐻𝑐 = 2.627 m. 

 

Outside of the weir, 

 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

 2.627 = ℎ +
0.09990

ℎ2
 

Upstream of the weir, rearrange for the deep (subcritical) solution: 

ℎ = 2.627 −
0.09990

ℎ2
 

Iteration (from, e.g., ℎ = 2.627) gives 

ℎ = 2.612 m 

 

Answer: 2.61 m 

 

 

(c) GVF from just upstream of the weir (ℎ𝑠𝑡𝑎𝑟𝑡 = 2.612 m) to where the depth is 0.25 m greater 

than the normal depth (ℎend = 1.901 + 0.25 = 2.151 m). The flow is subcritical here, so we 

will be working in the opposite direction to the flow. Using two steps the depth increment is 

Δℎ =
ℎend − ℎstart

𝑁steps
    =

2.151 − 2.612

2
    = −0.2305 m 

 

GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

For the working, write the derivative as a function of h. 

 Fr =
𝑉

√𝑔ℎ
    =

𝑞

√𝑔ℎ3
  Fr2 =

𝑞2

𝑔ℎ3
    =

0.1998

ℎ3
 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 + 2ℎ/𝑏)4/3     = 2.401 × 10−3
(1 + 0.4ℎ)4/3

ℎ10/3
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Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
0.1998

ℎ3

[6 − 24.01
(1 + 0.4ℎ)4/3

ℎ10/3 ] × 10−4

, Δℎ = −0.2305 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 2.612 0    

   2.497 3146 –725.2 

1 2.382 –725.2    

   2.267 4291 –989.1 

2 2.151 –1714    

 

Answer: 1.71 km 
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Q29. 

𝑏 = 1.5 m 

𝑛 = 0.014 m−1 3⁄  s 

𝑆 = 0.002 

ℎoverfall = 0.6 m 

 

(a) The flow is drawn down at the overfall, so must be subcritical leading to critical at the 

overfall. The critical depth is therefore 0.6 m. 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

 

Rearranging, the flow rate per metre width is 

𝑞 = √𝑔ℎ𝑐
3     = √9.81 × 0. 63     = 1.456 m2 s−1 

and the total flow rate is 

𝑄 = 𝑞𝑏    = 1.456 × 1.5    = 2.184 m3 s−1 

 

Answer: 2.18 m3 s–1 

 

 

(b) The flow is subcritical, so do a GVF calculation working upstream from the free overfall 

(where ℎ = 0.6 m) to where the depth is ℎ = 0.8 m. Using two steps, 

Δℎ =
0.8 − 0.6

2
    = 0.1 m 

 

GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of ℎ; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑄/𝑏

√𝑔ℎ3
  Fr2 =

𝑞2

𝑔ℎ3
    =

0.2161

ℎ3
 

For quasi-normal flow (used to find the friction slope): 

 𝑄 = 𝑉𝐴 where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆𝑓

1/2
, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

 𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3
𝑆𝑓

1/2
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and, rearranging, 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 + 2ℎ/𝑏)4/3     = 4.155 × 10−4
(1 + ℎ/0.75)4/3

ℎ10/3
 

 

 

Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
0.2161

ℎ3

[20 − 4.155 ×
(1 + ℎ/0.75)4/3

ℎ10/3 ] × 10−4

, Δℎ = 0.1 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.6 0    

   0.65 –105.8 –10.58 

1 0.7 –10.58    

   0.75 –666.8 –66.68 

2 0.8 –77.26    

 

Answer: 77 m 
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Q30. 

(a) 

Normal 

 𝑞 = 𝑉ℎ    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2ℎ, where 𝑅ℎ = ℎ (wide channel) 

 
𝑛𝑞

√𝑆
= ℎ5/3 (*) 

 ℎ𝑛 = (
𝑛𝑞

√𝑆0

)

3/5

    = (
0.03 × 0.7

√8 × 10−4
)

3/5

    = 0.8364 m 

 

Critical 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0. 72

9.81
)

1/3

    = 0.3683 m 

 

The normal depth is greater than the critical depth. Hence, the normal flow is subcritical; i.e. 

the slope is mild. 

 

Answer: normal depth = 0.836 m;  critical depth = 0.368 m 

 

 

(b) Note that the depth is everywhere above normal depth and depth is increasing. The depth 

asymptotes to normal depth far upstream and the water surface tends to horizontal approaching 

the sea. (The sea really spreads sidewards rather than straight down!) 

 

 
 

 

(c) The flow is subcritical (part (a)). Hence, start a GVF calculation from the downstream end 

(where ℎ = 2.0 m) and work upstream (to where ℎ = 1.0 m). 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of ℎ; (all lengths in metres). 

hn

hc
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 Fr =
𝑉

√𝑔ℎ
    =

𝑞

√𝑔ℎ3
  Fr2 =

𝑞2

𝑔ℎ3
    =

0.04995

ℎ3
 

 𝑆𝑓 = (
𝑛𝑞

ℎ5/3
)

2

    =
4.41 × 10−4

ℎ10/3
 (rearranging (*) in part (a) above) 

Δℎ =
1.0 − 2.0

2
    = −0.5 

 

Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
0.04995

ℎ3

(8 −
4.41
ℎ10/3) × 10−4

, Δℎ = −0.5 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 2.0 0    

   1.75 1354 –677.0 

1 1.5 –677.0    

   1.25 1650 –825.0 

2 1.0 –1502    

 

Answer: 1.50 km 

 

 

(d) If the slope changes then the only relevant depth that changes is the normal depth, which 

must now be less than the critical depth if the slope is to be “steep”. As the normal flow is 

supercritical it must undergo a hydraulic jump before the river outfall to the sea. Given a long-

enough upstream fetch the depth of flow upstream of the jump is normal flow. There is 

gradually-varied flow (S1) from the fixed depth at the coast upstream to where this matches 

the sequent depth of the normal flow. This fixes the position of the hydraulic jump. 

 

 
 

hc
hn hydraulic

jump
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Q31. 

𝑏 = 6 m;   (𝑏min = 2.4 m in part (b)) 

𝑆 = 0.01 

𝑛 = 0.035 m−1 3⁄  s 

𝑄 = 9 m3 s−1 

 

(a) For normal depth: 

𝑄 = 𝑉𝐴 

where 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 

 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 0.6794(1 + 0.3333ℎ)2/5 

Iteration (from, e.g., ℎ = 0.6794) gives 

ℎ𝑛 = 0.7422 m 

 

For critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
𝑄2

𝑏2𝑔
)

1/3

    = 0.6121 m 

 

Normal flow is deeper, and hence slower, and hence has smaller Froude number than in critical 

flow (where Fr = 1). Hence the Froude number is less than 1; i.e. subcritical. 

 

Answer: normal depth = 0.742 m;   critical depth = 0.612 m 

 

 

(b) The flow will go critical in the restricted section if the critical head required to pass the 

given flow rate exceeds that available in the approach flow. 

 

The specific energy in the approach flow (normal, since the channel is “long”) is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

    = 0.7422 +
92

2 × 9.81 × 62 × 0.74222
    

= 0.9504 m 

Hence, in the vicinity of the restricted section: 
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𝐻𝑎 = 𝐸𝑎     = 0.9504 m 

 

Flow rate per unit width in the restricted section: 

𝑞𝑚 =
𝑄

𝑏min
    =

9

2.4
    = 3.75 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

    = (
3.752

9.81
)

1/3

    = 1.128 m 

Critical head: 

𝐻𝑐 =
3

2
ℎ𝑐     = 1.692 m 

 

The critical head, 𝐻𝑐, exceeds the head available in the approach flow, 𝐻𝑎. Hence the flow does 

go critical and the total head in the vicinity of this section is the critical head: 

𝐻 = 𝐻𝑐     = 1.692 m 

The depths just up- and downstream of the restricted section are the sub- and supercritical 

depths with this total head and the main channel width (𝑏 = 6 m): 

𝐻 = ℎ +
𝑉2

2𝑔
     = ℎ +

𝑄2

2𝑔𝑏2ℎ2
  

For ℎ in metres: 

1.692 = ℎ +
0.1147

ℎ2
 

 

Rearranging for the deep (subcritical) solution: 

ℎ = 1.692 −
0.1147

ℎ2
 

Iteration (from, e.g., ℎ =1.692) gives 

ℎupstream = 1.650 m 

 

Rearranging for the shallow (supercritical) solution: 

ℎ = √
0.1147

1.692 − ℎ
 

Iteration (from, e.g., ℎ =0) gives 

ℎdownstream = 0.2856 m 

 

Answer: upstream depth = 1.65 m;   downstream depth = 0.286 m 
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(c) Unless the jump occurs immediately, there is a region of supercritical GVF until a hydraulic 

jump back to the preferred regime: subcritical flow. 

 

Downstream of the hydraulic jump is normal flow (since the channel is “long”): 

ℎ𝑛 = 0.7422 m 

Fr𝑛
2 =

𝑉𝑛
2

𝑔ℎ𝑛
    =

𝑄2

𝑏2𝑔ℎ𝑛
3     =

92

62 × 9.81 × 0.74223
    = 0.5610 

The depth just upstream of the jump is 

ℎJ =
ℎ𝑛

2
(−1 + √1 + 8Fr𝑛

2)     =
0.7422

2
(−1 + √1 + 8 × 0.5610)     = 0.4983 m 

(This is larger than the depth just downstream of the contracted section, confirming that a length 

of GVF does occur.) 

 

We must therefore do a supercritical GVF calculation from just downstream of the restricted 

section (where ℎ = 0.2856 m) to just upstream of the hydraulic jump (where ℎ = 0.4983 m). 

 

GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of h; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑄/𝑏

√𝑔ℎ3
  Fr2 =

(𝑄/𝑏)2

𝑔ℎ3
    =

0.2294

ℎ3
 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 +
2ℎ

𝑏
)

4/3

    = 2.756 × 10−3
(1 + 0.3333ℎ)4/3

ℎ10/3
 

Δℎ =
0.4983 − 0.2856

2
    = 0.1064 

 

 

Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 
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d𝑥

dℎ
=

1 −
0.2294

ℎ3

0.01 − 2.756 × 10−3 ×
(1 + 0.3333ℎ)4/3

ℎ10/3

 Δℎ = 0.1064 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.2856 0    

   0.3388 45.68 4.860 

1 0.3920 4.860    

   0.4452 40.82 4.343 

2 0.4983 9.203    

 

Answer: 9.20 m 
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Q32. 

(a) 𝑞 = 0.9 m2 s−1, so the critical depth (which is the depth over the weir because it is known 

to be “controlling the flow”) is 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0. 92

9.81
)

1/3

    = 0.4355 m 

The critical specific energy is 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
× 0.4355    = 0.6533 m 

The total head is 

𝐻 = 𝑧weir + 𝐸𝑐     = 1.5 + 0.6533    = 2.153 m 

The upstream and downstream depths are solutions of 

ℎ +
𝑞2

2𝑔ℎ2
= 𝐻 

 

For the upstream (subcritical) depth, rearrange as 

 ℎ = 𝐻 −
𝑞2

2𝑔ℎ2
 

 ℎ = 2.153 −
0.04128

ℎ2
 

Iterating from ℎ = 2.153 m gives 

ℎ = 2.144 m 

 

For the downstream (supercritical) depth, rearrange as 

 ℎ =
𝑞

√2𝑔(𝐻 − ℎ)
 

 ℎ =
0.9

√19.62(2.153 − ℎ)
 

Iterating from ℎ = 0 gives 

ℎ = 0.1433 m 

 

Answer: depths upstream, over weir, downstream = 2.14 m, 0.435 m, 0.143 m 

 

 

(b) 

𝑞 = 𝑉ℎ 

where 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 𝑅ℎ = ℎ 



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -77 Dr David Apsley 

Hence, 

 𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

 ℎ = (
𝑛𝑞

√𝑆
)

3/5

    = (
0.012 × 0.9

√3 × 10−4
)

3/5

    = 0.7532 m 

 

Answer: 0.753 m 

 

 

(c) Inverting the gradually-varied-flow equation: 

d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 

or, in discrete form: 

Δ𝑥 = (
1 − Fr2

𝑆0 − 𝑆𝑓
)

mid

Δℎ 

 

To do the numerical integration it is convenient to have expressions for Fr and 𝑆𝑓 as functions 

of ℎ (in m): 

Fr2 =
𝑉2

𝑔ℎ
    =

𝑞2

𝑔ℎ3
    =

0.08257

ℎ3
 

𝑆𝑓 = (
𝑛𝑞

ℎ5/3
)

2

    =
1.166 × 10−4

ℎ10/3
 

 

Integration is carried out (in the upstream direction, because the flow here is subcritical) from 

ℎ = 2.144 m to ℎ = 0.853 m with 2 steps; i.e. Δℎ = −0.6455 m. 

 

Working formulae (all lengths in m): 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
0.08257

ℎ3

10−4 (3 −
1.166
ℎ10/3 )

 Δℎ = −0.6455 
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𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 2.144 0    

   1.821 3471 –2241 

1 1.499 –2241    

   1.176 4090 –2640 

2 0.853 –4881    

 

Answer: 4.9 km 

 

 

(d) Downstream of the hydraulic jump (subscript 2) the depth is the normal depth (ℎ2 =
0.7532 m); the corresponding velocity and Froude number are 

𝑉2 =
𝑞

ℎ2
    =

0.9

0.7532
    = 1.195 m s−1 

Fr2 =
𝑉2

√𝑔ℎ
2

    =
1.195

√9.81 × 0.7532
    = 0.4396 

From the hydraulic-jump relations the sequent depth upstream is 

ℎ1 =
ℎ2

2
(−1 + √1 + 8𝐹𝑟2

2)     =
0.7532

2
(−1 + √1 + 8 × 0.43962)     = 0.2243 m 

 

Integration is carried out (in the downstream direction, because the flow here is supercritical) 

from ℎ = 0.1433 to ℎ = 0.2243 with 1 step; i.e. Δℎ = 0.0810, all lengths being in m. Working 

is shown in the table below. 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.1433 0    

   0.1838 375.8 30.44 

1 0.2243 30.44    

 

Answer: 30 m 

 

(e) 

 
normal M1

normal

hydraulic
jump

hn
ch

1h

2h M3

CP CP

hn
WEIR
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Q33. 

𝑏 = 5 m 

𝑆 = 5 × 10−4 

𝐶 = 100 m1 2⁄  s−1 

𝑄 = 15 m3 s−1 

𝑧weir = 1 m 

 

(a) For the normal depth, 

𝑄 = 𝑉𝐴 

where 

 𝑉 = 𝐶𝑅ℎ
1/2

𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =
𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 = 𝐶 (
ℎ

1 + 2ℎ/𝑏
)

1/2

𝑆1/2𝑏ℎ 

 
𝑄

𝐶𝑏√𝑆
=

ℎ3/2

(1 + 2ℎ/𝑏)1/2
 

 ℎ = (
𝑄

𝐶𝑏√𝑆
)

2/3

(1 + 2ℎ/𝑏)1/3 

Here, 

ℎ = 1.216(1 + 0.4ℎ)1/3 

Iterate (from, e.g., ℎ = 1.216) to get normal depth 

ℎ𝑛 = 1.412 m 

 

 

For the critical depth, 

𝑞 =
𝑄

𝑏
    = 3 m2 s−1 

Then, 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = 0.9717 m 

 

Answer: normal depth = 1.41 m;   critical depth = 0.972 m 

 

 

(b) The approach-flow head (relative to the bed of the channel) is 

𝐻𝑎 = 𝑧𝑠𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑞2

2𝑔ℎ𝑛
2

    = 1.642 m 
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The head assuming critical conditions at the weir is 

𝐻𝑐 = 𝑧weir +
3

2
ℎ𝑐     = 2.458 m 

 

The latter is larger, so the flow does go critical and the total head is 2.458 m in the vicinity of 

the weir. At the downstream end: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
 

Rearranging for the supercritical solution: 

ℎ =
𝑞

√2𝑔(𝐻 − ℎ)
 

Here (with lengths in m): 

ℎ =
3

√19.62(2.458 − ℎ)
 

 

Iterate (from 0) to get 

ℎ = 0.4818 m 

 

Answer: 0.482 m 

 

 

(c) The hydraulic jump occurs to normal depth downstream (subscript 2); i.e ℎ2 = ℎ𝑛 =
1.412 m. Then, 

Fr2 =
𝑉2

√𝑔ℎ2

    =
𝑞

√𝑔ℎ2
3

    = 0.5709 

Hence, on the upstream side (subscript 1): 

ℎ1 =
ℎ2

2
(−1 + √1 + 8𝐹𝑟2

2)     = 0.6349 m 

 

Answer: 0.635 m 

 

 

(d) There is gradually-varied flow from ℎ = 0.4818 m at the downstream end of the weir to 

ℎ = 0.6349 m at the hydraulic jump. With 2 steps this gives 

Δℎ =
0.6349 − 0.4818

2
= 0.07655 m 

 

With lengths in m throughout: 

Fr2 =
𝑉2

𝑔ℎ
    =

𝑞2

𝑔ℎ3
    =

0.9174

ℎ3
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𝑆𝑓 = (
𝑄

𝐶𝑏
)

2 (1 + 2ℎ/𝑏)

ℎ3
    = 9 × 10−4

(1 + 0.4ℎ)

ℎ3
 

 

Hence, 

d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
    =

1 −
0.9174

ℎ3

5 × 10−4 − 9 × 10−4 1 + 0.4ℎ
ℎ3

 

and 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ 

 

Working is set out in the following table. 

 

𝑖 ℎ𝑖 𝑥𝑖  ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.4818 0    

   0.5201 763.8 58.47 

1 0.55835 58.47    

   0.5966 699.0 53.51 

2 0.6349 112.0    

 

Answer: 112 m 
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Q34. 

𝑏 = 7 m 

𝑆 = 0.005 

𝑛 = 0.035 m−1 3⁄  s 

 

(a) For normal flow: 

 𝑄 = 𝑉𝐴, where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝐴 = 𝑏ℎ, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
 

Hence, 

𝑄 =
1

𝑛
(

𝑏ℎ

𝑏 + 2ℎ
)

2/3

𝑆1/2𝑏ℎ =
1

0.035
(

7 × 1.6

7 + 2 × 1.6
)

2/3

× √0.005 × 7 × 1.6 = 24.08 m3 s−1 

 

Answer:  24.1 m3 s–1 

 

 

(b) Flow rate per unit width: 

𝑞 =
𝑄

𝑏
    =

24.08

7
    = 3.44 m2 s−1 

Critical depth: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
3.442

9.81
)

1/3

    = 1.065 m 

 

The normal depth (1.6 m) is deeper than the critical depth (1.06 m) and so the normal flow is 

subcritical. The channel slope is therefore “mild” at this flow rate. 

 

Answer: 1.06 m;   slope is mild 

 

 

(c) The specific energy in the approach flow (normal flow, since the channel is “long”) is 

𝐸𝑎 = ℎ𝑛 +
𝑉𝑛

2

2𝑔
    = ℎ𝑛 +

𝑄2

2𝑔𝑏2ℎ𝑛
2

    = 1.6 +
24.082

2 × 9.81 × 72 × 1. 62
    = 1.836 m 

Hence, relative to the undisturbed bed in the vicinity of the weir: 

𝐻𝑎 = 𝐸𝑎     = 1.836  m 

 

The critical specific energy is 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
× 1.065    = 1.598  m 

Under critical conditions the total head over the weir would be 

𝐻𝑐 = 𝑧weir + 𝐸𝑐     = 1.8 + 1.598    = 3.398  m 

This is the minimum head for this flow rate over the weir and exceeds the head available in the 

approach flow. Hence, the flow backs up, the water level rises upstream of the weir and the 
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flow over the top is critical. The total head in the vicinity of the weir is determined by critical 

conditions: 𝐻 = 𝐻𝑐 = 3.398 m. 

 

Just outside the weir, 

 𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

 3.398 = ℎ +
0.6031

ℎ2
 

 

Upstream, rearrange for the deep (subcritical) solution: 

ℎ = 3.398 −
0.6031

ℎ2
 

Iteration (from, e.g., ℎ = 3.398) gives 

ℎ = 3.344 m 

 

Downstream, rearrange for the shallow (supercritical) solution: 

ℎ = √
0.6031

3.398 − ℎ
 

Iteration (from, e.g., ℎ = 0) gives 

ℎ = 0.4525 m 

 

Answer: upstream depth = 3.34 m;   downstream depth = 0.452 

 

 

(d) Normal flow is subcritical (part (b)). Since flow just downstream of the weir is supercritical, 

a downstream hydraulic jump is necessary to revert to normal flow. 

 

There is GVF between the end of the weir and the upstream side of the hydraulic jump. The 

flow on the downstream side of the jump is normal, hn = 1.6 m and we must use the sequent-

depth relation to find the depth on the upstream side of the jump: 

𝑉𝑛 =
𝑄

𝑏ℎ𝑛
    =

24.08

7 × 1.6
    = 2.150 m s−1 

Fr𝑛 =
𝑉𝑛

√𝑔ℎ𝑛

    =
2.15

√9.81 × 1.6
    = 0.5427 

ℎ𝐽 =
ℎ𝑛

2
(−1 + √1 + 8Fr𝑛

2)     =
1.6

2
(−1 + √1 + 8 × 0.54272)     = 0.6656 m 

 

A GVF calculation is carried out from just downstream of the weir (ℎ = 0.4525 m) to just 

upstream of the hydraulic jump (ℎ = 0.6656 m). Using one step the depth increment is 

Δℎ = 0.6656 − 0.4525    = 0.2131 m 
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GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

For the direct-step method, invert the GVF equation 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

For the working, write the derivative as a function of ℎ; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑄

𝑏√𝑔ℎ3
  Fr2 =

𝑄2

𝑏2𝑔ℎ3
    =

1.206

ℎ3
 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 + 2ℎ/𝑏)4/3     = 14.50 × 10−3
(1 + 2ℎ/7)4/3

ℎ10/3
 

 

Working formulae: 

 Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ 

where 

 
d𝑥

dℎ
=

1 −
1.206

ℎ3

[5 − 14.50
(1 + 2ℎ/7)4/3

ℎ10/3 ] × 10−3

, Δℎ = 0.2131 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.4525 0    

   0.5591 50.13 10.68 

1 0.6656 10.68    

 

Answer: 10.7 m 
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Q35. 

𝑏 = 2.5 m 

ℎ1 = 1.8 m 

ℎ2 = 0.3 m 

𝑛 = 0.012 m−1 3⁄  s 

𝑆0 = 0.002 

 

(a) Assuming the same total head on either side of the gate: 

 𝑧𝑠1 +
𝑉1

2

2𝑔
= 𝑧𝑠2 +

𝑉2
2

2𝑔
 

 ℎ1 +
𝑄2

2𝑔𝑏2ℎ1
2 = ℎ2 +

𝑄2

2𝑔𝑏2ℎ2
2 

 ℎ1 − ℎ2 =
𝑄2

2𝑔𝑏2
(

1

ℎ2
2 −

1

ℎ1
2) 

 

Substituting values: 

1.5 = 0.08809𝑄2 

Hence, 

𝑄 = 4.127 m3 s−1 

  

Answer: 4.13 m3 s–1 

 

 

(b) 

Normal depth 

𝑄 = 𝑉𝐴 

where, in normal flow: 

 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2 𝐴 = 𝑏ℎ 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

𝑄 =
1

𝑛

𝑏ℎ5/3

(1 + 2ℎ/𝑏)2/3
𝑆0

1/2
 

or, rearranging as an iterative formula for ℎ: 

ℎ = (
𝑛𝑄

𝑏√𝑆0

)

3/5

(1 + 2ℎ/𝑏)2/5 

Substitution of numerical values yields iterative formula 

ℎ = 0.6135(1 + 0.8ℎ)2/5 

Iteration (from, e.g., ℎ = 0.6135) gives 
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ℎ𝑛 = 0.7387 m 

 

Critical depth 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
𝑄2

𝑏2𝑔
)

1/3

    = (
4.1272

2.52 × 9.81
)

1/3

    = 0.6525 m 

 

Answer: normal depth = 0.739 m;   critical depth = 0.652 m 

 

 

(c) The depth just upstream of the jump is the sequent depth to the normal depth: 

ℎ𝑛 = 0.7387  m 

𝑉𝑛 =
𝑄

𝑏ℎ𝑛
    =

4.127

2.5 × 0.7387
    = 2.235 m s−1 

Fr𝑛 =
𝑉𝑛

√𝑔ℎ𝑛

    =
2.235

√9.81 × 0.7387
    = 0.8303 

so that the depth just upstream of the jump (call it ℎ𝐽) is 

ℎ𝐽 =
ℎ𝑛

2
(−1 + √1 + 8Fr𝑛

2)     =
0.7387

2
(−1 + √1 + 8 × 0.83032)     = 0.5734 m 

 

We must therefore do a GVF calculation from just downstream of the sluice (where ℎ = 0.3 m) 

to just upstream of the hydraulic jump (where ℎ = 0.5734 m). 

 

 

GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

For the direct-step method rewrite the GVF equation “the other way up”: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of h; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑄

𝑏ℎ√𝑔ℎ
  Fr2 =

(𝑄/𝑏)2

𝑔ℎ3
    =

0.2778

ℎ3
 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 + 2ℎ/𝑏)4/3     = 3.924 × 10−4
(1 + 0.8ℎ)4/3

ℎ10/3
 

Δℎ =
0.5734 − 0.3

2
    = 0.1367 

  



 

Hydraulics 3 Answers (Open-Channel Flow Examples) -87 Dr David Apsley 

Working formulae: 

 Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ 

where 

 
d𝑥

dℎ
=

1 −
0.2778

ℎ3

[20 − 3.924 ×
(1 + 0.8ℎ)4/3

ℎ10/3 ] × 10−4

, Δℎ = 0.1367 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.3 0    

   0.3684 338.8 46.31 

1 0.4367 46.31    

   0.5051 288.1 39.38 

2 0.5734 85.69    

 

Answer: 85.7 m 
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Q36. 

(a) A hydraulic transition takes place, so the parallel-flow depth in the constriction is critical: 

ℎ𝑐 = (
𝑞𝑚

2

𝑔
)

1/3

 

whence the flow rate (per unit width of the constricted section) is 

𝑞𝑚 = √𝑔ℎ𝑐
3     = √9.81 × 2. 53     = 12.38 m2 s−1 

and the overall flow rate is 

𝑄 = 𝑞𝑚𝑏𝑚     = 12.38 × 2.0    = 24.76 m3 s−1 

 

As the constricted flow is critical the head there is 

𝐻    = 𝑧𝑏 + 𝐸𝑐     = 0 +
3

2
ℎ𝑐     =

3

2
× 2.5    = 3.75 m 

and, as this is RVF, there is the same total head throughout the venturi: 

𝐻 = 𝑧𝑠 +
𝑉2

2𝑔
    = ℎ +

𝑄2

2𝑔𝑏2ℎ2
 

Just upstream or downstream, where 𝑏 = 4 m, we need the sub- and supercritical solutions of 

3.75 = ℎ +
24.762

2 × 9.81 × 42 × ℎ2
    = ℎ +

1.953

ℎ2
 

 

Upstream (subcritical): 

ℎ = 3.75 −
1.953

ℎ2
 

Iteration (from, e.g., ℎ = 3.75) gives ℎ = 3.599 m. 

 

Downstream (supercritical): 

ℎ = √
1.953

3.75 − ℎ
 

Iteration (from, e.g., ℎ = 0) gives ℎ = 0.8158 m. 

 

Answer: flow rate = 24.8 m3 s–1;   depth upstream = 3.60 m;   depth downstream = 0.816 m 

 

 

(b) With a long undisturbed fetch, the depth downstream of the jump must be normal flow. 

 𝑄 = 𝑉𝐴, where 𝑉 =
1

𝑛
𝑅ℎ

2/3
𝑆1/2, 𝑅ℎ =

𝑏ℎ

𝑏 + 2ℎ
    =

ℎ

1 + 2ℎ/𝑏
 

Hence, 

 𝑄 =
1

𝑛
(

ℎ

1 + 2ℎ/𝑏
)

2/3

𝑆1/2𝑏ℎ 
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 
𝑛𝑄

𝑏√𝑆
=

ℎ5/3

(1 + 2ℎ/𝑏)2/3
 

 ℎ = (
𝑛𝑄

𝑏√𝑆
)

3/5

(1 + 2ℎ/𝑏)2/5 

Here, with lengths in metres, 

ℎ = 1.584(1 + 0.5ℎ)2/5 

Iterate (from, e.g., ℎ = 1.584) to get 

ℎ = 2.114 m 

 

Take, therefore, downstream depth ℎ𝐵 = 2.114 m, whence 

𝑉𝐵 =
𝑄

𝑏ℎ𝐵
    =

24.76

4 × 2.114
    = 2.928 m s−1 

Fr𝑏 =
𝑉𝐵

√𝑔ℎ𝐵

    =
2.928

√9.81 × 2.114
    = 0.6430 

and, by formula, the upstream depth is 

ℎ𝐴 =
2.114

2
(−1 + √1 + 8 × 0.64302)     = 1.1368 m 

 

Answer: depths (upstream, downstream) = (1.14, 2.11) m 

 

 

(c) The flow between venturi and jump is supercritical, so integrate the GVF equation 

downstream from ℎ =  0.8158 m to ℎ = 1.1368 m using 1 step. 

 

GVF equation: 

dℎ

d𝑥
=

𝑆0 − 𝑆𝑓

1 − Fr2
 

 

For the direct-step method invert the GVF equation: 

 
d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 and Δ𝑥 ≈ (

d𝑥

dℎ
) Δℎ 

 

For the working, write the derivative as a function of ℎ; (all lengths in metres). 

 Fr =
𝑉

√𝑔ℎ
    =

𝑄

𝑏√𝑔ℎ3
  Fr2 =

𝑄2

𝑏2𝑔ℎ3
    =

3.906

ℎ3
 

𝑆𝑓 = (
𝑛𝑄

𝑏ℎ5/3
)

2

(1 + 2ℎ/𝑏)4/3     = 18.54 × 10−3
(1 + 0.5ℎ)4/3

ℎ10/3
 

Δℎ = 1.1368 − 0.8158    = 0.3210 m 
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Working formulae: 

 

Δ𝑥 = (
d𝑥

dℎ
)

mid
Δℎ  

where 

 

d𝑥

dℎ
=

1 −
3.906

ℎ3

[4 − 18.54 ×
(1 + 0.5ℎ)4/3

ℎ10/3 ] × 10−3

 Δℎ =  0.3210 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 0.8158 0    

   0.9763 106.2 34.09 

1 1.1368 34.09    

 

Answer: 34 m 
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Q37. 

(a) A hydraulic transition occurs over the weir. Hence, the depth over the crest must be critical: 

ℎ𝑐 = (
𝑞2

𝑔
)

1/3

    = (
0.82

9.81
)

1/3

    = 0.4026 m 

 

The total head is 

𝐻 = 𝑧weir + 𝐸𝑐     = 𝑧weir +
3

2
ℎ𝑐     = 1.8 +

3

2
× 0.4026    = 2.404 m 

Depths just upstream and downstream of the weir have the same total head: 

𝐻 = ℎ +
𝑉2

2𝑔
     = ℎ +

𝑞2

2𝑔ℎ2
  

For ℎ in metres: 

2.404 = ℎ +
0.03262

ℎ2
 

Rearranging for the deep (subcritical) solution: 

ℎ = 2.404 −
0.03262

ℎ2
 

Iteration (from, e.g., ℎ = 2.404) gives 

ℎupstream = 2.398 m 

 

Answer: depth over weir = 0.403 m;   depth just upstream = 2.40 m 

 

 

(b) Inverting the gradually-varied-flow equation: 

d𝑥

dℎ
=

1 − Fr2

𝑆0 − 𝑆𝑓
 

or, in discrete form: 

Δ𝑥 = (
1 − Fr2

𝑆0 − 𝑆𝑓
)

mid

Δℎ 

 

Find expressions for Fr and 𝑆𝑓 as functions of ℎ (in m): 

Fr2 =
𝑉2

𝑔ℎ
    =

𝑞2

𝑔ℎ3
    =

0.06524

ℎ3
 

The expression for 𝑆𝑓 comes from assuming quasi-normal flow. In normal flow, 

 𝑞 = 𝑉ℎ    =
1

𝑛
𝑅ℎ

2/3
𝑆1/2ℎ, where 𝑅ℎ = ℎ (wide channel) 

 𝑞 =
1

𝑛
ℎ5/3𝑆1/2 

Rearranging for 𝑆 and taking 𝑆𝑓 = 𝑆 (the quasi-normal-flow assumption): 

𝑆𝑓 = (
𝑛𝑞

ℎ5/3
)

2

    =
4 × 10−4

ℎ10/3
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Integration is carried out (in the upstream direction, because the flow here is subcritical) from 

ℎ = 2.398 m to ℎ = 1.800 m with 2 steps; i.e. Δℎ = −0.299 m. 

 

Working formulae (all lengths in m): 

 
Δ𝑥 = (

d𝑥

dℎ
)

mid
Δℎ  

where 

 
d𝑥

dℎ
=

1 −
0.06524

ℎ3

10−4 (10 −
4

ℎ10/3)
 Δℎ = −0.299 

 

𝑖 ℎ𝑖 𝑥𝑖 ℎmid (d𝑥/dℎ)mid Δ𝑥 

0 2.398 0    

   2.249 1022 –305.6 

1 2.099 –305.6    

   1.950 1036 –309.8 

2 1.800 –615.4    

 

Answer: 615 m 

 

 

(c) If the weir fails catastrophically then the depth is just the normal depth. From the 

relationship between flow rate and depth already derived in part (b), but using the geometric 

slope 𝑆0, 

 𝑞 =
1

𝑛
ℎ5/3𝑆0

1/2
 

 ℎ = (
𝑛𝑞

√𝑆0

)

3/5

    = (
0.025 × 0.8

√0.001
)

3/5

    = 0.7597 m 

 

Answer: 0.760 m 
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Q38. 

(a) 

Fr ≡
𝑉

√𝑔ℎ
 

where 𝑉 is velocity, 𝑔 is gravitational acceleration and ℎ is depth. 

 

The Froude number is the ratio of current speed V to long-wave speed 𝑐 = √𝑔ℎ. 

 

 

(b) The wedge is the envelope of all waves that 

have spread out from points advected through the 

disturbance. In time Δ𝑡 the centre of a wave travels 

downstream a distance 𝑉Δ𝑡 and its front has spread 

out a distance cΔt. From the diagram, 

sin 𝛼 =
𝑐Δ𝑡

𝑉Δ𝑡
    =

𝑐

𝑉
    =

√𝑔ℎ

𝑉
    =

1

Fr
 

 

 

(c) 

Fr =
1

sin 20°
    = 2.924 

But 

 Fr ≡
𝑉

√𝑔ℎ
 and 𝑉 =

𝑞

ℎ
 

 Fr =
𝑞

√𝑔ℎ3
 

Hence, 

ℎ = (
𝑞2

𝑔
×

1

𝐹𝑟2
)

1/3

    = (
2. 52

9.81
×

1

2.9242
)

1/3

    = 0.4208 m 

𝑉 =
𝑞

ℎ
    =

2.5

0.4208
    = 5.941 m s−1 

 

Answer: ℎ = 0.421 m;   𝑉 = 5.94 m s−1 

 

 

(d) A hydraulic jump will be provoked if the approach flow does not have sufficient energy to 

provide the minimum head to pass over the bed rise (𝐻𝑐𝑟𝑖𝑡 = 𝑧𝑏𝑒𝑑 + 𝐸𝑐𝑟𝑖𝑡). 

 

Approach flow: 

𝐻𝑎 = 𝐸𝑎 = ℎ +
𝑉2

2𝑔
    = 0.4208 +

5.9412

2 × 9.81
    = 2.220 m 

c t

V t V

disturbance


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Critical conditions: 

𝐸𝑐 =
3

2
ℎ𝑐     =

3

2
(

𝑞2

𝑔
)

1/3

    =
3

2
(

2. 52

9.81
)

1/3

    = 1.291 m 

𝐻𝑐 = 𝑧bed + 𝐸𝑐     = 𝑧bed + 1.291 

 

If a hydraulic jump just occurs: 

 𝐻𝑐 = 𝐻𝑎 

 𝑧bed + 1.291 = 2.220 

 𝑧bed = 0.929 m 

 

Answer: 0.929 m 

 

 

(e) Otherwise, 

𝑧bed + 𝐸 = 𝐻𝑎 

where 𝐻𝑎 = 2.220, 𝑧bed = 0.4645 m and 

𝐸 = ℎ +
𝑉2

2𝑔
    = ℎ +

𝑞2

2𝑔ℎ2
    = ℎ +

0.3186

ℎ2
 

Hence, 

 0.4645 + ℎ +
0.3186

ℎ2
= 2.220 

 ℎ +
0.3186

ℎ2
= 1.756 

 

Since no hydraulic transition takes place and the approach flow is supercritical, the required 

solution is the shallow, supercritical one, so rearranging for this: 

ℎ = √
0.3186

1.756 − ℎ
 

Iterating (from, e.g. ℎ = 0) gives 

ℎ = 0.5046 m 

 

Answer: 0.505 m 


