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TOPIC T2: FLOW IN PIPES AND CHANNELS AUTUMN 2023 
 

 

Objectives 
 

(1) Calculate the friction factor for a pipe using the Colebrook-White equation. 

(2) Undertake head loss, discharge and sizing calculations for single pipelines. 

(3) Use head-loss vs discharge relationships to calculate flow in pipe networks. 

(4) Relate normal depth to discharge for uniform flow in open channels. 

 

 

1. Pipe flow 

 1.1 Introduction 

 1.2 Governing equations for circular pipes 

 1.3 Laminar pipe flow 

 1.4 Turbulent pipe flow  

 1.5 Expressions for the Darcy friction factor, 𝜆 

 1.6 Other losses 
 1.7 Pipeline calculations 

 1.8 Energy and hydraulic grade lines 

 1.9 Simple pipe networks 

 1.10 Complex pipe networks (optional) 

 

2. Open-channel flow 

 2.1 Normal flow 

 2.2 Hydraulic radius and the drag law 

 2.3 Friction laws – Chézy and Manning’s formulae 

 2.4 Open-channel flow calculations 

 2.5 Conveyance 

 2.6 Optimal shape of cross-section 

 

Appendix 
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1. PIPE FLOW 
 

1.1 Introduction 
 

The flow of water, oil, air and gas in pipes is of great importance to engineers. In particular, 

the design of distribution systems depends on the relationship between discharge, 𝑄, diameter, 

𝐷, and available head, ℎ. 

 

Flow Regimes: Laminar or Turbulent 

 

In 1883, Osborne Reynolds1 demonstrated the occurrence of 

two regimes of flow – laminar or turbulent – according to the 

size of a dimensionless parameter later named the Reynolds 

number. The conventional definition for round pipes is 

 Re ≡
𝑉𝐷

𝜈
 (1) 

where: 

 𝑉 = average, or bulk, velocity (= 𝑄/𝐴) 

 𝐷 = diameter 

 𝜈 = kinematic viscosity (= 𝜇/𝜌) 

 

For smooth-walled pipes the critical Reynolds number at which transition between laminar 

and turbulent regimes occurs is usually taken as 

 Recrit ≈ 2300     (for PIPES only!) (2) 

In practice, transition from intermittent to fully-turbulent flow typically occurs over the range 

2000 < Re < 4000. 

 

 

Development Length 

 

At inflow, the velocity profile is often uniform. A 

thin boundary layer develops on the pipe wall 

because of friction. This grows with distance until it 

fills the cross-section. Beyond this distance the velocity profile becomes fully-developed (i.e., 

doesn’t change any further with downstream distance). Typical correlations for this 

development length are (from White, 2021): 

 
𝐿dev
𝐷

= {
0.06Re (laminar)

4.4Re1/6 (turbulent)
 (3) 

 

The kinematic viscosity of air and water is such that most pipe flows in civil engineering have 

high Reynolds numbers, are fully turbulent, and have a negligible development length. 

 

 
1 at the University of Manchester! 

laminar

turbulent
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Example. 

𝜈water = 1.0 × 10
−6 m2 s−1. Calculate the Reynolds numbers for water flow with  average 

velocity 0.5 m s–1 in pipes of inside diameter 12 mm and 0.3 m. Estimate the development 

length in each case. 

 

Answer: Re = 6000 and 1.5 × 105;   𝐿develop = 0.23 m and 9.6 m. 

 

 

 

1.2 Governing Equations For Circular Pipes 
 

Fully-developed pipe flow is determined by a balance between three forces: 

• pressure; 

• weight (component along the pipe axis); 

• friction. 

 

For a circular pipe of radius 𝑅, consider the forces with components along the pipe axis for an 

internal cylindrical fluid element of radius 𝑟 < 𝑅 and length Δ𝑙. 

 
 

Note: 

(1) 𝑝 is the average pressure over a cross-section; for circular pipes this is equal to the 

centreline pressure, with equal and opposite hydrostatic variations above and below. 

(2) The arrow drawn for stress indicates its conventional positive direction, corresponding 

to the stress exerted by the outer on the inner fluid. In this instance the inner fluid 

moves faster so that, if 𝑉 is positive, 𝜏 will actually be negative. 

 

Balancing forces along the pipe axis: 

𝑝(π𝑟2) − (𝑝 + Δ𝑝)(π𝑟2)⏟                
net pressure force

     +  𝑚𝑔⏟
weight

sin 𝜃       +  𝜏(2π𝑟Δ𝑙)⏟      
friction

= 0 

From the geometry, 

𝑚 = 𝜌(π𝑟2Δ𝑙),          sin 𝜃 = −
Δ𝑧

Δ𝑙
 

Hence: 

−Δ𝑝(π𝑟2) − 𝜌π𝑟2𝑔Δ𝑧 + 𝜏(2π𝑟Δ𝑙) = 0 

Dividing by the volume, π𝑟2Δ𝑙, 

−
Δ(𝑝 + 𝜌𝑔𝑧)

Δ𝑙
+ 2

𝜏

𝑟
= 0 

Writing 𝑝∗ = 𝑝 + 𝜌𝑔𝑧 for the piezometric pressure and rearranging for the shear stress: 

mg


z



L

p+p

p
direction of flow

r
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 𝜏 =
1

2
𝑟

Δ𝑝∗

Δ𝑙
 (4) 

 

Since the flow is fully-developed, the shear stress and the gradient of the piezometric pressure 

are independent of distance. For convenience write 𝐺 for the streamwise pressure gradient: 

 𝐺 = −
Δ𝑝∗

Δ𝑙
     = −

d𝑝∗

d𝑙
     (constant) (5) 

(The negative sign is included because we expect 𝑝∗ to drop along the pipe.) Hence, from (4), 

 𝜏 = −
1

2
𝐺𝑟 (6) 

where 

 𝐺 = −
d𝑝∗

d𝑙
     =

pressure drop

length
     =

𝜌𝑔ℎ𝑓

𝐿
 (7) 

𝐺 is the piezometric pressure gradient and ℎ𝑓 is the head lost by friction over length 𝐿. 

 

(6) applies to any fully-developed pipe flow, irrespective of whether it is laminar or turbulent. 

For laminar flow it can be used to derive the velocity profile, because 𝜏 can be related to the 

velocity gradient d𝑢/d𝑟 (Section 1.3). For turbulent flow an analytical velocity profile is not 

available, but gross parameters such as quantity of flow and head loss may be obtained if the 

wall shear stress 𝜏𝑤 can be related empirically to the dynamic pressure 1/2𝜌𝑉2 (Section 1.4). 

 

 

1.3 Laminar Pipe Flow  
 

Laminar flow through a circular pipe is called Poiseuille2 flow or Hagen3-Poiseuille flow. 

 

In laminar flow the shear stress is related to the velocity gradient: 

 𝜏 = 𝜇
d𝑢

d𝑟
 (8) 

Hence, from (6) and (8), 

d𝑢

d𝑟
= −

1

2

𝐺

𝜇
𝑟 

Integrating and applying the no-slip condition at the wall (𝑢 = 0 on 𝑟 = 𝑅), 

Laminar pipe-flow velocity profile 

 𝑢 =
𝐺

4𝜇
(𝑅2 − 𝑟2) (9) 

 

  

 
2 J.L.M Poiseuille (1799-1869); French physician who was interested in flow in blood vessels. 
3 G.L.H. Hagen; German engineer who, in 1839, measured water flow in long brass pipes and reported that there 

appeared to be two regimes of flow. 

R
r
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Example. Find, from the velocity distribution given above, 

(a) the centreline velocity, 𝑈0; 

(b) the average velocity, 𝑉; 

(c) the volumetric flow rate, 𝑄, in terms of head loss and pipe diameter; 

(d) the friction factor, 𝜆, defined by ℎ𝑓 = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
), as a function of Reynolds number, Re. 

 

Answer:  (a) 𝑈0 =
𝐺𝑅2

4𝜇
;   (b) 𝑉 =

1

2
𝑢0 =

𝐺𝑅2

8𝜇
;   (c) 𝑄 =

π

128

𝜌𝑔ℎ𝑓𝐷
4

𝜇𝐿
;   (d) 𝜆 =

64

Re
 

 

 

Part (d) of this example demonstrates that the friction factor 𝜆 is not constant for a given pipe. 

 

 

1.4 Turbulent Pipe Flow  
 

In turbulent flow one is usually interested in time-averaged quantities. “Velocity” usually 

implies time-averaged velocity and the shear stress 𝜏 is the time-averaged rate of transport of 

momentum per unit area: it is dominated by turbulent mixing rather than viscous stresses. 

 

In turbulent flow there is no longer an explicit relationship between mean stress 𝜏 and mean 

velocity gradient d𝑢/d𝑟 because a far greater transfer of momentum arises from the net effect 

of turbulent eddies than the much smaller viscous forces. Hence, to relate quantity of flow to 

head loss we require an empirical relation connecting the wall shear stress and the average 

velocity in the pipe. As a first step define a skin friction coefficient, 𝑐𝑓, by 

 𝑐𝑓 ≡
wall shear stress

dynamic pressure
     ≡

𝜏𝑤
1
2𝜌𝑉

2
 (10) 

Later, 𝑐𝑓 will be absorbed into a friction factor, 𝜆, to simplify the expression for head loss. 

 

For the length of pipe shown, the balance of forces along the axis in fully-developed flow is: 

−Δ𝑝 ×
𝜋𝐷2

4⏟      
net pressure force

     +      𝑚𝑔⏟
weight

sin 𝜃      −     𝜏𝑤 × π𝐷𝐿⏟      
wall friction

= 0 

From the geometry, 

𝑚 = 𝜌(
π𝐷2

4
× 𝐿),          sin 𝜃 = −

Δ𝑧

𝐿
 

Substituting these gives: 

 −Δ𝑝 ×
π𝐷2

4
− 𝜌𝑔Δ𝑧 ×

π𝐷2

4
= 𝜏𝑤 × π𝐷𝐿 

 −Δ(𝑝 + 𝜌𝑔𝑧) ×
π𝐷2

4
= 𝜏𝑤 × π𝐷𝐿 

Dividing by the cross-sectional area (π𝐷2/4), 

−Δ𝑝∗ = 4
𝐿

𝐷
𝜏𝑤 

L

mg 

 p+p

p


w

direction of flow
z
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Write: 

 𝜏𝑤 = 𝑐𝑓(
1

2
𝜌𝑉2) (definition of skin-friction coefficient) 

 

Substituting, and rearranging, gives the drop in piezometric pressure: 

|Δ𝑝∗| = 4𝑐𝑓
𝐿

𝐷
(
1

2
𝜌𝑉2) 

The quantity 4𝑐𝑓 is known as the (Darcy) friction factor and is denoted 𝜆. 

 

 

 

Darcy4-Weisbach5 Equation 

 |Δ𝑝∗| = 𝜆
𝐿

𝐷
(
1

2
𝜌𝑉2) (11) 

 pressure loss due to friction = 𝜆
𝐿

𝐷
× (dynamic pressure)  

 
Dividing by 𝜌𝑔 this can equally well be written in terms of head rather than pressure: 

 ℎ𝑓 = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
) (12) 

 head loss due to friction = 𝜆
𝐿

𝐷
× (dynamic head)  

 

*** Very important *** 

There is considerable disagreement about what is meant by “friction factor” and what symbol 

should be used to denote it. What is represented here by 𝜆 is also denoted 𝑓 by some authors 

and 4𝑓 by others!  Be very wary of the definition. You can usually distinguish it by the 

expression for friction factor in laminar flow: 64/Re with the notation here; 16/Re with the 

next-most-common alternative. 

 

 

It remains to specify 𝜆 for a turbulent pipe flow. Methods for doing so are discussed in Section 

1.5 and lead to the Colebrook-White equation. Since 𝜆 depends on both the relative roughness 

of the pipe, 𝑘𝑠/𝐷, and the flow velocity itself (through the Reynolds number Re ≡  𝑉𝐷/𝜈) 

either an iterative solution or a chart-based solution is usually required. 

 

Although the bulk velocity, 𝑉, appears in the head-loss equation, the more important quantity 

is the quantity of flow, 𝑄. These two variables are related, for circular pipes, by 

𝑄 = 𝑉𝐴     = 𝑉
π𝐷2

4
 

where 𝐷 is the pipe diameter. 

 
4 Henri Darcy (1803-1858); French engineer; conducted experiments on pipe flow. 
5 Julius Weisbach; German professor who, in 1850, published the first modern textbook on hydrodynamics. 
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At high Reynolds numbers 𝜆 tends to a constant (determined by surface roughness) for any 

particular pipe. In this regime compare: 

ℎ𝑓 ∝
𝑄2

𝐷5
     (turbulent flow) 

ℎ𝑓 ∝
𝑄

𝐷4
     (laminar flow) 

Note in both cases the very strong dependence (4th or 5th power) of the head loss on the diameter 

of the pipe. 

 

 

1.5 Expressions for the Darcy Friction Factor, 𝝀 
 

Laminar Flow (theory) 

𝜆 =
64

Re
 

 

 

Turbulent Flow (smooth or rough pipes) 

 

Nikuradse6 (1933) used sand grains to roughen pipe surfaces. He defined a relative roughness 

𝑘𝑠/𝐷, where 𝑘𝑠 is the sand-grain size and 𝐷 is the diameter of the pipe. His experimental curves 

for friction factor (see, e.g., White’s textbook) showed 5 regions: 

 1. laminar flow (Re < Recrit ≈ 2000; roughness irrelevant) 

 2. laminar-to-turbulent transition  (approximately 2000 < Re < 4000) 

 3. smooth-wall turbulent flow (𝜆 is a function of Reynolds number only) 

 4. fully-rough-wall turbulent flow (𝜆 is a function of relative roughness only) 

 5. intermediate roughness (𝜆 is a function of both Re and 𝑘𝑠/𝐷) 

 

In the smooth- or rough-wall limits, Prandtl7 and Von Kármán8 gave, respectively: 

 Smooth-wall turbulence: 
1

√𝜆
= 2.0 log10 (

Re√𝜆

2.51
) 

 Rough-wall turbulence: 
1

√𝜆
= 2.0 log10 (

3.7𝐷

𝑘𝑠
) 

 

 

However, in practice, many commercial pipes lie in the region where both roughness and 

Reynolds number are important, so that the friction factor is not constant for any particular 

pipe, but depends on the flow rate. Colebrook and White (1937) combined smooth- and rough-

wall turbulence laws into a single formula, the Colebrook-White equation. 

 

 
6 Johann Nikuradse (1894-1979); PhD student of Prandtl. 
7 Ludwig Prandtl (1875-1953); German engineer; introduced boundary-layer theory. 
8 Theodore von Kármán (1881-1963); Hungarian mathematician and aeronautical engineer; gave his name to the 

double row of vortices shed from a 2-d bluff body and now known as a Kármán vortex street. 
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Colebrook-White Equation: 

 
1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51

Re√𝜆
) (13) 

 

This is the main formula for the friction factor in turbulent flow. The main difficulty is that it 

is implicit (𝜆 appears on both sides of the equation) and so must be solved iteratively. There 

are several explicit approximations to (13), accurate to within a few percent for realistic ranges 

of Reynolds number – see the references in Massey and White’s textbooks. 

 

 

Equivalent Sand Roughness 

 

For commercial pipes the pattern of surface roughness may be very different to that in the 

artificially-roughened surfaces of Nikuradse. Colebrook (1939) and Moody (1944) gathered 

data to establish effective roughness for typical pipe materials. Typical values of 𝑘𝑠 are given 

in the Appendix. 

 

 

Moody Chart 

 

Graphical solutions of (13) exist. The most well known is the Moody chart (𝜆 versus Re for 

various values of relative roughness 𝑘𝑠/𝐷). The curves are just solutions of the Colebrook-

White equation. My home-produced version is shown below. 

 

 

0.01

0.10

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

l

Re = VD/n
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0.03
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0.08

0.09
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T
ra

n
si

ti
o

n

0.03
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0.0001

0.000050.00001

smooth-walled limit

0.0002

0.002

0.05

ks/D

0.05
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1.6 Other Losses 
 

Pipeline systems are subject to two sorts of losses: 

• wall-friction, contributing a continuous fall in head over a large distance; 

• minor losses due to abrupt changes in geometry; e.g. pipe junctions, valves, etc. 

 

Each type of loss can be quantified using a loss coefficient, 𝐾, the ratio of pressure loss to 

dynamic pressure (or head loss to dynamic head): 

 pressure loss = 𝐾(
1

2
𝜌𝑉2) 

(14) 

 head loss = 𝐾(
𝑉2

2𝑔
) 

 

Typical values of 𝐾 are given below. 

 

Commercial pipe fittings (approximate) 

Fitting 𝐾 

Globe valve 10 

Gate valve – wide open 0.2 

Gate valve – ½ open 5.6 

90 elbow 0.9 

Side outlet of T-junction 1.8 

 

Entry/exit losses 

Configuration 𝐾 

Bell-mouthed entry 0 

Abrupt entry 0.5 

Protruding entry 1.0 

Bell-mouthed exit 0.2 

Abrupt enlargement 1.0 

Minor losses are a “one-off” loss, occurring at a single point. Frictional losses are proportional 

to the length of pipe, L, and, in the grand scheme of things, usually dominate. For long 

pipelines, minor losses are often ignored. 
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1.7 Pipeline Calculations 
 

The objective is to establish the relationship between available head and quantity of flow. 

 Available head, 𝐻1 − 𝐻2 = sum of head losses along the pipe (15) 

 

The available head is the overall drop in head from start to end of the pipe, usually determined 

by still-water levels, sometimes supplemented by additional pumping head. Head losses are 

proportional to the dynamic head, 𝑉2/2𝑔. Fluid then flows through the pipe at precisely the 

right velocity, 𝑉, (or discharge, 𝑄) that (15) is satisfied. 

 

Pipe parameters are illustrated below. Although a reservoir is indicated at each end of the pipe, 

this is simply a diagrammatic way of saying “a point at which the total head is known”. 

 

 
 

Typical pipeline problems are: given two of the following parameters, find the third: 

 head loss: ℎ 

 quantity of flow: 𝑄 

 diameter: 𝐷 

Other parameters: length 𝐿, roughness 𝑘𝑠, kinematic viscosity 𝜈 and minor loss coefficient 𝐾. 

 

Calculations involve: 

(1) Head losses 

E.g. with friction factor, 𝜆, and minor-loss coefficient, 𝐾: 

 ℎ = (𝜆
𝐿

𝐷
+ 𝐾)(

𝑉2

2𝑔
) (16) 

 

(2) Expressions for loss coefficients 

E.g. the Colebrook-White  equation for the friction factor: 

 
1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51

Re√𝜆
) (17) 

 

In most problems (16) and/or (17) must be solved iteratively. The exception is the calculation 

of 𝑄 when ℎ and 𝐷 are known (and minor losses neglected) because in this special case (Type 

1 in the examples which follow) the Reynolds number can be expanded to give: 

 
1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51𝜈

𝐷√𝜆𝑉2
) (18) 

If minor-loss coefficient 𝐾 = 0 then the combination 𝜆𝑉2 can be found from (16) and hence 𝜆 

can be found. Knowledge of both 𝜆𝑉2and 𝜆 gives 𝑉 and thence 𝑄. 

h

L

D
Q
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Inlet/Outlet Head 

 

If there is a free surface in still water then both gauge pressure and velocity there are zero and 

so the total head equals the surface elevation: 𝐻 = 𝑧. If, however, the pipe discharges to 

atmosphere as a free jet then the total head includes the dynamic head, 𝑉2/2𝑔. 

 

 

If the discharge is to another reservoir, then 

(with a well-rounded exit): 

 𝐻1 = 𝑧1,          𝐻2 = 𝑧2 

and the loss in head is just the difference in 

still-water levels: 

ℎ = 𝑧1 − 𝑧2 

 

 

Alternatively, if the discharge is a free jet to 

atmosphere, then 

𝐻1 = 𝑧1,          𝐻2 = 𝑧2 + 𝑉2
2/2𝑔 

and the loss in head is 

ℎ = 𝑧1 − 𝑧2 − 𝑉2
2/2𝑔 

Thus, in terms of piezometric head you 

could, if you preferred, treat this as an “exit loss” with coefficient 1.0. 

 

 

The second case also applies if there is an abrupt exit into a tank, since flow separation means 

that the pressure in the jet leaving the pipe is essentially the hydrostatic pressure in the tank 

(piezometric head 𝑧2) but there is still a dynamic head 𝑉2
2/2𝑔, whose energy is ultimately 

dissipated in the receiving tank. Again, this is equivalent to an exit loss coefficient 1.0. For 

long pipelines, however, this is usually negligible compared with the frictional losses. 

 

 

z1

z2

z1

z2 V2
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Flow problem: diameter, 𝐷, and head difference, ℎ, known; find the quantity of flow, 𝑄. 

 

Example. A pipeline 10 km long, 300 mm diameter and with roughness 0.03 mm conveys 

water from a reservoir (top water level 850 m AOD) to a water treatment plant (700 m AOD). 

Assuming that the reservoir remains full, and neglecting minor losses, estimate the quantity 

of flow. Take 𝜈 = 1.0 × 10–6 m2 s−1. 

 

 

Solution. 

List known parameters: 

 𝐿 = 10000 m 

 𝐷 = 0.3 m 

 ℎ = 150 m 

 𝑘𝑠 = 3 × 10
–5 m 

 𝜈 = 1.0 × 10−6 m2 s−1 

 

Since 𝐷 and ℎ are known, the head-loss equation enables us to find 𝜆𝑉2: 

 ℎ = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
)  

 𝜆𝑉2 =
2𝑔𝐷ℎ

𝐿
     =

2 × 9.81 × 0.3 × 150

10000
     = 0.08829 m2s−2  

 

Rewriting the Colebrook-White equation: 

1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51

Re√𝜆
)

= −2.0 log10 (
𝑘𝑠
3.7𝐷

+
2.51𝜈

𝐷√𝜆𝑉2
)

= −2.0 log10 (
3 × 10−5

3.7 × 0.3
+
2.51 × 1.0 × 10−6

0.3√0.08829
)

= 8.516

 

Hence, 

𝜆 =
1

8.5162
     = 0.01379 

Knowledge of both 𝜆𝑉2 and 𝜆 gives 

𝑉 = √
𝜆𝑉2

𝜆
     = √

0.08829

0.01379
     = 2.530 m s−1 

Finally, the quantity of flow may be computed as velocity  area: 

𝑄 = 𝑉𝐴     = 𝑉 (
π𝐷2

4
)     = 2.530 ×

π × 0. 32

4
     = 0.1788 m3 s−1 

 

Answer: quantity of flow = 0.179 m3 s–1. 
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Head-loss problem: diameter, 𝐷, and quantity of flow, 𝑄, known; find the head loss, ℎ. 

 

Example. The outflow from a pipeline is 30 L s–1. The pipe diameter is 150 mm, length 

500 m and roughness estimated at 0.06 mm. Find the frictional head loss along the pipe. 

 

Solution. 

List known parameters: 

 𝑄 = 0.03 m3 s–1 

 𝐿 = 500 m 

 𝐷 = 0.15 m 

 𝑘𝑠 = 6 × 10
–5 m 

 𝜈 = 1.0 × 10–6 m2 s–1 

 

Inspect the head-loss equation: 

ℎ = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
) 

We can get 𝑉 from 𝑄 and 𝐷, but to find ℎ we will require the friction factor. 

 

First 𝑉: 

𝑉 =
𝑄

𝐴
     =

𝑄

π𝐷2/4
     =

0.03

π × 0.152/4
     = 1.698 m s−1 

Inspect the Colebrook-White equation: 

1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51

Re√𝜆
) 

To use this we require the Reynolds number: 

Re =
𝑉𝐷

𝜈
     =

1.698 × 0.15

1.0 × 10−6
     = 254700 

Substituting values for 𝑘𝑠, 𝐷 and Re in the Colebrook-White equation and rearranging for 𝜆: 

𝜆 =
1

[2.0 × log10( 1.081 × 10−4 +
9.854 × 10−6

√𝜆
)]
2 

Iterating from an initial guess, with successive values substituted into the RHS: 

 Initial guess: 𝜆 = 0.01 

 Successive iterations: 𝜆 = 0.01841, 0.01784, 0.01787, 0.01787, ... 

 

 𝜆 can then be substituted in the head-loss equation to derive ℎ: 

ℎ = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
)     = 0.01787 ×

500

0.15
×
1.6982

2 × 9.81
     = 8.753 m 

 

Answer: head loss = 8.75 m. 
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Sizing problem: quantity of flow, 𝑄, and head difference, ℎ, known; find the required 

diameter, 𝐷. 

 

Example. A flow of 0.4 m3 s–1 is to be conveyed from a headworks at 1050 m AOD to a 

treatment plant at 1000 m AOD. The length of the pipeline is 5 km. Estimate the required 

diameter, assuming that 𝑘𝑠 = 0.03 mm. 

 

 

Solution. 

List known parameters: 

 𝑄 = 0.4 m3 s−1 
 ℎ = 50 m 

 𝐿 = 5000 m 

 𝑘𝑠 = 3 × 10
−5 m 

 𝜈 = 1.0 × 10–6 m2 s–1 

 

Before iterating, try to write 𝐷 in terms of 𝜆. From the head-loss equation: 

 ℎ = 𝜆
𝐿

𝐷
(
𝑉2

2𝑔
)     =

𝜆𝐿

2𝑔𝐷
(
𝑄

𝐴
)
2

     =
𝜆𝐿

2𝑔𝐷
(

𝑄

π𝐷2/4
)
2

     =
8𝐿𝑄2𝜆

π2𝑔𝐷5
  

 𝐷 = (
8𝐿𝑄2

π2𝑔ℎ
𝜆)

1/5

  

Substituting values of 𝑄, 𝐿 and ℎ gives a working expression (with 𝐷 in metres): 

 𝐷 = (1.322 𝜆)1/5 (*) 

 

The Colebrook-White equation for 𝜆 is: 

1

√𝜆
= −2.0 log10 (

𝑘𝑠
3.7𝐷

+
2.51

Re√𝜆
) 

The Reynolds number can be written in terms of the diameter 𝐷: 

Re =
𝑉𝐷

𝜈
     = (

𝑄

π𝐷2/4
)
𝐷

𝜈
     =

4𝑄

π𝜈𝐷
     =

5.093 × 105

𝐷
 

Substituting this expression for Re we obtain an iterative formula for 𝜆: 

 
𝜆 =

1

[2.0 × log10(
8.108 × 10−6

𝐷 +
4.928 × 10−6𝐷

√𝜆
)]
2 

(**) 

 

Iterate (*) and (**) in turn, until convergence. 

Guess: 𝜆 = 0.01  𝐷 = 0.4210 m 

Iteration 1: 𝜆 = 0.01293  𝐷 = 0.4432 m 

Iteration 2: 𝜆 = 0.01276  𝐷 = 0.4420 m 

Iteration 3: 𝜆 = 0.01277  𝐷 = 0.4421 m 

Iteration 4: 𝜆 = 0.01277  𝐷 = 0.4421 m 
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Answer: required diameter = 0.442 m. 

 

In practice, commercial pipes are only made with certain standard diameters and the next 

available larger diameter should be chosen. 

 

 

 

Combined Pipe Friction and Minor Losses 

 

In many circumstances, “minor” losses (including exit losses) actually contribute a significant 

proportion of the total head loss and must be included in the head-loss equation 

ℎ = (𝜆
𝐿

𝐷
+ 𝐾)

𝑉2

2𝑔
 

An iterative solution in conjunction with the Colebrook-White equation is then inevitable, 

irrespective of the type of problem. 

 

 

Example. 

A reservoir is to be used to supply water to a factory 5 km away. The water level in the 

reservoir is 60 m above the factory. The pipe lining has roughness 0.5 mm. Minor losses due 

to valves and pipe fittings can be accommodated by a loss coefficient 𝐾 = 80. Calculate the 

minimum diameter of pipe required to convey a discharge of 0.3 m3 s–1. 

 

Answer: 0.443 m 
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1.8 Energy and Hydraulic Grade Lines 
 

Energy grade lines and hydraulic grade lines are graphical means of portraying the energy 

changes along a pipeline. 

 

Three elevations may be drawn: 

 pipe centreline 𝑧 geometric height 

 hydraulic grade line (HGL) 
𝑝

𝜌𝑔
+ 𝑧 piezometric head 

 energy grade line (EGL) 
𝑝

𝜌𝑔
+ 𝑧 +

𝑉2

2𝑔
 total head 

 

𝑝 is the gauge pressure (i.e. difference between the pressure and atmospheric pressure). 

 

Illustrations 

 

 

 

Pipe friction only 

 

 

 

 

 

 

 

 

Pipe friction with minor losses 

(exaggerated), including change 

in pipe diameter. 

 

 

 

 

 

 

 

 

 

Pumped system 

 

 

 

 

energy grade line
hydraulic grade line

pipeline
p/g

V /2g
2reservoir

reservoir

EGL
HGL

pipeline

entry loss

exit loss

EGL

HGL

pipeline

pump
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Energy Grade Line (EGL) 

 

• Shows the change in total head along the pipeline. 

 

• Starts and ends at still-water levels. 

 

• Steady downward slope reflects pipe friction. 

 Slope change if pipe radius changes; (frictional losses less at lower velocity). 

 Small discontinuities correspond to minor losses. 

 Large discontinuities correspond to turbines (loss of head) or pumps (gain of head). 

 

• The EGL represents the maximum height to which water may be delivered at 

atmospheric pressure. 

 

 

Hydraulic Grade Line (HGL) 

 

• Shows the change in piezometric head along the pipeline. 

 

• For pipe flow the HGL lies a distance 𝑝/𝜌𝑔 above the pipe centreline. Thus, the 

difference between pipe elevation and hydraulic grade line gives the static pressure, 𝑝. 

If the HGL drops below pipe elevation this means negative gauge pressures (i.e. less 

than atmospheric). This is generally undesirable since: 

  – extraneous matter may be sucked into the pipe through any leaks; 

 – for very negative gauge pressures, dissolved gases may come out of solution and 

cause cavitation damage. 

 

 An HGL more than 𝑝atm/𝜌𝑔 (≈ 10 m of water) below the pipeline is impossible. 

 

• The HGL is the height to which the liquid would rise in a piezometer tube. 

 

• For open-channel flows (as opposed to pipes), pressure is atmospheric (i.e. 𝑝 = 0) at 

the surface. The HGL is then simply the height of the free surface. 

 

 

The EGL is always higher than the HGL by an amount equal to the dynamic head 𝑉2/2𝑔. For 

uniform pipes (constant 𝑉), the two grade lines are parallel. 
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Example. (Exam 2016) 

The two reservoirs illustrated are used for water storage and supply. The water levels in the 

reservoirs are constant and equal to 70 m AOD in the lower reservoir (Reservoir A) and 82 m 

AOD in the upper reservoir (Reservoir B). The reservoirs are connected by a 1.2 km long 

pipe with diameter 𝐷 = 200 mm and wall roughness 𝑘𝑠 = 0.2 mm. A pump is installed in 

the pipe as illustrated in the figure. 

 
 

Neglecting minor losses, 

(a) sketch the qualitative behaviour of the energy and hydraulic grade lines between 

Reservoir A and Reservoir B if the system operates under gravity alone (i.e. without 

the pump); 

 

(b) sketch the qualitative behaviour of the energy and hydraulic grade lines between 

Reservoir A and Reservoir B when the pump is operating and the flow direction is 

from Reservoir A to Reservoir B; 

 

(c) find the pump head required to deliver a discharge of 0.025 m3 s−1 to reservoir B. 

 

 

Solution. 

(a) 

 
 

(b) 

 
 

Reservoir A

Reservoir B

P

70 m

82 m

energy grade line

hydraulic grade line

Reservoir A

Reservoir B

P

70 m

82 m

hydraulic grade line

energy grade line

Reservoir A

Reservoir B

P

70 m

82 m
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(c) 

𝐿 = 1200 m 

𝐷 = 0.2 m 

𝑘𝑠 = 2 × 10
−4 m 

𝑄 = 0.025 m3 s−1 

(𝜈 = 1.0 × 10−6 m2 s−1) 
 

From the flow rate, the bulk velocity is 

𝑉 =
flow rate

area
   =

𝑄

π𝐷2/4
    =

4 × 0.025

π × 0.22
    = 0.7958 m s−1 

and the Reynolds number is 

Re =
𝑉𝐷

𝜈
    =

0.7958 × 0.2

1.0 × 10−6
    = 159200 

 

The pump head is required to provide the static lift (ℎ𝑠 = 82 − 70 = 12 m) and overcome 

frictional losses (ℎ𝑓). 

 

Inspect the head-loss equation: 

ℎ𝑓 = 𝜆
𝐿

𝐷

𝑉2

2𝑔
 

ℎ𝑓 will be known if we can find 𝜆. 

 

Rearranging the Colebrook-White equation: 

𝜆 =
1

[2.0 log10 (
𝑘𝑠
3.7𝐷 +

2.51

Re√𝜆
)]
2      =

1

[2.0 log10 (
2 × 10−4

3.7 × 0.2 +
2.51

159200√𝜆
)]
2 

Hence, 

𝜆 =
1

[2.0 log10 (2.703 × 10
−4 +

1.577 × 10−5

√𝜆
)]
2 

Iterating (from, e.g., 0.01) gives 𝜆 = 0.02135. 

 

Hence, 

ℎ𝑓 = 𝜆
𝐿

𝐷

𝑉2

2𝑔
     = 0.02135 ×

1200

0.2
×
0.79582

2 × 9.81
     = 4.135 m 

The pump head required is 

𝐻pump = ℎ𝑠 + ℎ𝑓     = 12 + 4.135    = 16.14 m 

 

Answer: 16.1 m. 
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1.9 Simple Pipe Networks 
 

For all pipe networks the following basic principles apply: 

(1) continuity at junctions (total flow in = total flow out); 

(2) the head is uniquely defined at any point; 

(3) each pipe satisfies its individual resistance law (i.e. head-loss vs discharge relation):  

  ℎ = 𝛼𝑄2 

  

The last of these comes from the proportionality between head loss and dynamic head, i.e. 

ℎ = (𝜆
𝐿

𝐷
+ 𝐾)

𝑉2

2𝑔
 ,          where          𝑉 =

𝑄

π𝐷2/4
 

𝜆 is the friction factor and 𝐾 is the sum of minor loss coefficients. 

 

For hand calculations, 𝛼 is often taken as a constant for each pipe. (A computer program would 

be able to take into account its slight variation with flow rate). 

 

There is a useful analogy with electrical networks: 

 head, 𝐻  ↔  potential, 𝑉 

 discharge, 𝑄  ↔  current, 𝐼 
 pipe ↔ resistor 

However, the hydraulic equivalent of Ohm’s law is usually non-linear: 

 head loss 𝐻 ∝ 𝑄2  ↔  potential difference Δ𝑉 ∝ 𝐼 
 

 

1.9.1 Pipes in Series 
 

 
 

 𝑄1 = 𝑄2 same flow  

 𝐻 = Δ𝐻1 + Δ𝐻2 add the head changes 

 

 

 

1.9.2 Pipes in Parallel 
 

 
 

 Δ𝐻1 = Δ𝐻2 same head change 

 𝑄 = 𝑄1 + 𝑄2 add the flows 

1
2

1

2
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1.9.3 Branched Pipes – Single Junction 
 

The simplest case is three pipes meeting at a single junction. 

 

If the flows are known then the heads can be determined (relative to the head at one point) by 

calculating the head losses along each pipe. 

 

If, however, the heads 𝐻𝐴, 𝐻𝐵 and 𝐻𝐶 are known 

(for example, from the water levels in reservoirs) 

then we have a classic problem known as the three-

reservoir problem. (3 is just the smallest number 

that makes this non-trivial. Obviously, the 𝑛-

reservoir problem can be solved in the same way, 

but with a proportionately larger amount of work.) 

 

The head at J is adjusted (iteratively) to satisfy: 

 

(a) the loss equation (ℎ = 𝛼𝑄2) for each pipe; i.e: 

|𝐻𝐽 − 𝐻𝐴| = 𝛼𝐽𝐴𝑄𝐽𝐴
2           ⟺           𝑄𝐽𝐴 = ±√

|𝐻𝐽 − 𝐻𝐴|

𝛼𝐽𝐴
 

|𝐻𝐽 − 𝐻𝐵| = 𝛼𝐽𝐵𝑄𝐽𝐵
2           ⟺           𝑄𝐽𝐵 = ±√

|𝐻𝐽 −𝐻𝐵|

𝛼𝐽𝐵
 

|𝐻𝐽 − 𝐻𝐶| = 𝛼𝐽𝐶𝑄𝐽𝐶
2           ⟺           𝑄𝐽𝐶 = ±√

|𝐻𝐽 − 𝐻𝐶|

𝛼𝐽𝐶
 

(b) continuity at the junction J: 

 net flow 𝑜𝑢𝑡 of junction = 𝑄𝐽𝐴 + 𝑄𝐽𝐵 + 𝑄𝐽𝐶 = 0 

 

Note the sign convention: 𝑄𝐽𝐴 is the flow from J to A; it will be negative if the flow actually 

goes from A to J. The direction of flow in any pipe is always from high head to low head. 

 

Although we consider only 3 reservoirs, the problem and its solution method clearly generalise 

to any number of reservoirs (and, in fact, to any number of junctions). 

 

Solution Procedure 

 

 (0) Establish the head-loss vs discharge (resistance) equations for each pipe; 

(1) guess an initial head at the junction, 𝐻𝐽 ; 

(2) calculate flow rates in all pipes (from the head differences); 

(3) calculate net flow out of J; 

(4) as necessary, adjust 𝐻𝐽 to reduce any flow imbalance and repeat from (2). 

 

If the direction of flow in a pipe, say JB, is not obvious then a good initial guess is to set 𝐻𝐽 =

𝐻𝐵 so that there is initially no flow in this pipe. The first flow-rate calculation will then establish 

A

C

J
B

?
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whether 𝐻𝐽 should be lowered or raised and hence the direction of flow in this pipe. 

 

 

Example. 

Reservoirs A, B and C have constant water levels of 150, 120 and 90 m respectively above 

datum and are connected by pipes to a single junction J at elevation 125 m. The length (L), 

diameter (𝐷), friction factor (𝜆) and minor-loss coefficient (𝐾) of each pipe are given below. 

 

Pipe 𝑳 (𝐦) 𝑫 (𝐦) 𝝀 𝑲 

JA 1600 0.3 0.015 40 

JB 1600 0.2 0.015 25 

JC 2400 0.25 0.025 50 

 

(a) Calculate the flow in each pipe. 

 

(b) Calculate the reading of a Bourdon pressure gauge attached to the junction J. 

 

 

 

Solution. 

First, prepare head-loss vs discharge relations for each pipe: 

 ℎ = (𝜆
𝐿

𝐷
+ 𝐾)

𝑉2

2𝑔
         where          𝑉 =

𝑄

𝐴
    =

𝑄

π𝐷2/4
  

 ℎ = (𝜆
𝐿

𝐷
+ 𝐾)

8

π2𝑔𝐷4
× 𝑄2  

 

Substituting 𝐿, 𝐷, 𝜆 and 𝐾 for each pipe we obtain the head-loss vs discharge relationships: 

 Pipe AJ: |𝐻𝐽 − 𝐻𝐴| = 1224𝑄𝐽𝐴
2  or 𝑄𝐽𝐴 = ±√

|𝐻𝐽 − 150|

1224
 

 Pipe BJ: |𝐻𝐽 − 𝐻𝐵| = 7488𝑄𝐽𝐵
2  or 𝑄𝐽𝐵 = ±√

|𝐻𝐽 − 120|

7488
 

 Pipe CJ: |𝐻𝐽 − 𝐻𝐶| = 6134𝑄𝐽𝐶
2  or 𝑄𝐽𝐶 = ±√

|𝐻𝐽 − 90|

6134
 

 

The value of 𝐻𝐽 is varied until the net flow out of J is 0. 

• If there is net flow into the junction then 𝐻𝐽 needs to be raised. 

• If there is net flow out of the junction then 𝐻𝐽 needs to be lowered. 

After the first two guesses at 𝐻𝐽, subsequent iterations are guided by interpolation.  

 

The working is conveniently set out in a table. 
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𝐻𝐽  

(m) 

𝑄𝐽𝐴 

(m3 s–1) 

𝑄𝐽𝐵 

(m3 s–1) 

𝑄𝐽𝐶 

(m3 s–1) 

Net flow out of J 

(m3 s–1) 

 

= ±√
|𝐻𝐽 − 150|

1224
 = ±√

|𝐻𝐽 − 120|

7488
 = ±√

|𝐻𝐽 − 90|

6134
 

= 𝑄𝐽𝐴 + 𝑄𝐽𝐵 + 𝑄𝐽𝐶 

120 – 0.1566 0.0000 0.0699 – 0.0867 

140 – 0.0904 0.0517 0.0903 0.0516 

132.5 – 0.1196 0.0409 0.0832 0.0045 

131.8 – 0.1219 0.0397 0.0825 0.0003 

 

This is sufficient accuracy (0.0003/0.1219 or about 0.25%). The quantity of flow in each 

pipe is given in the bottom row of the table, with the direction implied by the sign. 

 

 

(b) A Bourdon gauge measures absolute pressure. From the piezometric head at the junction: 

𝐻𝐽 =
𝑝

𝜌𝑔
+ 𝑧 

where 𝑝 is the gauge pressure. Hence, 

𝑝 = 𝜌𝑔(𝐻𝐽 − 𝑧)     = 1000 × 9.81 × (131.8 − 125)    = 66708 Pa 

 

Taking atmospheric pressure as 101325 Pa, the absolute pressure is then 

101325 + 66708 = 168033 Pa 

 

Answer: 1.68 bar. 
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1.10 Complex Pipe Networks (Optional) 
 

1.10.1 Loop Method (Hardy-Cross, 1936) 
 

Used for networks made up of a series of closed loops, where the external flows are known. 

 

 

Basic Idea 

 

Start with any flow satisfying continuity. Apply iterative 

flow corrections 𝛿𝑄 until the net head change round each 

loop is 0. 

 

Adopt a suitable sign convention (e.g. 𝑄 positive if 

clockwise) in each loop. The signed head loss for any 

particular pipe is then 

 ℎ = 𝑠𝛼𝑄2 (19) 

with the sign function 𝑠 being +1 if 𝑄 is positive and −1 if 𝑄 is negative.  

 

Initially, the net head loss round a closed loop probably won’t be 0. To try to achieve this after 

perturbing the flow in all pipes of a loop by 𝛿𝑄 require 

∑𝑠𝛼(𝑄 + 𝛿𝑄)2 = 0

loop

 

where 𝛿𝑄 is the same for every pipe in that loop. Expanding: 

∑𝑠𝛼𝑄2 + 2(∑𝑠𝛼𝑄)𝛿𝑄 + (∑𝑠𝛼) 𝛿𝑄2 = 0 

Neglecting the second-order 𝛿𝑄2 term, and noting that 𝑠𝑄 = |𝑄|, leads to a flow correction for 

this loop of 

 𝛿𝑄 = −
∑𝛼𝑄|𝑄|

2∑𝛼|𝑄|
 (20) 

   

This update is applied successively to every pipe in the loop. 

 

 

Algorithm 

 

Divide the network into closed loops. 

Start with any flow satisfying continuity. 

 

For each loop in turn: 

• calculate 𝛿𝑄 using equation (20); 

• update all pipes in this loop by 𝛿𝑄. 

 

Repeat until the net head change around all loops is sufficiently small. 

 

An example with two loops is given on the Example Sheet. 

loop 1

loop 2
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1.10.2 Nodal Method (Cornish, 1939) 
 

Used for loops or branches where the external heads are known. In 

essence, this is a generalisation of the iterative technique for the 𝑛-

reservoir problem with a more algorithmic head increment at each 

junction and several junctions whose head increments are 

connected by simultaneous equations. 

 

Basic Idea 

 

Start with guessed heads 𝐻𝑖 at each internal junction and calculate 

the resulting flow in each pipe. Apply iterative head corrections 𝛿𝐻𝑖 
so as to satisfy continuity at each junction. 

 

As in the previous subsection, head changes at junctions 𝑖 and 𝑗 cause a change in the flow 

between them: 

 𝛿𝐻𝑖 − 𝛿𝐻𝑗 = 2𝑠𝑖𝑗𝛼𝑖𝑗𝑄𝑖𝑗𝛿𝑄𝑖𝑗      = 2
𝐻𝑖 − 𝐻𝑗

𝑄𝑖𝑗
𝛿𝑄𝑖𝑗 (21) 

where 𝑄𝑖𝑗 is the flow rate from the 𝑖th node to the 𝑗th node, with appropriate sign. 

 

Initially, the net outflow at the 𝑖th junction won’t be 0; to try to achieve this we aim to perturb 

the flow so that 

∑(𝑄𝑖𝑗 + 𝛿𝑄𝑖𝑗) = 0

𝑗≠𝑖

,     𝑖 = 1, 2, 3,⋯ 

or 

 ∑𝑄𝑖𝑗
𝑗≠𝑖

+∑
𝑄𝑖𝑗

2(𝐻𝑖 − 𝐻𝑗)
(𝛿𝐻𝑖 − 𝛿𝐻𝑗)

𝑗≠𝑖

= 0,     𝑖 = 1, 2, 3,⋯ (22) 

  

Taken over all junctions 𝑖 this gives a set of simultaneous equations for the 𝛿𝐻𝑖. 
 

A 2-junction example is given on the Example Sheet. 

H1 H2

H3 H4
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2. OPEN-CHANNEL FLOW 
 

Flow in open channels (e.g. rivers, canals, guttering, ...) and partially-full closed conduits (e.g. 

sewers) is characterised by the presence of a free surface where the pressure is atmospheric. 

 

Unlike pipe flow, open-channel flow is always driven by gravity, not pressure. 

  
PIPE FLOW  OPEN-CHANNEL FLOW  

Fluid:  LIQUIDS or GASES  LIQUIDS (free surface)  

Driven by:  PRESSURE, GRAVITY or BOTH  GRAVITY (down slope)  

Size:  DIAMETER  HYDRAULIC RADIUS  

Volume:  FILLS pipe  Depends on DEPTH  

Equations:  DARCY-WEISBACH (head loss)  

COLEBROOK-WHITE (friction factor)  

MANNING’S FORMULA  

 

 

2.1 Normal Flow 
 

The flow is uniform if the velocity profile does not change along the channel. (This is at best 

an approximation for natural channels like rivers where the channel cross-section changes.) 

The flow is steady if it does not change with time. 

 

Steady uniform flow is called normal flow and the depth of water is called the normal depth. 

The normal depth, ℎ, depends on the discharge, 𝑄. 

 

 
 

In normal flow, equal hydrostatic pressure forces at any cross-section mean no net pressure 

force. Hence, the downslope component of weight balances bed friction; 

 

Note. 

The following assumes the slope to be sufficiently small for there to be negligible difference 

between the depth ℎ measured vertically (which determines the energy level) and that 

perpendicular to the bed of the channel (which determines the flow rate). 

hf

L

h

HGL (free surface):  p = 0

EGLV
2g
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2.2 Hydraulic Radius and the Drag Law 
 

In both open channels and partially-full pipes, wall friction occurs 

only along the wetted perimeter. 

 

Let 𝐴 be the cross-sectional area occupied by fluid and 𝑃 the wetted 

perimeter.  

 

 

For steady, uniform flow, the component of 

weight down the slope balances bed friction: 

(𝜌𝐴𝐿)𝑔 sin 𝜃 = 𝜏𝑏(𝑃𝐿) 

where 𝜏𝑏 is the average bed stress. Hence, 

𝜏𝑏 = 𝜌𝑔 (
𝐴

𝑃
) sin 𝜃 

Define: 

Hydraulic radius 

 𝑅ℎ ≡
𝐴

𝑃
     =

cross-sectional area

wetted perimeter
 (23) 

Note that, in general, the hydraulic radius depends on depth. 

 

Hence, 

Normal flow relationship 

 𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆 (24) 

where 𝑆 (= drop  length) is the slope. (We have assumed tan 𝜃 ≈ 𝜃 ≈ sin 𝜃 for small angles.) 

 

Examples. 

(1) For a circular pipe running full, 

 𝑅ℎ =
𝐴

𝑃
     =

π𝑅2

2π𝑅
     =

1

2
𝑅 (25) 

i.e. for a full circular pipe, the hydraulic radius is half the geometric radius. (Sorry! Just 

one of those things!) As a result, it is common to define a hydraulic diameter, 𝐷ℎ, by 

𝐷ℎ = 4𝑅ℎ 

 

(2) For a rectangular channel of width 𝑏 with water depth ℎ, 

𝑅ℎ =
𝐴

𝑃
     =

𝑏ℎ

𝑏 + 2ℎ
     =

ℎ

1 + 2ℎ/𝑏
 

 For a wide channel, ℎ/𝑏 ≪ 1, and hence 

𝑅ℎ = ℎ 

i.e. in a wide channel, 𝑅ℎ is equal to the depth of flow. 

 

To progress we need an expression for the average bed stress 𝜏𝑏. 

A

P

b 

mg

L



 

Hydraulics 2 T2-28 David Apsley 

 

2.3 Friction Laws – Chézy and Manning’s Formulae 
 

From the balance of forces above: 

𝜏𝑏 = 𝜌𝑔𝑅ℎ𝑆 

In principle, a (skin-)friction coefficient can be used to relate the (average) bed shear stress to 

the dynamic pressure. Hence, 

 𝑐𝑓(
1

2
𝜌𝑉2) = 𝜌𝑔𝑅ℎ𝑆 (26) 

 

Friction factors 𝜆 = 4𝑐𝑓 based on the Colebrook-White equation (using 4𝑅ℎ as the hydraulic 

diameter) are unsatisfactory for open conduits because the shear stress is not constant on the 

wetted perimeter. Engineers use simpler empirical formulae due to Chézy9 and Manning10.  

 

Rearranging equation (26) gives: 

𝑉2 =
2𝑔

𝑐𝑓
𝑅ℎ𝑆 

whence: 

Chézy’s Formula: 

 𝑉 = 𝐶√𝑅ℎ𝑆 (27) 

𝐶 = √2𝑔/𝑐𝑓 is Chézy’s coefficient. This gives the variation with slope for a particular channel, 

but it is not a helpful equation because 𝐶 varies with channel roughness and hydraulic radius. 

 

The most popular correlation for 𝐶 is that of Manning who proposed, on the basis of a review 

of experimental data, that 

𝐶 = 𝑅ℎ
1/6
× function of roughness 

which he chose to write as 

𝐶 =
𝑅ℎ
1/6

𝑛
 

Combined with Chézy’s formula (27), this yields: 

Manning’s Formula: 

 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2 (28) 

 

Very important. 

Both Chézy’s 𝐶 and Manning’s 𝑛 are dimensional and depend on the units used. Typical values 

of 𝑛 in metre-second units are given in the Appendix. Typical values for artificially-lined 

channels and natural water courses are 0.015 m–1/3 s and 0.035 m–1/3 s respectively.

 
9 Antoine Chézy (1718-1798); French engineer who carried out experiments on the canals in Paris. 
10 Robert Manning (1816-1897); Irish engineer. Actually, if you live on the wrong side of the English Channel 

then what we call Manning’s equation is variously ascribed to Gauckler and/or Strickler. 
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2.4 Uniform-Flow Calculations 
 

Assuming that the channel slope, shape and lining material are known, there are two main 

classes of problem: 

 

(Type A - easy) Given the depth (ℎ) determine the quantity of flow (𝑄)  

Calculate: 

 (1) cross-sectional area 𝐴 and wetted perimeter 𝑃 from geometry of channel; 

 (2) hydraulic radius 𝑅ℎ = 𝐴/𝑃. 

 (3) average velocity from Manning’s formula: 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2. 

 (4) quantity of flow from velocity  area: 𝑄 = 𝑉𝐴. 

 

 

(Type B - harder) Given the quantity of flow (𝑄) determine the depth (ℎ) 

 

 (1) Follow the steps for Type A above to write algebraic expressions for, 

successively, 𝑄 in terms of depth ℎ. 

 

 (2) Invert the 𝑄 vs ℎ relationship graphically or numerically; (e.g. by iteration or 

repeated trial). 

 

Example. A smooth concrete-lined channel has trapezoidal cross-section with base width 

6 m and sides of slope 1V:2H. If the bed slope is 1 in 500 and the normal depth is 2 m 

calculate the quantity of flow. 

 

Solution. 

We are given slope 𝑆 = 0.002. From the Appendix, Manning’s 𝑛 is 0.012 m–1/3 s. 

 

 
 

Break the trapezoidal section into rectangular and triangular elements to obtain, 

successively: 

 Area: 𝐴 = 6 × 2 + 2 ×
1

2
× 4 × 2     = 20 m2 

 Wetted perimeter: 𝑃 = 6 + 2 × √42 + 22      = 14.94 m 

 Hydraulic radius: 𝑅ℎ =
𝐴

𝑃
     =

20

14.94
     = 1.339 m 

 Average velocity: 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2      = 3.727 × 𝑅ℎ

2/3
     = 4.528 m s−1 

 Quantity of flow: 𝑄 = 𝑉𝐴     = 4.528 × 20     = 90.56 m3 s−1 

 

Answer: 90.6 m3 s–1. 

 

6 m 4 m

2 m
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Example. For the channel above, if the quantity of flow is 40 m3 s–1, what is the normal 

depth? 

  

 

Solution. This time we need to leave all quantities as functions of height h. In metre-second 

units we have the following.  

 Area: 𝐴 = 6ℎ+ 2ℎ2 

 Wetted perimeter: 𝑃 = 6 + 2√5 ℎ 

 Hydraulic radius: 𝑅ℎ ≡
𝐴

𝑃
 

 Average velocity: 𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2      =

√𝑆

𝑛
(
𝐴

𝑃
)
2/3

 

 Quantity of flow: 𝑄 = 𝑉𝐴     =
√𝑆

𝑛

𝐴5/3

𝑃2/3
    = 3.727

(6ℎ + 2ℎ2)
5/3

(6 + 2√5 ℎ)
2/3

 

 

Now simply try a few values of ℎ to aim for 𝑄 = 40 m3 s−1: 

ℎ (m) 𝑄 (m3 s−1) 
2 90.523 

1 24.92 

1.23 36.28 

1.28 39.03 

1.30 40.16 

 

After the first two guesses, subsequent choices of ℎ home in on the solution by 

interpolating/extrapolating from previous results. 

Answer: ℎ = 1.30 m 

 

 

Exercise. Use a spreadsheet or (better) write a computer program to solve this automatically. 
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2.5 Conveyance 
 

Combining Manning’s formula for average velocity (𝑉 =
1

𝑛
𝑅ℎ
2/3
𝑆1/2) with expressions for 

hydraulic radius (𝑅ℎ = 𝐴/𝑃) and discharge (𝑄 = 𝑉𝐴) we obtain: 

 𝑄 = 𝐾𝑆1/2 (29) 

where 

 𝐾 =
1

𝑛

𝐴5/3

𝑃2/3
 (30) 

 

𝐾 is a function of the channel geometry and the roughness of its lining. It is called the 

conveyance of the channel and is a measure of the channel’s discharge-carrying capacity. 

 

The primary use of 𝐾 is in determining the 

discharge capacity of compound channels – for 

example river and flood plain. By adding the 

contribution to total discharge from individual 

components with different roughness: 

𝑄 =∑𝑄𝑖      = ∑𝐾𝑖𝑆
1/2      = 𝐾eff𝑆

1/2 

the total conveyance is simply the sum of the separate conveyances: 

𝐾eff =∑𝐾𝑖 

 

  

2.6 Optimal Shape of Cross-Section 

 

Expressions for 𝐴, 𝑃 and 𝑅ℎ for important channel shapes are given below. 

 

 rectangle 

 

 

trapezoid 

 

 

circle 

 

cross-sectional area, 

𝐴 
𝑏ℎ 𝑏ℎ+

ℎ
2

tan𝛼
 𝑅2(𝜃 −

1

2
sin 2𝜃) 

wetted perimeter, 

𝑃 
𝑏 + 2ℎ 𝑏 +

2ℎ

sin 𝛼
 2𝑅𝜃 

hydraulic radius, 

𝑅ℎ 

ℎ

1 + 2ℎ/𝑏
 ℎ

𝑏 + ℎ/ tan𝛼

𝑏 + 2ℎ/ sin 𝛼
 

𝑅

2
(1 −

sin 2𝜃

2𝜃
) 

 

The most hydraulically-efficient shape of channel is the one which can pass the greatest 

h

b b

h



 R

h

1 2 3

river flood plainflood plain
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quantity of flow for any given area. This occurs for the minimum hydraulic radius or, 

equivalently, for the minimum wetted perimeter corresponding to the given area.  

 

A semi-circle is the most hydraulically-efficient of all channel cross-sections. However, 

hydraulic efficiency is not the only consideration and one must also consider, for example, 

fabrication costs, excavation and, for loose granular linings, the maximum slope of the sides. 

Many applications favour trapezoidal channels. 

 

 

Trapezoidal Channels 

 

For a trapezoidal channel: 

 cross-sectional area: 𝐴 = 𝑏ℎ+
ℎ
2

tan𝛼
 

 wetted perimeter: 𝑃 = 𝑏 +
2ℎ

sin 𝛼
 

 

What depth of flow and what angle of side give maximum hydraulic efficiency? 

 

To minimise the wetted perimeter for maximum hydraulic efficiency, we substitute for 𝑏 in 

terms of the fixed area 𝐴: 

 𝑃 = 𝑏 +
2ℎ

sin 𝛼
     = (

𝐴

ℎ
−

ℎ

tan 𝛼
) +

2ℎ

sin 𝛼
    =

𝐴

ℎ
+ ℎ (

2

sin 𝛼
−

1

tan𝛼
) (31) 

To minimise 𝑃 with respect to water depth we set 

𝜕𝑃

𝜕ℎ
≡ −

𝐴

ℎ
2 + (

2

sin 𝛼
−

1

tan𝛼
) = 0 

and, on substituting the bracketed term into the expression (31) for 𝑃, we obtain 

𝑃 =
2𝐴

ℎ
 

The hydraulic radius is then 

𝑅ℎ ≡
𝐴

𝑃
     =

ℎ

2
 

In other words, for maximum hydraulic efficiency, a trapezoidal channel should be so 

proportioned that its hydraulic radius is half the depth of flow. 

 

Similarly, to minimise 𝑃 with respect to the angle of slope of the sides, α, we set 

𝜕𝑃

𝜕𝛼
≡ ℎ (

−2

sin2 𝛼
cos 𝛼 +

1

tan2 𝛼
sec2 𝛼)     =

ℎ

sin2 𝛼
(1 − 2 cos𝛼)     = 0 

This occurs when cos 𝛼 =
1

2
. The most efficient side angle for a trapezoidal channel is 60. 

 

Substituting these results for ℎ and 𝛼 into the general expression for 𝑅ℎ one obtains ℎ/𝑏 =

√3/2; i.e. the most hydraulically-efficient trapezoidal channel shape is half a regular 

hexagon. 

b

h


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Circular Ducts 

 

In similar fashion it can be shown that the maximum quantity of flow for a circular duct actually 

occurs when the duct is not full – in fact for a depth about 94% of the diameter (Exercise. 

Prove it; then try to explain in words why you might expect this). 
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Appendix 
 

Material 𝑘𝑠 (mm) 

Riveted steel 0.9 – 9.0 

Concrete 0.3 – 3.0 

Wood stave 0.18 – 0.9 

Cast iron 0.26 

Galvanised iron 0.15 

Asphalted cast iron 0.12 

Commercial steel or wrought iron 0.046 

Drawn tubing 0.0015 

Glass 0 (smooth) 

 

Table 1. Typical roughness for commercial pipes (from White, 2021). 

 

 

 𝑛 (m–1/3s) 

Artificial lined channels:  

   Glass 0.01 

   Brass 0.011 

   Steel, smooth 0.012 

      painted 0.014 

      riveted 0.015 

   Cast iron 0.013 

   Concrete, finished 0.012 

      unfinished 0.014 

   Planed wood 0.012 

   Clay tile 0.014 

   Brickwork 0.015 

   Asphalt 0.016 

   Corrugated metal 0.022 

   Rubble masonry 0.025 

Excavated earth channels:  

   Clean 0.022 

   Gravelly 0.025 

   Weedy 0.03 

   Stony, cobbles 0.035 

Natural channels:  

   Clean and straight 0.03 

   Sluggish, deep pools 0.04 

   Major rivers 0.035 

Floodplains:  

   Pasture, farmland 0.035 

   Light brush 0.05 

   Heavy brush 0.075 

   Trees 0.15 

 

Table 2. Typical values of Manning’s 𝑛 (from White, 2021). 


