
mlgt

Dave T. Gerrard
david.gerrard@manchester.ac.uk

April 4, 2012

Abstract

Processing and analysis of high throughput (Roche 454) sequences gen-
erated from multiple loci and multiple biological samples. Sequences are
assigned to their locus and sample of origin, aligned and trimmed. Where
possible, genotypes are called and variants mapped to known alleles.

1 Introduction

The purpose of mlgt is to genotype multiple loci from multiple samples, where
the sequence data is a single output file from a high throughput sequencing
machine (e.g. the Roche 454 system). Of course, the samples, and markers
need to have been properly prepared (amplified and tagged) prior to sequencing
so that they can be sorted out again.

The data is expected to be full length sequences from mixed PCR amplicons.
The amplicons from different samples will have been barcoded with unique end
sequences (barcodes, MIDs) and these sequences need to be provided by the
user. A set of reference amplicon sequences (markers) are also required, one for
each amplicon.

Definitions

allele Top variants called by mlgt OR alleles from an external source.

amplicon The sequence segment amplified in PCR.

barode/MID Short sequence tags ligated to ends of amplicons.

marker A reference sequence against which all variants are aligned.

sample The biological samples.

A note on markers. You should use a sequence that is contained within the
expected amplicon. I recommend NOT including the primer sequence as this is
constrained by the primers used and may not reflect the true sequence of the
samples. If you wish to compare your variants with alleles from an external
source (e.g. the HLA database) then your marker sequence should be precisely
bounded by the sequence that is in BOTH your amplicon and the allele sequences
(e.g. the exon only part is good).

Currently, mlgt makes no checks for similarity across markers, but it does
assign all sequences to the best possible marker, even if that marker was never
amplified in your dataset. This is particularly an issue with HLA datasets where
supposedly distinct loci have very similar sequences.

1

2 Installation

mlgt runs in R version 2.13 or greater 1. mlgt depends on another R package
(seqinr) and several external applications. These must all be installed and
working for mlgt to work.

To assign sequences and retrieve specific sequences, mlgt makes use of the
NCBI programs formatdb, blastall and fastacommand, which are available here:
ftp://ftp.ncbi.nih.gov/blast/executables/release/2.2.24/

To align sequence variants, mlgt uses MUSCLE, which is available here:
http://www.drive5.com/muscle/downloads.htm

Download the correct versions for your system and follow the installation
instructions (if any). Make a note of the installation directories or, even better,
specify where you want the programs to be installed. N.B. mlgt does not cope
well with whitespace (gaps) when passing path names to the auxillary programs
- please install the programs in a location that does not feature whitespace, if
you can.

On my machine the formatdb program is in“C:/Users/Public/Apps/Blast/bin/formatdb.exe”
and MUSCLE is in“C:/Users/Public/Apps/Muscle/muscle3.8.31 i86win32.exe”

The R packages mlgt and seqinr are available on the public R repository
CRAN and can be installed from within R. You can do this from the packages
menu or using this command, which also installs seqinr :-

> install.packages("mlgt")

To install a different version of mlgt from within R you can do this from the
packages menu (Install packages from local zip files) or using this command
giving the full path to the package zip archive.:-

> install.packages("mlgt_0.15.zip", repos=NULL)

3 Using mlgt

Once installation is complete, you can begin to use mlgt. Load the library.

> library(mlgt)

You will also need to specify the locations of the auxillary programs. They
can be set as environment variables.

> Sys.setenv(BLASTALL_PATH="C:/Users/Public/Apps/Blast/bin/blastall.exe",

+ FORMATDB_PATH="C:/Users/Public/Apps/Blast/bin/formatdb.exe",

+ FASTACMD_PATH="C:/Users/Public/Apps/Blast/bin/fastacmd.exe",

+ MUSCLE_PATH="C:/Users/Public/Apps/Muscle/muscle3.8.31_i86win32.exe")

3.1 Prepare the analysis

Start each analysis in a clean directory, perhaps named for the sequencing run
and nested within a folder of all runs for the project.

1It uses long variable names (>256 bytes) only implemented since R 2.13.

2

> analysisDir <- "C:/Users/me/genoProject1/run1/analysis/"

> setwd(analysisDir)

You will need to create some variables to describe your sequencing run. You
need a named list of the MIDs/barcodes used to mark each end of the amplicons
and a list of samples. The easiest way to get this is from a fasta file containing
the barcode sequences with each sequence annotated with the sample name you
will use. In the example below, I load the barcodes from a common file and use
a table to change the names to match the samples in this run. Example data are
in the /data sub-directory of the mlgt package installation directory and can be
found using system.file(). Finally, specify the location of the raw sequence
file (fasta format) you want to analyse (N.B. The path to this file MUST NOT
contain whitespace.).

> system.file("namedBarcodes.fasta", package="mlgt")

[1] "C:/Users/Dave/Documents/R/win-library/2.14/mlgt/namedBarcodes.fasta"

> # Load MIDs used to mark samples

> fTagList <- read.fasta(system.file("namedBarcodes.fasta", package="mlgt"),

+ as.string=T)

> # Optionally, rename the barcodes to the samples used in this run

> sampleBarcodeTable <- read.delim(system.file("tableOfSampleBarcodeMapping.tab",

+ package="mlgt"), header=T)

> names(fTagList) <- sampleBarcodeTable$sample[

+ match(names(fTagList), sampleBarcodeTable$barcode)]

> # here we're using the same tags at both ends of the amplicons.

> rTagList <- fTagList

> #The names of the samples

> sampleList <- names(fTagList)

> # Load the marker sequences.

> myMarkerList <- read.fasta(system.file("HLA_namedMarkers.fasta", package="mlgt"),

+ as.string=T)

> # The fasta file of sequence reads

> inputDataFile <- system.file("sampleSequences.fasta", package="mlgt")

Inspect what is stored in each variable by typing its name.
Now you can create an object of class mlgtDesign to hold all this information.

Give the names of the variables you have just created for the marker list, the
sample list and the MIDs. Also give a project name and a name for this run;
this will help to identify the source of this object later on.

> # Creates object to store run settings

> my.mlgt.Design <- prepareMlgtRun(projectName="myProject",

+ runName="myRun", samples=sampleList,

+ markers=myMarkerList, fTags=fTagList,

+ rTags=rTagList, inputFastaFile=inputDataFile,

+ overwrite="yes")

myProject

Checking parameters...

Setting up BLAST DBs...

Running BLAST searches...

3

As this object is created, multiple BLAST databases are also created in
the working directory and all the input sequences are BLASTed against the
databases. These BLAST results are used to assign sequences to markers and
samples.

It might be instructive to see how many sequences in your dataset are being
assigned to each marker, especially if the marker list includes sequences which
were meant NOT to be targetted by your primers.

> # inspect BLAST results for a specific marker

> thisMarker <- "DPA1_E2"

> topHits <- getTopBlastHits(my.mlgt.Design@markerBlastResults)

> #inspectBlastResults(topHits, thisMarker)

> inspectBlastResults(topHits, thisMarker)

DPA1_E2

Alignment Length

F
re

qu
en

cy

193 195 197

0
50

0
10

00
15

00
20

00

DPA1_E2

Bit Score

F
re

qu
en

cy

300 320 340 360

0
20

0
40

0
60

0
80

0
10

00
12

00

DPA1_E2

% identity

F
re

qu
en

cy

95.5 96.5 97.5 98.5

0
20

0
40

0
60

0
80

0
10

00
12

00

Alternatively, print these plots for a set of markers to file. The function
printBlastResultGraphs knows how to find the BLAST results from an object of
class mlgtDesign.

> # automatic output to pdf of blast result graphs for a list of markers.

> printBlastResultGraphs(my.mlgt.Design)

3.2 Run mlgt

You can now proceed to extacting the sequences of the most common variants
assigned to each marker/sample pair.

Run mlgt and save the results to file.

4

> my.mlgt.Result <- mlgt(my.mlgt.Design)

A_E3

Sample-1 : Using 45 variants, accounting for 154 of 154 reads

Sample-3 : Using 18 variants, accounting for 33 of 33 reads

Sample-4 : Using 132 variants, accounting for 418 of 418 reads

Sample-5 : Using 47 variants, accounting for 141 of 141 reads

Sample-6 : Using 49 variants, accounting for 142 of 142 reads

Sample-7 : Using 3 variants, accounting for 4 of 4 reads

Sample-8 : Using 40 variants, accounting for 128 of 128 reads

Sample-9 : Using 4 variants, accounting for 4 of 4 reads

Sample-10 : Using 55 variants, accounting for 149 of 149 reads

B_E2

Sample-1 : Using 57 variants, accounting for 141 of 141 reads

Sample-2 : Using 24 variants, accounting for 64 of 64 reads

Sample-3 : Using 23 variants, accounting for 54 of 54 reads

Sample-4 : Using 24 variants, accounting for 55 of 55 reads

Sample-5 : Using 37 variants, accounting for 57 of 57 reads

Sample-6 : Using 29 variants, accounting for 74 of 74 reads

Sample-7 : Using 1 variants, accounting for 1 of 1 reads

Sample-8 : Using 18 variants, accounting for 42 of 42 reads

Sample-10 : Using 38 variants, accounting for 89 of 89 reads

DPA1_E2

Sample-1 : Using 34 variants, accounting for 97 of 97 reads

Sample-2 : Using 94 variants, accounting for 254 of 254 reads

Sample-3 : Using 39 variants, accounting for 143 of 143 reads

Sample-4 : Using 30 variants, accounting for 430 of 526 reads

Sample-5 : Using 48 variants, accounting for 199 of 199 reads

Sample-6 : Using 85 variants, accounting for 339 of 339 reads

Sample-7 : Using 2 variants, accounting for 9 of 9 reads

Sample-8 : Using 30 variants, accounting for 486 of 609 reads

Sample-10 : Using 119 variants, accounting for 418 of 418 reads

DQA1_E2

Sample-1 : Using 27 variants, accounting for 104 of 104 reads

Sample-2 : Using 4 variants, accounting for 22 of 22 reads

Sample-3 : Using 6 variants, accounting for 8 of 8 reads

Sample-4 : Using 9 variants, accounting for 26 of 26 reads

Sample-5 : Using 11 variants, accounting for 34 of 34 reads

Sample-6 : Using 42 variants, accounting for 138 of 138 reads

Sample-7 : Using 1 variants, accounting for 1 of 1 reads

Sample-8 : Using 47 variants, accounting for 146 of 146 reads

Sample-9 : Using 1 variants, accounting for 1 of 1 reads

Sample-10 : Using 39 variants, accounting for 122 of 122 reads

> save(my.mlgt.Result, file="thisRun.mlgtResult.Rdata")

Have a look at the summary table for the run, this is located in the slot
‘runSummaryTable’

> my.mlgt.Result@runSummaryTable

5

marker assignedSeqs assignedVariants minVariantLength maxVariantLength minAlleleLength maxAlleleLength
1 A_E3 1173 315 5 265 263 265
2 B_E2 577 188 5 250 247 250
3 DPA1_E2 2375 330 5 198 197 198
4 DQA1_E2 602 151 5 283 184 283

The results for each marker are stored in a list and can be accessed indidually
using the marker name.

> thisMarker <- "DPA1_E2"

> my.mlgt.Result@markerSampleList[[thisMarker]]

marker sample rawTotal rawVars usedTotal usedVars numbSeqs numbVars varName.1 varFreq.1 varName.2 varFreq.2 varName.3

1 DPA1_E2 Sample-1 97 34 97 34 97 21 DPA1_E2.1 32 DPA1_E2.2 26 DPA1_E2.3

2 DPA1_E2 Sample-2 254 94 254 94 254 70 DPA1_E2.4 70 DPA1_E2.5 62 DPA1_E2.6

3 DPA1_E2 Sample-3 143 39 143 39 143 33 DPA1_E2.1 89 DPA1_E2.7 22 DPA1_E2.8

4 DPA1_E2 Sample-4 526 126 430 30 430 17 DPA1_E2.1 330 DPA1_E2.9 66 DPA1_E2.10

5 DPA1_E2 Sample-5 199 48 199 48 199 31 DPA1_E2.1 131 DPA1_E2.11 34 DPA1_E2.12

6 DPA1_E2 Sample-6 339 85 339 85 339 64 DPA1_E2.1 117 DPA1_E2.13 99 DPA1_E2.14

7 DPA1_E2 Sample-7 9 2 9 2 9 2 DPA1_E2.1 7 DPA1_E2.15 2 NA

8 DPA1_E2 Sample-8 609 153 486 30 486 12 DPA1_E2.1 187 DPA1_E2.16 183 DPA1_E2.17

9 DPA1_E2 Sample-9 0 0 0 0 0 0 NA 0 NA 0 NA

10 DPA1_E2 Sample-10 418 119 418 119 418 80 DPA1_E2.1 240 DPA1_E2.18 93 DPA1_E2.19

varFreq.3

1 21

2 50

3 2

4 5

5 3

6 59

7 0

8 99

9 0

10 2

3.3 Call genotypes

The new mlgtResult object contains a table for each marker giving counts of
unique variants for each sample including the counts of the most common 3
variants. The ’genotyping’ has not yet been done. Genotyping is done by
a separate function callGenotypes so that users can run different genotyping
methods on the same mlgtResult object.

A simple example of calling genotypes is

> my.genotypes <- callGenotypes(my.mlgt.Result)

the result is the same table of variant counts with new columns to represent
the genotype calls. N.B. currently, only one method is implemented but users
can supply their own - use ?callGenotypes to see details.

Once you have some genoytpes, you may want to export them to files. You
can do this for individual markers or for all markers in the genotypeCall object.

> writeGenotypeCallsToFile(my.genotypes)

As with the BLAST results, it is also instructive to look at the distribution of
statistics used in genotype calls. There is another function to plot the statistics.

> plotGenotypeEvidence(genotypeCall=my.genotypes[["DPA1_E2"]])

6

DPA1_E2

numbSeqs

F
re

qu
en

cy

0 100 300 500

0.
0

0.
5

1.
0

1.
5

2.
0

DPA1_E2

diffToVarThree
F

re
qu

en
cy

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

DPA1_E2

propDiffHomHet

F
re

qu
en

cy

0.0 0.4 0.8

0.
0

0.
5

1.
0

1.
5

2.
0

●
●

●
●

0.0 0.4 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DPA1_E2

diffToVarThree

pr
op

D
iff

H
om

H
et

● complexVars
HOMOZYGOTE
tooFewReads

●

●

●

●

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DPA1_E2

numbSeqs

di
ffT

oV
ar

T
hr

ee

●
●

●
●

0 100 300 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

DPA1_E2

numbSeqs

pr
op

D
iff

H
om

H
et

Again, these plots can be output to file, use ?plotGenotypeEvidence to find
out how.

3.4 Map to known allleles

The previous genotype calling was done without reference to previously known
alleles. To map the newly tabulated variants to known alleles, a local vari-
antMap of known alleles must be loaded or created. mlgt contains a function
to build a list of alleles bounded by the marker sequence. N.B. the names of
otherwise distinct alleles that are identical within the region overlapping the
marker sequence are condensed to one sequence and names are concatenated.

Creating the allele map is a little more involved than other aspects but not
too difficult with a little set up. You need to provide an alignment (msf or fasta
format) of known alleles for each marker. The corresponding file names for each
marker could be provided in table format in a file. The allele map should be a
list with one variantMap element per marker. Each variantMap is created by
running createKnownAlleleList to align each marker against the respective allele
alignment file. Here, I download the alignment files direct from the HLA/IMGT
ftp site into the current working directory. You might want to run this section
separately in a different location because it only needs to be done once per set
of markers or version of IMGT/HLA.

> markerImgtFileTable <- read.delim(system.file("marker.imgt.msf.list.tab", package="mlgt"),
+ header=T)
> alignFilesSource <- 'ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/'
> # select a folder to store the alignments in. Here using current working directory.
> alignFilesDir <- getwd()
> ## Download the allele alignments and create a 'variantMap' object for each marker and store them all in a list.

7

> knownAlleleDb <- list()
> for(thisMarker in names(myMarkerList)) {
+ fileName <- markerImgtFileTable$imgtAlignFile[match(thisMarker, markerImgtFileTable$marker)]
+ alleleAlignUrl <- paste(alignFilesSource , fileName , sep="/")
+ alleleAlignFile <- paste(alignFilesDir , fileName , sep="/")
+ download.file(alleleAlignUrl,alleleAlignFile)
+ knownAlleleDb[[thisMarker]] <- createKnownAlleleList(thisMarker,
+ myMarkerList[[thisMarker]][1], alleleAlignFile)
+ }

Once you have the allele map, it’s a good idea to save it as an ’RData’ file
for future use (?save, ?load). Give it a name that describes the source of the
known alleles and the marker used.

Now you can map variants to the new allele map. Run callGenotypes again
with the option mapAlleles=TRUE and giving the name of the allele map.

> my.genotypes <- callGenotypes(my.mlgt.Result, mapAlleles=TRUE,

+ alleleDb=knownAlleleDb)

The result is the same table of genotypes as before but with additional
columns giving the names of alleles mapped to the variants.

3.5 Error correction

In some test data sets, we found very high numbers of unique variants for many
marker-sample pairs. Most variants differed by only one or two positions from
the most commonly found variants. The situation was worst for long sequences.
Believing that this was due to errors introduced during amplification and/or
sequencing, we sought to ’correct’ some of the sequences. N.B. the following is
conducted for sets of sequences from the same marker sample pair - information
is not shared across samples or markers.

To help decide if error correction would be worthwhile, several alignment
reports can be produced. The default is a table giving the alignment length,
the number of invariant sites and the numbers of sites where the Minor Allele
Frequency (MAF) is above or below a threshold. The MAF is the proportion of
sequences with the SECOND most common variant across a set of sequences and
is calculated site-by-site. The default threshold is 0.01. The function align-

Report() can produce two graphics: 1) a profile of the alignment showing fre-
quencies at every site, and 2) a histogram of site frequencies (a site frequency
spectrum) with the default correction threshold shown as a dotted line.

> alignReport(my.mlgt.Result,markers="DPA1_E2", samples="Sample-8", method="profile")

DPA1_E2

$DPA1_E2

numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-8 486 12 198 182 7 9

8

DPA1_E2 : Sample−8

Total sites: 198
Invariant sites: 182
MAF above threshold: 7
MAF below threshold: 9

− A C G T

G G T T A C A G C C G A T T T T A T T A T

0
20

0

G G C T T A T A A A A C T T C C G G T T C

0
20

0

C G T T C T G T G C G G T C T T T T A A A

0
20

0

T A A T A C

0
20

0

> alignReport(my.mlgt.Result,markers="DPA1_E2", samples="Sample-8", method="hist")

DPA1_E2

$DPA1_E2

numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-8 486 12 198 182 7 9

9

DPA1_E2:Sample−8

non−zero values only
Site−specific minor allele frequency

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4
6

8

The graphs for all markers and samples can be output to files using align-

Report with the fileName option specified.
If the alignments have many sites below the correction threshold (i.e. very

low frequency or unique variants) then errorCorrect can be used to change
the bases at that position to the majority base. Any site with MAF above the
threshold will be unchanged. If an alignment has fewer than 1/correctThreshold
sequences, then errorCorrect will not attempt to make a correction (as none of
the variants will have less than the threshold frequency).

It creates a new mlgtResult object but doesn’t take very long:-

> my.mlgt.Result.Corrected <- errorCorrect(my.mlgt.Result)

A_E3
Sample-1 36 / 154 unique seqs in original alignment, 6 / 154 unique seqs in new alignment,
Sample-2 Sample-3 16 / 33 unique seqs in original alignment, 16 / 33 unique seqs in new alignment,
Sample-4 107 / 418 unique seqs in original alignment, 4 / 418 unique seqs in new alignment,
Sample-5 37 / 141 unique seqs in original alignment, 7 / 141 unique seqs in new alignment,
Sample-6 37 / 142 unique seqs in original alignment, 5 / 142 unique seqs in new alignment,
Sample-7 3 / 4 unique seqs in original alignment, 3 / 4 unique seqs in new alignment,
Sample-8 30 / 128 unique seqs in original alignment, 3 / 128 unique seqs in new alignment,
Sample-9 4 / 4 unique seqs in original alignment, 4 / 4 unique seqs in new alignment,
Sample-10 45 / 149 unique seqs in original alignment, 5 / 149 unique seqs in new alignment,
B_E2
Sample-1 44 / 141 unique seqs in original alignment, 6 / 141 unique seqs in new alignment,
Sample-2 21 / 64 unique seqs in original alignment, 21 / 64 unique seqs in new alignment,
Sample-3 17 / 54 unique seqs in original alignment, 17 / 54 unique seqs in new alignment,
Sample-4 19 / 55 unique seqs in original alignment, 19 / 55 unique seqs in new alignment,
Sample-5 23 / 57 unique seqs in original alignment, 23 / 57 unique seqs in new alignment,
Sample-6 23 / 74 unique seqs in original alignment, 23 / 74 unique seqs in new alignment,
Sample-7 1 / 1 unique seqs in original alignment, 1 / 1 unique seqs in new alignment,
Sample-8 16 / 42 unique seqs in original alignment, 16 / 42 unique seqs in new alignment,
Sample-9 Sample-10 24 / 89 unique seqs in original alignment, 24 / 89 unique seqs in new alignment,
DPA1_E2
Sample-1 21 / 97 unique seqs in original alignment, 21 / 97 unique seqs in new alignment,

10

Sample-2 70 / 254 unique seqs in original alignment, 3 / 254 unique seqs in new alignment,
Sample-3 33 / 143 unique seqs in original alignment, 3 / 143 unique seqs in new alignment,
Sample-4 17 / 430 unique seqs in original alignment, 3 / 430 unique seqs in new alignment,
Sample-5 31 / 199 unique seqs in original alignment, 6 / 199 unique seqs in new alignment,
Sample-6 64 / 339 unique seqs in original alignment, 5 / 339 unique seqs in new alignment,
Sample-7 2 / 9 unique seqs in original alignment, 2 / 9 unique seqs in new alignment,
Sample-8 12 / 486 unique seqs in original alignment, 3 / 486 unique seqs in new alignment,
Sample-9 Sample-10 80 / 418 unique seqs in original alignment, 2 / 418 unique seqs in new alignment,
DQA1_E2
Sample-1 23 / 104 unique seqs in original alignment, 7 / 104 unique seqs in new alignment,
Sample-2 4 / 22 unique seqs in original alignment, 4 / 22 unique seqs in new alignment,
Sample-3 5 / 8 unique seqs in original alignment, 5 / 8 unique seqs in new alignment,
Sample-4 9 / 26 unique seqs in original alignment, 9 / 26 unique seqs in new alignment,
Sample-5 11 / 34 unique seqs in original alignment, 11 / 34 unique seqs in new alignment,
Sample-6 30 / 138 unique seqs in original alignment, 8 / 138 unique seqs in new alignment,
Sample-7 1 / 1 unique seqs in original alignment, 1 / 1 unique seqs in new alignment,
Sample-8 32 / 146 unique seqs in original alignment, 8 / 146 unique seqs in new alignment,
Sample-9 1 / 1 unique seqs in original alignment, 1 / 1 unique seqs in new alignment,
Sample-10 35 / 122 unique seqs in original alignment, 8 / 122 unique seqs in new alignment,

> # Produce an alignment report for the un-corrected and corrected results.
> alignReport(my.mlgt.Result, method="profile", fileName="alignReport_my.mlgt.Result")

A_E3
B_E2
DPA1_E2
DQA1_E2
Alignment figures(s) plotted to alignReport_my.mlgt.Result.pdf
$A_E3

numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold
Sample-1 154 36 264 214 21 29
Sample-2 0 0 NA NA NA NA
Sample-3 33 16 264 236 28 0
Sample-4 418 107 264 170 2 92
Sample-5 141 37 264 212 22 30
Sample-6 142 37 264 221 12 31
Sample-7 4 3 264 249 15 0
Sample-8 128 30 264 236 2 26
Sample-9 4 4 265 249 16 0
Sample-10 149 45 264 217 8 39

$B_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 141 44 248 198 14 36
Sample-2 64 21 248 212 36 0
Sample-3 54 17 248 223 25 0
Sample-4 55 19 248 224 24 0
Sample-5 57 23 248 217 31 0
Sample-6 74 23 248 212 36 0
Sample-7 1 1 250 NA NA NA
Sample-8 42 16 248 213 35 0
Sample-9 0 0 NA NA NA NA
Sample-10 89 24 249 215 34 0

$DPA1_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 97 21 198 178 20 0
Sample-2 254 70 198 135 6 57
Sample-3 143 33 198 166 2 30
Sample-4 430 17 198 182 2 14
Sample-5 199 31 198 168 5 25
Sample-6 339 64 198 138 6 54
Sample-7 9 2 198 197 1 0
Sample-8 486 12 198 182 7 9
Sample-9 0 0 NA NA NA NA
Sample-10 418 80 198 130 1 67

$DQA1_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 104 23 187 141 30 16
Sample-2 22 4 237 212 25 0
Sample-3 8 5 237 210 27 0
Sample-4 26 9 237 229 8 0
Sample-5 34 11 286 277 9 0

11

Sample-6 138 30 187 137 29 21
Sample-7 1 1 187 NA NA NA
Sample-8 146 32 187 135 28 24
Sample-9 1 1 188 NA NA NA
Sample-10 122 35 254 201 27 26

> alignReport(my.mlgt.Result.Corrected, method="profile", fileName="alignReport_my.mlgt.Result.Corrected")

A_E3
B_E2
DPA1_E2
DQA1_E2
Alignment figures(s) plotted to alignReport_my.mlgt.Result.Corrected.pdf
$A_E3

numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold
Sample-1 154 6 264 243 21 0
Sample-2 0 0 NA NA NA NA
Sample-3 33 16 264 236 28 0
Sample-4 418 4 264 262 2 0
Sample-5 141 7 264 242 22 0
Sample-6 142 5 264 252 12 0
Sample-7 4 3 264 249 15 0
Sample-8 128 3 264 262 2 0
Sample-9 4 4 265 249 16 0
Sample-10 149 5 264 256 8 0

$B_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 141 6 248 234 14 0
Sample-2 64 21 248 212 36 0
Sample-3 54 17 248 223 25 0
Sample-4 55 19 248 224 24 0
Sample-5 57 23 248 217 31 0
Sample-6 74 23 248 212 36 0
Sample-7 1 1 250 NA NA NA
Sample-8 42 16 248 213 35 0
Sample-9 0 0 NA NA NA NA
Sample-10 89 24 249 215 34 0

$DPA1_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 97 21 198 178 20 0
Sample-2 254 3 198 192 6 0
Sample-3 143 3 198 196 2 0
Sample-4 430 3 198 196 2 0
Sample-5 199 6 198 193 5 0
Sample-6 339 5 198 192 6 0
Sample-7 9 2 198 197 1 0
Sample-8 486 3 198 191 7 0
Sample-9 0 0 NA NA NA NA
Sample-10 418 2 198 197 1 0

$DQA1_E2
numbSeqs numbVars alignLength invar.sites mafAboveThreshold mafBelowThreshold

Sample-1 104 7 187 157 30 0
Sample-2 22 4 237 212 25 0
Sample-3 8 5 237 210 27 0
Sample-4 26 9 237 229 8 0
Sample-5 34 11 286 277 9 0
Sample-6 138 8 187 158 29 0
Sample-7 1 1 187 NA NA NA
Sample-8 146 8 187 159 28 0
Sample-9 1 1 188 NA NA NA
Sample-10 122 8 254 227 27 0

If it has worked well, you may find that running callGenotypes on the cor-
rected results gives more HOMOZYGOTE and HETEROZYGOTE calls.

Running errorCorrect was originally implemented as an additional step to
mlgt. Once you are happy using it, it is much better to run the error correction
as part of mlgt itself using the errorCorrect parameter.

12

3.6 Combining result sets

Once you have a genotyping system up and running you may want to compare
results from one run to another. The easiest way is probably to run each dataset
through a common workflow and compare results after output of genotypes.
However there are several instances in which you may want to combine results
into a single mlgtResult object (e.g. to use a common set of allele names, or see
recurrence of the same variants across samples).

Here I outline a case where samples have been split across several runs and
you want to combine the results before genotyping.

> my.design.list <- list()
> my.design.list[['A']] <- my.mlgt.Design
> my.design.list[['A']]@samples <- sampleList[1:5]
> my.design.list[['B']] <- my.mlgt.Design
> my.design.list[['B']]@samples <- sampleList[6:10]
> my.result.list <- lapply(my.design.list, FUN=function(x) mlgt(x))

A_E3
Sample-1 : Using 45 variants, accounting for 154 of 154 reads
Sample-3 : Using 18 variants, accounting for 33 of 33 reads
Sample-4 : Using 132 variants, accounting for 418 of 418 reads
Sample-5 : Using 47 variants, accounting for 141 of 141 reads
B_E2
Sample-1 : Using 57 variants, accounting for 141 of 141 reads
Sample-2 : Using 24 variants, accounting for 64 of 64 reads
Sample-3 : Using 23 variants, accounting for 54 of 54 reads
Sample-4 : Using 24 variants, accounting for 55 of 55 reads
Sample-5 : Using 37 variants, accounting for 57 of 57 reads
DPA1_E2
Sample-1 : Using 34 variants, accounting for 97 of 97 reads
Sample-2 : Using 94 variants, accounting for 254 of 254 reads
Sample-3 : Using 39 variants, accounting for 143 of 143 reads
Sample-4 : Using 30 variants, accounting for 430 of 526 reads
Sample-5 : Using 48 variants, accounting for 199 of 199 reads
DQA1_E2
Sample-1 : Using 27 variants, accounting for 104 of 104 reads
Sample-2 : Using 4 variants, accounting for 22 of 22 reads
Sample-3 : Using 6 variants, accounting for 8 of 8 reads
Sample-4 : Using 9 variants, accounting for 26 of 26 reads
Sample-5 : Using 11 variants, accounting for 34 of 34 reads
A_E3
Sample-6 : Using 49 variants, accounting for 142 of 142 reads
Sample-7 : Using 3 variants, accounting for 4 of 4 reads
Sample-8 : Using 40 variants, accounting for 128 of 128 reads
Sample-9 : Using 4 variants, accounting for 4 of 4 reads
Sample-10 : Using 55 variants, accounting for 149 of 149 reads
B_E2
Sample-6 : Using 29 variants, accounting for 74 of 74 reads
Sample-7 : Using 1 variants, accounting for 1 of 1 reads
Sample-8 : Using 18 variants, accounting for 42 of 42 reads
Sample-10 : Using 38 variants, accounting for 89 of 89 reads
DPA1_E2
Sample-6 : Using 85 variants, accounting for 339 of 339 reads
Sample-7 : Using 2 variants, accounting for 9 of 9 reads
Sample-8 : Using 30 variants, accounting for 486 of 609 reads
Sample-10 : Using 119 variants, accounting for 418 of 418 reads
DQA1_E2
Sample-6 : Using 42 variants, accounting for 138 of 138 reads
Sample-7 : Using 1 variants, accounting for 1 of 1 reads
Sample-8 : Using 47 variants, accounting for 146 of 146 reads
Sample-9 : Using 1 variants, accounting for 1 of 1 reads
Sample-10 : Using 39 variants, accounting for 122 of 122 reads

> my.result.list

$A
Results for mlgt run:
Project: myProject
Run: myRun

13

Samples: 5
fTags: 10
rTags: 10
Markers: 4

marker assignedSeqs assignedVariants minVariantLength maxVariantLength minAlleleLength maxAlleleLength
1 A_E3 746 196 5 264 264 264
2 B_E2 371 124 5 248 247 248
3 DPA1_E2 1123 172 5 198 197 198
4 DQA1_E2 194 52 5 283 184 283

$B
Results for mlgt run:
Project: myProject
Run: myRun
Samples: 5
fTags: 10
rTags: 10
Markers: 4

marker assignedSeqs assignedVariants minVariantLength maxVariantLength minAlleleLength maxAlleleLength
1 A_E3 427 119 5 265 263 265
2 B_E2 206 64 5 250 248 250
3 DPA1_E2 1252 158 5 198 198 198
4 DQA1_E2 408 99 5 254 184 254

> combined.result <- combineMlgtResults(my.result.list)

Complex join

> combined.result

Results for mlgt run:
Project: myProject
Run: myRun
Samples: 10
fTags: 10
rTags: 10
Markers: 4

marker assignedSeqs assignedVariants minVariantLength maxVariantLength minAlleleLength maxAlleleLength
1 A_E3 1173 315 5 265 263 265
2 B_E2 577 188 5 250 247 250
3 DPA1_E2 2375 330 5 198 197 198
4 DQA1_E2 602 151 5 283 184 283

Another opportunity to combine results comes during a parallelised mlgt run
- see below.

3.7 Parallelization

The slowest part of mlgt is the mlgt() function itself. As each marker is anal-
ysed separately, the function is ’embarrassingly parallel’ and easy to speed up
if you have access to more than one processor. N.B. this section is about
multi-threading, not about running on a compute cluster, though mlgt could
be adapted to do that. The procedure is to create a list of mlgtDesign objects,
pertaining to a discrete subset of the markers and then use a separate proces-
sor to run mlgt on each member of the list. After this has finished, there is a
function to recombine the separate mlgtResult objects into a single result.

The list approach can be demonstrated on a single processor (where each
mlgt run happens in turn) using the lapply command.

> # Create a list of mlgtDesign objects, each with only one marker.

> my.design.list <- list()

> for(thisMarker in names(myMarkerList)) {

+ my.design.list[[thisMarker]] <- my.mlgt.Design

+ my.design.list[[thisMarker]]@markers <- myMarkerList[thisMarker]

14

+

+ }

> # Use lapply to run mlgt() on each member of the list.

> # N.B. we are using errorCorrection within mlgt(), which slows it down a bit.

> system.time(

+ my.result.list <- lapply(my.design.list,

+ FUN=function(x) mlgt(x, errorCorrect=TRUE))

+)

Using error correction at 0.01

A_E3

Sample-1 : Using 45 variants, accounting for 154 of 154 reads

Sample-3 : Using 18 variants, accounting for 33 of 33 reads

Sample-4 : Using 132 variants, accounting for 418 of 418 reads

Sample-5 : Using 47 variants, accounting for 141 of 141 reads

Sample-6 : Using 49 variants, accounting for 142 of 142 reads

Sample-7 : Using 3 variants, accounting for 4 of 4 reads

Sample-8 : Using 40 variants, accounting for 128 of 128 reads

Sample-9 : Using 4 variants, accounting for 4 of 4 reads

Sample-10 : Using 55 variants, accounting for 149 of 149 reads

Using error correction at 0.01

B_E2

Sample-1 : Using 57 variants, accounting for 141 of 141 reads

Sample-2 : Using 24 variants, accounting for 64 of 64 reads

Sample-3 : Using 23 variants, accounting for 54 of 54 reads

Sample-4 : Using 24 variants, accounting for 55 of 55 reads

Sample-5 : Using 37 variants, accounting for 57 of 57 reads

Sample-6 : Using 29 variants, accounting for 74 of 74 reads

Sample-7 : Using 1 variants, accounting for 1 of 1 reads

Sample-8 : Using 18 variants, accounting for 42 of 42 reads

Sample-10 : Using 38 variants, accounting for 89 of 89 reads

Using error correction at 0.01

DPA1_E2

Sample-1 : Using 34 variants, accounting for 97 of 97 reads

Sample-2 : Using 94 variants, accounting for 254 of 254 reads

Sample-3 : Using 39 variants, accounting for 143 of 143 reads

Sample-4 : Using 30 variants, accounting for 430 of 526 reads

Sample-5 : Using 48 variants, accounting for 199 of 199 reads

Sample-6 : Using 85 variants, accounting for 339 of 339 reads

Sample-7 : Using 2 variants, accounting for 9 of 9 reads

Sample-8 : Using 30 variants, accounting for 486 of 609 reads

Sample-10 : Using 119 variants, accounting for 418 of 418 reads

Using error correction at 0.01

DQA1_E2

Sample-1 : Using 27 variants, accounting for 104 of 104 reads

Sample-2 : Using 4 variants, accounting for 22 of 22 reads

Sample-3 : Using 6 variants, accounting for 8 of 8 reads

Sample-4 : Using 9 variants, accounting for 26 of 26 reads

Sample-5 : Using 11 variants, accounting for 34 of 34 reads

Sample-6 : Using 42 variants, accounting for 138 of 138 reads

15

Sample-7 : Using 1 variants, accounting for 1 of 1 reads

Sample-8 : Using 47 variants, accounting for 146 of 146 reads

Sample-9 : Using 1 variants, accounting for 1 of 1 reads

Sample-10 : Using 39 variants, accounting for 122 of 122 reads

user system elapsed

45.08 0.39 79.36

Alone, this isn’t much use, but when combined with multi-threading, things
get much faster. The easiest way I have found to do this in R is with the aid
of the snowfall package. You will need to install the package and set a few
environment variables.

> #install.packages('snowfall')

> library(snowfall)

> sfInit(parallel=TRUE, cpus=4, type="SOCK") # set your number of processors here.

R Version: R version 2.14.1 (2011-12-22)

> sfExport(list=ls()) # is this necessary?

> sfLibrary(mlgt) # the 'nodes' need to load a copy of the relevant libraries

Library mlgt loaded.

> sfLibrary(seqinr) # is this one necessary?

Library seqinr loaded.

> # Then we run mlgt over the list of mlgtDesign objects.

> # Note that extra parameters can be passed to sfLapply().

> system.time(

+ sf.result.list <- sfLapply(my.design.list, mlgt, errorCorrect=TRUE)

+)

user system elapsed

0.0 0.0 30.3

That should have been substantially faster. Now you need to combine the
results into a single mlgtResult object. This is perhaps the most useful function
of combineMlgtResults().

> project.mlgt.Results <- combineMlgtResults(sf.result.list)

Simple join

Simple join

Simple join

3.8 Custom genotype call methods

I made up the method to call genotypes based on the relative frequencies of
certain variants. If users would like to use an alternative method within mlgt,
they can specify a new function and pass this by name to callGenotypes(). The
function must accept a data frame as argument ‘table’ and return the same
table after modification. Give default values to any additional parameters that
you want to include. The example below creates a column ‘status’ and records
genotypes ”good” or ”bad” depending on the proportion of unique variants.

16

> callGenotypes.custom <- function(table, maxPropUniqueVars=0.5) {

+ table$status <- "notCalled"

+ table$propUniqueVars <- table$numbVar/table$numbSeq

+ table$status <- ifelse(table$propUniqueVars <= maxPropUniqueVars,"good", "bad")

+ return(table)

+ }

> my.custom.Genotypes <- callGenotypes(my.mlgt.Result, method="callGenotypes.custom")

3.9 Miscellaneous

I’ve not yet included good provision for exporting all the sequence variants.
The mlgtResult objects do currently store the DNA sequences and their export
should probably be linked to callGenotypes. In the meantime, unique variants
that have been assigned allele names can be output as fasta with this function:-

> dumpVariantMap.mlgtResult(my.mlgt.Result)

In addition another function can be used to export all sequences found for
a marker-sample pair into a separate fasta alignment for each pair. The output
is in fasta format with the name of the sequence set to the sequence itself (?!).
The ‘unique’ flag can be used to limit the output to unique variants, in which
case a count for that sequence is appended at the end of the sequence name line.

> dumpVariants(my.mlgt.Result)

4 TO-DO

Other filters. More/better genotyping methods. Run comparison.

5 R Session
> sessionInfo()

R version 2.14.1 (2011-12-22)
Platform: i386-pc-mingw32/i386 (32-bit)

locale:
[1] LC_COLLATE=English_United Kingdom.1252 LC_CTYPE=English_United Kingdom.1252 LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C LC_TIME=English_United Kingdom.1252

attached base packages:
[1] stats graphics grDevices utils datasets methods base

other attached packages:
[1] snowfall_1.84 snow_0.3-8 mlgt_0.17 seqinr_3.0-6

loaded via a namespace (and not attached):
[1] tools_2.14.1

17

