Daniel Stamate - Publications
On a Survival
Gradient Boosting, Neural Network and Cox PH based Approach to Predicting Dementia
Diagnosis Risk on ADNI, 2023 IEEE International Conference on Bioinformatics
and Biomedicine (IEEE BIBM), 2023, accepted, to appear. Henry Musto, Daniel Stamate, Doina Logofatu, Lahcen Ouarbya
Joint
Decision Making in Ant Colony Systems for Solving the Multiple Traveling
Salesman Problem. Journal of Procedia Computer Science, Vol 225, Elsevier,
December 2023, DOI https://doi.org/10.1016/j.procs.2023.10.345.
Mihaela Breaban, Raluca Necula, Dorel Lucanu, Daniel Stamate
Predicting
High vs Low Mother-Baby Synchrony with GRU-Based Ensemble Models. In: Iliadis, L., Papaleonidas, A., Angelov, P., Jayne, C. (eds) Artificial Neural Networks and Machine Learning
– ICANN 2023. ICANN 2023. Lecture Notes in Computer Science, vol 14262. Springer, Cham. DOI https://doi.org/10.1007/978-3-031-44201-8_16. Daniel Stamate, Riya Haran,
Karolina Rutkowska, Sree Davuloori, Evelyne Mercure, Caspar Addyman,
Mark Tomlinson
Predicting Alzheimer’s Disease Diagnosis Risk Over Time with Survival
Machine Learning on the ADNI Cohort. In: Nguyen, N.T., et al.
Computational Collective Intelligence. ICCCI 2023. Lecture Notes in Computer Science(), vol 14162. Springer,
Cham. https://doi.org/10.1007/978-3-031-41456-5_53
. Henry Musto, Daniel Stamate,
Ida Pu, Daniel Stahl
Predicting Colour Reflectance with Gradient Boosting and Deep Learning.
The19th IFIP International Conference on Artificial Intelligence Applications and Innovations - AIAI
2023, IFIP Advances in Information and Communication Technology, vol 675, Springer, DOI: https://doi.org/10.1007/978-3-031-34111-3_14.
Asei Akanuma, Daniel
Stamate, Mark Bishop
A Neural Network Approach to Estimating
Color Reflectance with
Product Independent Models. The European
Neural Network Society's 31st International Conference on Artificial Neural
Networks, Springer, Lecture Notes in Computer Science, vol 13531, 2022, DOI: https://doi.org/10.1007/978-3-031-15934-3_66.
Asei Akanuma, Daniel
Stamate
Predicting Risk of Dementia with Survival
Machine Learning and Statistical Methods:
Results on the English Longitudinal Study of Ageing Cohort. 18th IFIP International Conference
on Artificial Intelligence Applications and
Innovations - AIAI 2022, IFIP Advances in Information
and Communication Technology, vol 652, Springer,
2022, DOI: https://doi.org/10.1007/978-3-031-08341-9_35
Daniel Stamate, Henry Musto, Olesya
Ajnakina, Daniel Stahl
Combining Cox model and tree-based
algorithms to boost
performance and preserve interpretability
for health outcomes. 18th
IFIP International Conference on Artificial
Intelligence Applications and Innovations - AIAI 2022, IFIP Advances
in Information and Communication Technology, vol 652,
Springer, 2022. DOI: https://doi.org/10.1007/978-3-031-08337-2_15
Diana Shamsutdinova, Daniel Stamate, Angus Roberts,
Daniel Stahl
Predicting risk of dementia with machine learning and survival models using routine primary care records, In: Proceedings of 2021 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM2021), DOI: https://doi.org/10.1109/BIBM52615.2021.9669363. John Lanham, Daniel Stamate, Charlotte. A. Wu, Fionn Murtagh, Catharine Morgan, David Reeves, Darren Ashcroft, Evan Kontopantelis, Brian Mcmillan
A Machine Learning Approach for Predicting Deterioration in Alzheimer's Disease, In: Proceeding of 20th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), Publisher IEEE, December 2021, DOI: https://doi.org/10.1109/ICMLA52953.2021.00232. Henry Musto, Daniel Stamate, Ida Pu, Daniel Stahl
A two-step optimised BERT-based NLP algorithm for extracting sentiment from financial news, Proceedings of 17th Intl Conference of Artificial Intelligence Applications and Innovations, AIAI 2021, Springer, June 2021, DOI: https://doi.org/10.1007/978-3-030-79150-6_58. Rapheal Olaniyan, Daniel Stamate, Ida Pu
Creating Ensembles of Generative Adversarial Network Discriminators for One-class Classification, Proceedings of 22nd Intl Conference of Engineering Applications of Neural Networks, EANN 2021, Springer, June 2021, DOI: https://doi.org/10.1007/978-3-030-80568-5_2. Mihai Ermaliuc, Daniel Stamate, George Magoulas, Ida Pu
Particle swarm optimization algorithms for autonomous robots with deterministic leaders using space filling movements, Journal Evolving Systems, Springer, Volume 11, issue 3 (Special Issue: Evolving Intelligent Applications in Engineering), September 2020, pp 383–396, DOI: https://doi.org/10.1007/s12530-018-9245-9. Doina Logofătu, Gil Sobol, Christina Andersson, Daniel Stamate, Kristiyan Balabanov, Tymoteusz Cejrowski
Applying Deep Learning to Predicting Dementia and Mild Cognitive Impairment, Proc. of Intl. Conference of Artificial Intelligence Applications and Innovations. AIAI 2020. IFIP Advances in Information and Communication Technology, vol 584. Springer, Cham, DOI:https://doi.org/10.1007/978-3-030-49186-4_26. Daniel Stamate, Richard Smith, Ruslan Tsygancov, Rostislav Vorobev, John Langham, Daniel Stahl, David Reeves
A metabolite-based machine learning approach to diagnose Alzheimer’s-type dementia in blood: Results from the European Medical Information Framework for Alzheimer's Disease biomarker discovery cohort. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, Vol. 5, 2019, pp 933-938, Elsevier, 2019. Stamate, Daniel; Kim, Min; Proitsi, Petroula; Westwood, Sarah; Baird, Alison; Nevado-Holgado, Alejo; Hye, Abdul; Bos, Isabelle; Vos, Stephanie; Vandenberghe, Rik; Teunissen, Charlotte E; Kate, Mara Ten; Scheltens, Philip; Gabel, Silvy; Meersmans, Karen; Blin, Olivier; Richardson, Jill; Roeck, Ellen De; Engelborghs, Sebastiaan; Sleegeres, Kristel; Bordet, Régis; Rami, Lorena; Kettunen, Petronella; Tsolaki, Magd; Verhey, Frans; Alcolea, Daniel; Lléo, Alberto; Peyratout, Gwendoline; Tainta, Mikel; Johannsen, Peter; Freund-Levi, Yvonne; Frölich, Lutz; Dobricic, Valerija; Frisoni, Giovanni B; Molinuevo, José L; Wallin, Anders; Popp, Julius; Martinez-Lage, Pablo; Bertram, Lars; Blennow, Kaj; Zetterberg, Henrik; Streffer, Johannes; Visser, Pieter J; Lovestone, Simon and Legido-Quigley, Cristina. https://www.sciencedirect.com/science/article/pii/S2352873719300873
Predicting S&P 500 based on its constituents and their social media derived sentiment, Proc. 11th International Conference on Computational Collective Intelligence (ICCCI), 2019, Springer LNCS 11683, DOI: https://doi.org/10.1007/978-3-030-28377-3_12. Rapheal Olaniyan, Daniel Stamate, Ida Pu, Alexander Zamyatin, Anna Vashkel, Frederic Marechal
A Regime-Switching Recurrent Neural Network Model Applied
to Wind Time Series, Applied
Soft Computing (Journal, Elsevier), 2019, DOI: https://doi.org/10.1016/j.asoc.2019.04.009.
Nikolay Nikolaev, Evgueni
Smirnov, Daniel Stamate, Robert Zimmer
Can dementia risk be predicted using
routine electronic health records?
Society for Academic Primary
Care Conference 2019 (SAPC ASM ,
Exeter), https://sapc.ac.uk/conference/2019/abstract/can-dementia-risk-be-predicted-using-routine-electronic-health-records_3e-1.
Catharine Morgan, Darren M Ashcroft, Evan Kontopantelis, Daniel
Stamate, David Reeves
Identifying psychosis spectrum disorder from experience sampling data using machine learning approaches, J. Schizophrenia Research, Elsevier, 2019, DOI: https://doi.org/10.1016/j.schres.2019.04.028. Daniel Stamate, Andrea Katrinecz, Daniel Stah, ESM-MERGE Investigators, Simone J.W. Verhagen, Philippe A.E.G. Delespaul, Jim van Os, Sinan Guloksuz
A Machine Learning Framework for Predicting Dementia and Mild Cognitive Impairment, Proc. 17th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), 2018. DOI: 10.1109/ICMLA.2018.00107. Daniel Stamate, Wajdi Alghammdi, Jeremy Ogg, Richard Hoile, Fionn Murtagh
Data Science Challenges in Computational Psychiatry and Psychiatric Research. Proc. 5th IEEE Data Science and Advanced Analytics, 2018. DOI: 10.1109/DSAA.2018.00067. Daniel Stahl, Daniel Stamate
On XLE index constituents’ social media based sentiment informing the index trend and volatility prediction. Proc. 10th International Conference on Computational Collective Intelligence (ICCCI), 2018, Springer LNCS. DOI https://doi.org/10.1007/978-3-319-98446-9_34. Frederic Marechal, Daniel Stamate, Rapheal Olaniyan, Jiri Marek
A New Machine Learning Framework for Understanding the Link between Cannabis Use and First-Episode Psychosis. Studies in Health Technology and Informatics 2018; 248:9-16, IOS Press, DOI 10.3233/978-1-61499-858-7-9. Wajdi Alghamdi, Daniel Stamate, Daniel Stahl, Alexander Zamyatin, Robin Murray, Marta di Forti
Predicting First-Episode Psychosis Associated with Cannabis Use with Artificial Neural Networks and Deep Learning. Proc. 17th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 2018, Springer CCIS, DOI: https://doi.org/10.1007/978-3-319-91479-4_57. Daniel Stamate, Wajdi Alghamdi, Daniel Stahl, Ida Pu, Fionn Murtagh, Danielle Belgrave, Robin Murray and Marta di Forti
PIDT: A Novel Decision Tree Algorithm Based on Parameterised Impurities and Statistical Pruning Approaches, Proc. 14th International Conference on Artificial Intelligence Applications and Innovations (AIAI), 2018, Springer IFIP, DOI: https://doi.org/10.1007/978-3-319-92007-8_24. Daniel Stamate, Wajdi Alghamdi, Daniel Stahl, Doina Logofatu and Alexander Zamyatin
Can Artificial Neural Networks Predict Psychiatric Conditions Associated with Cannabis Use? Proc. 14th International Conference on Artificial Intelligence Applications and Innovations (AIAI), 2018, Springer IFIP, DOI: https://doi.org/10.1007/978-3-319-92007-8_27. Daniel Stamate, Wajdi Alghamdi, Daniel Stahl, Alexander Zamyatin, Robin Murray and Marta di Forti
Utilising symptom dimensions with diagnostic categories improves prediction of time to first remission in first-episode psychosis. Schizophrenia Research, DOI: https://doi.org/10.1016/j.schres.2017.07.042 , (Elsevier), 2018, pp. 391-398. Ajnakina, O., Lally, J., Di Forti, M., Stilo, S.A., Kolliakou, A., Gardner-Sood, P., Dazzan, P., Pariante, C., Marques, T.R., Mondelli, V., MacCabe, J., Gaughran, F., David, A.S., Stamate D., Murray, R.M., & Fisher, H.L
Predicting Psychosis Using
the Experience Sampling Method with Mobile Applications.
Proceedings of 16th IEEE International Conference on Machine Learning and Applications
(IEEE ICMLA), 2017, Publisher: IEEE, DOI: 10.1109/ICMLA.2017.00-84
Daniel Stamate, Andrea Katrinecz, Wajdi
Alghamdi, Daniel Stahl, ESM-MERGE Group
Investigators, Philippe Delespaul, Jim van Os, Sinan Guloksuz.
Predictive Modelling
Strategies to Understand Heterogeneous Manifestations of Asthma in Early Life.
Proceedings of 16th IEEE International Conference on Machine Learning and
Applications (IEEE ICMLA), 2017, Publisher: IEEE, DOI 10.1109/ICMLA.2017.0-176.
Daniel Stamate, Danielle Belgrave, Rachel Cassidy, Adnan Custovic,
Louise Fleming, Andrew Bush and Sejal Saglani.
Particle Swarm Optimization Algorithms
for Autonomous Robots with Leaders Using Hilbert Curves.
Proceedings of 18th International Conference on Engineering Applications of
Neural Networks (EANN), 2017, Publisher: Springer, DOI: https://doi.org/10.1007/978-3-319-65172-9_45.
Doina Logofatu, Gil Sobol, Daniel Stamate
A Novel
Space Filling Curves Based Approach to PSO Algorithms for Autonomous Agents.
Proceedings of 9th International Conference on Computational Collective Intelligence
(ICCCI), 2017, Publisher: Springer, DOI: https://doi.org/10.1007/978-3-319-67074-4_35.
Doina Logofatu, Gil Sobol, Daniel Stamate, Kristiyan Balabanov
A Prediction Modelling and Pattern Detection Approach for the First-Episode Psychosis Associated to Cannabis Use. Proceedings of 15th IEEE International Conference on Machine Learning and Applications (IEEE ICMLA), 2016, Publisher: IEEE, DOI: 10.1109/ICMLA.2016.0148. Wajdi Alghamdi, Daniel Stamate, Katherine Vang, Daniel Stahl, Marco Colizzi, Giada Tripoli, Diego Quattrone, Olesya Ajnakina, Robin M. Murray and Marta Di Forti
Sentiment and Stock Market
Volatility Predictive Modelling - a Hybrid Approach.
Proceedings of the 2nd IEEE International Conference on Data Science and
Advanced Analytics (IEEE DSAA), 2015, Publisher: IEEE, DOI: 10.1109/DSAA.2015.7344855. Rapheal Olaniyan, Daniel Stamate, Doina Logofatu, Lahcen Ouarbya
A Novel Statistical and Machine Learning Hybrid Approach to Predicting S&P 500 using Sentiment Analysis. Proceedings of the 8th International Conference of the ERCIM Working Group on Computational and Methodological Statistics, and International Conference on Computational and Financial Econometrics, 2015. Fionn Murtagh, Rapheal Olaniyan, Daniel Stamate
Social Web-Based Anxiety
Index’s Predictive Information on S&P 500, Revisited.
Proceedings of the 3rd International Symposium on Statistical Learning and Data
Sciences (SLDS), 2015, Springer LNAI. DOI https://doi.org/10.1007/978-3-319-17091-6_15.
Rapheal Olaniyan, Daniel
Stamate, Doina Logofatu
Improving Time-Efficiency in
Blocking Expanding Ring Search for Mobile Ad Hoc Networks.
Journal of Discrete Algorithms, Volume 24, 2014, pp. 59-67. DOI: https://doi.org/10.1016/j.jda.2013.03.006
Ida Pu, Daniel Stamate and Yuji Shen
Scalable Distributed Genetic
Algorithm for Data Ordering Problem with Inversion Using MapReduce.
Proceedings of the 10th International Conference on Artificial Intelligence
Applications and Innovations (AIAI), 2014, Springer 2014 IFIP Advances in
Information and Communication Technology. DOI https://doi.org/10.1007/978-3-662-44654-6_32,
Doina Logofatu, Daniel
Stamate
Quantitative Semantics for Uncertain Knowledge Bases. Proceedings of the 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 2012, Springer LNAI/CCIS. Daniel Stamate
Imperfect Information Fusion
using Rules with Bilattice based Fixpoint
Semantics.
Proc. of the 14th International Conference on Information Processing and
Management of Uncertainty in Knowledge-Based Systems (IPMU), 2012, Springer
LNAI/CCIS. Daniel Stamate, Ida Pu
Fixpoint Semantics for Extended Logic Programs on Bilattice based Multivalued Logics, and Applications. Proceedings of ManyVal Conference, 2012. Daniel Stamate, Ida Pu
Queries with Multivalued
Logic based Semantics for Imperfect Information Fusion.
Proceedings of the 40th IEEE International Symposium on Multiple-Valued Logics
(IEEE ISMVL), 2010. Daniel Stamate
A Bilattice based Fixed Point Semantics for Integrating Imperfect Information. Proceedings of the 6th Workshop on Fixed Points in Computer Science (FICS), 2009. Daniel Stamate
Default Reasoning with Imperfect Information in Multivalued Logics. Proceedings of the 38th IEEE International Symposium on Multiple-Valued Logics (IEEE ISMVL), 2008. Daniel Stamate
Imperfect Information
Representation through Extended Logic Programs in Bilattices.
Uncertainty and Intelligent Information Systems, B.Bouchon-Meunier,
R.R. Yager, C. Marsala, and M. Rifqi
(Eds.), World Scientific, ISBN 978-981-279-234-1, 2008. Daniel Stamate
Reduction in Dimensions and
Clustering using Risk and Return Model.
Proceedings of the IEEE International Symposium on Data Mining and Information
Retrieval (IEEE DMIR), 2007. S.W. Qaiyumi, D.
Stamate
Representing Imperfect Information through Extended Logic Programs in Multivalued Logics. Proceedings of the 11th biennial Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU), 2006. Daniel Stamate
Assumption based Multiple-Valued Semantics for Extended Logic Programs. Proceedings of the 36th IEEE International Symposium on Multiple-Valued Logics (IEEE ISMVL), 2006. Daniel Stamate
Hypothesis-based Semantics of Logic Programs in Multivalued Logics. ACM Transactions on Computational Logic 15(3), 2004, pp. 508-527. Yann Loyer, Nicolas Spyratos, Daniel Stamate
Parameterized Semantics for Logic Programs - a Unifying Framework. Theoretical Computer Science 308(1-3), Elsevier, 2003, pp. 429-447. Yann Loyer, Nicolas Spyratos, Daniel Stamate
Hypothesis Support for Information Integration in Four-Valued Logics. Proceedings of IFIP International Conference on Theoretical Computer Science, LNCS No. 1872, Springer, pp. 536-548, 2000. Yann Loyer, Nicilas Spyratos, Daniel Stamate
Integration of Information in Four-Valued Logics under Non-Uniform Assumptions. Proceedings of the 30th IEEE International Symposium on Multiple-Valued Logics (ISMVL), 2000, pp. 185-191. Yann Loyer, Niclas Spyratos, Daniel Stamate
Test d'Hypothèses pour l'Intégration d'Informations en Logique à Quatre
Valeurs. Proceedings of JFPLC'2000 (Journées
Francophones de Programmation Logique et Programmation
par Contraintes), Hermes, 2000, pp. 265-278. Y.
Loyer, N. Spyratos, D. Stamate
Hypotheses Based Semantics for Information Integration in Four-valued Logics. Proceedings of the Fixed Points in Computer Science Workshop (FICS), 2000. Yann Loyer, Nicilas Spyratos, Daniel Stamate
Interfacing Decision Support Systems under Incomplete Information. Proceedings of the 25th International Conference on Information and Communication Technologies and Programming, 2000, pp. 21-31. Yann Loyer, Nicolas Spyratos, Daniel Stamate
Interfacing Decision Support Systems under Incomplete Information. International Journal Information Theories and Applications 7(1), 2000, pp. 38-48. Yann Loyer, Nicolas Spyratos, Daniel Stamate
Computing and Comparing
Semantics of Programs in Four-valued Logics. Proceedings of the 24th
International Symposium on Mathematical Foundations
of Computer Science (MFCS), 1999,
LNCS No. 1672, Springer, pp. 59-69. Yann Loyer,
Nicolas Spyratos, Daniel Stamate
Deterministic Enforcement of Constraints.
Journal of Programming and Computer Software 24,
1998, pp. 71-83. Dominique Laurent, Nicolas Spyratos,
Daniel Stamate
Unification des Semantiques Usuelles de
Programmes Logiques. Proceedings of JFPLC'98
(Journées Francophones de Programmation Logique et Programmation par
Contraintes), Hermes, 1998, pp. 135-150. Y. Loyer, N.
Spyratos, D. Stamate
Semantics and Containment of Queries with Internal and External conjunctions. Proceedings of the 6th International Conference on Database Theory (ICDT), 1997, LNCS No. 1186 Springer, pp. 71-82. Gosta Grahne, Nicolas Spyratos, Daniel Stamate
Semantics and Containment of Queries in Multimedia Information Systems. Proceedings of the 2nd International Workshop on Multimedia Information Systems, 1997, pp. 82-87. Gosta Grahne, Nicolas Spyratos, Daniel Stamate
Multivalued Stable Semantics for Updating Databases with Uncertain Information. Frontiers in Artificial Intelligence and Applications: Information Modelling and Knowledge Bases VIII, H. Kangassalo et al. (eds), IOS Press, pp. 129-144, ISBN 905199334X, 1997. Nicolas Spyratos, Daniel Stamate
Bases de Données avec Informations Incertaines. Sémantique et Mises à Jour.
Proceedings of JFPLC'96 (Journées Francophones de
Programmation Logique et Programmation
par Contraintes), Hermes, 1996, pp. 49-63. N. Spyratos, D. Stamate
A Class of Active Database Constraints. Proceedings of the International Conference on Information Technology, 1996. M. Halfeld Ferrari Alves, D. Laurent, N. Spyratos, D. Stamate
Answer-Perturbation Techniques for the Protection of Statistical Databases. Statistics and Computing 5, Springer, 1995, pp. 203-213. Daniel Stamate, Henri Luchian
A general Model for the Answer-Perturbation Techniques. Proceedings of the 7th International Working Conference on Scientific and Statistical Database Management (SSDBM), 1994, Charlottesville, USA, pp. 90-96. Daniel Stamate, Henri Luchian, Ben Paechter
Statistical Protection for Statistical Databases. Proceedings of the 6th International Working Conference on Scientific and Statistical Database Management (SSDBM), 1992, Ascona, Switzerland, pp. 160-177. Henri Luchian, Daniel Stamate
User-Oriented Approach for the Protection of Statistical Databases. Scientific Annals of "Alexandru Ioan Cuza" University of Iasi, vol. 1, Computer Science, 1992, pp. 41-55. Henri Luchian and Daniel Stamate