Non-Embeddable Right LCM Semigroups

Daniel Heath

He / Him daniel.heath-2@manchester.ac.uk https://personalpages.manchester.ac.uk/staff/daniel.heath-2/

> Joint work with Milo Edwardes arXiv:2405.20197

UK Operator Algebras Conference, Newcastle University June 12–14, 2024

The University of Manchester

Preliminaries	C*-algebras	Right LCM Monoids	The Wrap Up
●O	0000	000	OO
Monoids			

Let M be a monoid. We say that:

Definition

- *M* is *left cancellative* if $ca = cb \implies a = b$ for all $a, b, c \in M$.
- *M* is right cancellative if $ac = bc \implies a = b$ for all $a, b, c \in M$.
- *M* is *cancellative* if *M* is left cancellative and right cancellative.

For any $p \in M$, we may define a map $L_p : M \to M$ by $m \mapsto pm$. Then equivalently...

Definition / Lemma

A monoid *M* is *left cancellative* if and only if L_p is injective for all $p \in M$.

Definition

A monoid M is an *inverse monoid* if for all $m \in M$, there exists a unique $m' \in M$ such that

mm'm = m and m'mm' = m'.

Any inverse monoid may be realised as partial isometries on a Hilbert space whose source and range projections commute.

Right Ideals and Right LCM

Definition

Let M be a monoid, $p \in M$. The right ideal of M generated by p is $pM := \{pm : m \in M\}$.

Definition

M is called *right LCM* if both:

- M is a left cancellative monoid;
- **3** For any elements $p, q \in M$, either $pM \cap qM = \emptyset$, or $pM \cap qM = rM$ for some $r \in M$.

Examples

- Groups.
- Free [Commutative] Monoids.
- Nica's Quasi-lattice ordered semigroups.
- Dehornoy and Wehrung's M_B Interval Monoid of B(4): Mon⟨a, b, c, d, e, f, g, h, i, j, k, I, O, P, Q, R, S, T, U, V, W, X, Y, Z | dO = eU, gQ = hU, aP = cS, dP = fW, jS = kW, bR = cT, gR = iY, jT = IY, eV = fX, hV = iZ, kX = IZ⟩.

Preliminaries 00 The Wrap Up

A Potted History of Right LCM and C^* -algebras 1

X. Li (2012): Semigroup C*-algebras and amenability of semigroups Let *M* be a left cancellative monoid. Recall $L_p: M \to M, m \mapsto pm$.

Definition

The left inverse hull of M is the monoid $I_l(M) := \text{Inv} \langle L_p : p \in M \rangle$.

Definition

The full semigroup C^* -algebra of M is $C^*(M) := C^*(I_l(M))$.

Theorem (Li, 2012)

Let M be left cancellative. Let \mathcal{J}_M be the set of constructable right ideals of M. If M is right LCM, then

$$\mathrm{C}^*(M) \cong \mathcal{D} \rtimes_{\alpha} M$$

where

$$\mathcal{D} = \mathrm{C}^*(\{e_{\mathcal{I}} : \mathcal{I} \in \mathcal{J}_M\}) \text{ and } \alpha_{p} : \mathcal{D} \to \mathcal{D}, e_{\mathcal{I}} \mapsto e_{p\mathcal{I}}.$$

Preliminaries 00

A Potted History of Right LCM and C^* -algebras 2

X. Li (2012): Semigroup C*-algebras and amenability of semigroups Let M be a left cancellative monoid. For each $m \in S$, define $V_m : \ell^2(S) \to \ell^2(S)$ via linearly extending $V_m(\delta_s) := \delta_{ms}$. The map $\lambda_M : m \mapsto V_m$ is called the *left regular representation* of M.

Lemma / Definition (Li, 2012)

Let M be a left cancellative monoid. Then V_m is an isometry for all $m \in M$, and the (left reduced) semigroup C^* -algebra of M is

 $\mathrm{C}^*_\lambda(M) := \mathrm{C}^*(\{\lambda_M(m) : m \in M\}).$

N. Brownlowe, N. Larsen, N. Stammeier (2017): On $\mathrm{C}^*\mbox{-algebras}$ associated to right LCM semigroups

Theorem (Brownlowe, Larsen, Stammeier, 2017)

Suppose *M* is right LCM. Then $\mathcal{D} \cong \overline{\text{span}} \{ V_m V_m^* : m \in M \}$. If in addition *M* is group-embeddable and $\langle \langle more nice conditions \rangle \rangle$ then $C^*(M) \cong C^*_{\lambda}(M)$.

A Potted History of Right LCM and C^* -algebras 3

K.A. Brix, C. Bruce, A. Dor-On (2024): Normal Coactions extend to the $\mathrm{C}^*\text{-envelope}$ Let \mathfrak{C} be a left cancellative small category (e.g. monoid).

Definition (Informal)

The C^* envelope $C^*_{env}(\mathcal{A})$ of an operator algebra \mathcal{A} is the smallest C^* -algebra containing an isomorphic copy of \mathcal{A} .

Definition

Let Ω be the set of characters on $\mathcal{J}_{\mathfrak{C}}$. The left inverse hull $I_{l}(\mathfrak{C})$ acts on Ω : each $s \in I_{l}(\mathfrak{C})$ defines a partial homeomorphism

 $\Omega(\operatorname{dom}(s)) \to \Omega(\operatorname{im}(s)), \chi \mapsto \chi' \text{ where } \chi' : X \mapsto \chi(s'(X \cap \operatorname{im}(s))).$

If $I_l(\mathfrak{C}) \ltimes \Omega$ is Hausdorff, then the *reduced boundary quotient* C^{*}-algebra is

 $\partial \mathrm{C}^*_\lambda(\mathfrak{C}) := \mathrm{C}^*_\lambda\left(I_l(\mathfrak{C})\ltimes\overline{\Omega_{\mathrm{max}}}\right).$

A Potted History of Right LCM and C^* -algebras 4

Let $\mathfrak C$ be a left cancellative small category (e.g. monoid).

Definition

The operator algebra of \mathfrak{C} is $\mathcal{A}_{\lambda}(\mathfrak{C}) := \overline{\mathrm{alg}}(\{\lambda_{\mathfrak{C}}(m) : m \in \mathfrak{C}\}).$

Theorem (Brix, Bruce, Dor-On, 2024)

If \mathfrak{C} is groupoid-embeddable, then $C^*_{env}(\mathcal{A}_{\lambda}(\mathfrak{C})) \cong \partial C^*_{\lambda}(\mathfrak{C})$. If M is a cancellative, right LCM monoid, then $C^*_{env}(\mathcal{A}_{\lambda}(M)) \cong \partial C^*_{\lambda}(M)$.

Note M does not have to be group-embeddable! (Not all monoids are group-embeddable)

Question

What are some cancellative, right LCM monoids which are not group-embeddable?

Theorem (Dehornoy, Wehrung, 2017)

The monoid M_B is cancellative, right LCM and not group-embeddable.

Any more...? M. Edwardes, DH. (2024): A collection of cancellative, right LCM, not group-embeddable monoids

Pre		aries
- 00		

C*-algebra 0000 Right LCM Monoids ●00 The Wrap Up

Malcev Conditions

Define the formal \mathcal{I}_n Malcev implication as:

$$\begin{cases} da = A_1 C_1 \\ A_1 D_1 = A_2 C_2 \\ \vdots \\ A_{n-1} D_{n-1} = A_n C_n \\ A_n D_n = db \\ cb = B_n D_n \\ B_n C_n = B_{n-1} D_{n-1} \\ \vdots \\ B_2 C_2 = B_1 D_1 \end{cases} \implies B_1 C_1 = ca.$$

Theorem (Malcev, '40)

Let S be a semigroup. If the \mathcal{I}_n Malcev implication is not satisfied for some assignment of S-elements to variables $\{a, b, c, d, A_i, B_i, C_i, D_i\}$, then S is not group-embeddable.

Preliminaries	C*-algebras	Right LCM Monoids	The Wrap Up
OO	0000	O⊕O	OO
Constructing \mathcal{M}_n			

Let X_n be the set $\{a, b, c, d, A_1, \dots, A_n, B_1, \dots, B_n, C_1, \dots, C_n, D_1, \dots, D_n\}$. Let ρ_n be the set

$$\{ da = A_1 C_1, A_1 D_1 = A_2 C_2, \ldots, A_{n-1} D_{n-1} = A_n C_n, \}$$

$$A_nD_n = db, \ cb = B_nD_n, \ B_nC_n = B_{n-1}D_{n-1}, \ \ldots, \ B_2C_2 = B_1D_1\}.$$

Definition

For any $n \geq 1$, define the monoid $\mathcal{M}_n := \operatorname{Mon}\langle X_n \mid \rho_n \rangle$.

Theorem (Edwardes, H., 2024)

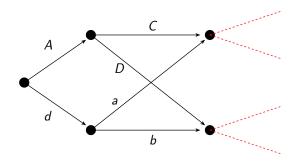
For any $n \ge 1$, \mathcal{M}_n is cancellative and not group-embeddable.

	Right LCM Monoids
	000

Right LCM?

Theorem (Edwardes, H., 2024)

 $\textit{The monoid } \mathcal{M}_1 = \langle \textit{a},\textit{b},\textit{c},\textit{d},\textit{A},\textit{B},\textit{C},\textit{D} \mid \textit{da} = \textit{AC},\textit{db} = \textit{AD},\textit{cb} = \textit{BD} \rangle \textit{ is not right LCM}.$



Theorem (Edwardes, H., 2024)

The monoid \mathcal{M}_1 is 2-aligned. For $n \geq 2$, \mathcal{M}_n is right LCM.

Right LCM Monoids

What's next?

Open Question 1

If *M* is a cancellative **finitely-aligned** monoid, is $C^*_{env}(\mathcal{A}_{\lambda}(M)) \cong \partial C^*_{\lambda}(M)$?

Open Question 2

Can we create other cancellative, right LCM monoids which are not group-embeddable via other Malcev implications? Can we classify "good" Malcev implications?

Open Question 3

Can we obtain Dehornoy and Wehrung's M_B from such a construction?

Open Question 3.5

Is \mathcal{M}_n constructable via an interval monoid construction?

Thank you and References

Thank you!

- K. A. Brix, C. Bruce, A. Dor-On. Normal coactions extend to the C*-envelope, 2024. arXiv:2309.04817.
- N. Brownlowe, N. S. Larsen, N. Stammeier. On C*-algebras associated to right LCM semigroups, Trans. Amer. Math. Soc. 369(1):31–68, 2017.
- P. Dehornoy and F. Wehrung. Multifraction reduction III: The case of interval monoids, J. Comb. Alg., 1(4):341–370, 2017.
- M. Edwardes, D. Heath. A collection of cancellative, right LCM, not group-embeddable monoids, 2024. arXiv:2405.20197.
- X. Li. Semigroup C*-algebras and amenability of semigroups, J. Functional Analysis, 262(10):4302–4340, 2012.
- A. Malcev. On the immersion of associative systems in groups II, Matematicheskii sbornik, 8:251–264, 1940. In Russian.
- A. Nica, C*-algebras generated by isometries and Wiener-Hopf operators, J. Operator Th., 27:17–52, 1992.