MANCHESTER
 1824

Pretzel Monoids

Daniel Heath

Left Adequate Monoids

Definition. A monoid is a set equipped with an associative, binary operation, and containing a (two-sided) identity element.
Definition. An element e of a monoid is called idempotent if $e^{2}=e$.
Definition. On any monoid M, the equivalence relation \mathcal{R}^{*} is defined by $a \mathcal{R}^{*} b$ if and only if

$$
x a=y a \Longleftrightarrow x b=y b \text { for all } x, y \in M .
$$

"Elements are \mathcal{R}^{*}-related iff they 'share' right-cancellativity properties". Definition. A monoid M is called left adequate if

1. Every \mathcal{R}^{*}-class contains an idempotent;
2. Idempotents commute, i.e. $e f=f e$ for idempotents e, f.

Examples. Groups, inverse monoids, left ample monoids, right cancellative monoids, free monoids

Free Left Adequate Monoids and X-trees

Theorem [Kambites, 2011]. Elements of the free left adequate monoid generated by a set X are (isomorphism types of) directed, X-edge-labelled trees T, with two defined vertices called start (+) and end (X), such that:

1. There is a path from the start vertex to every other vertex;
2. The graph admits no non-trivial retractions, that is an idempotent graph morphism $T \rightarrow T$ which fixes + and \times

The multiplication $S T$ of trees S and T is given by gluing T to S start-to-end, then retracting.

Example.

Remarks. The idempotents are trees with identified start and end The idempotent \mathcal{R}^{*}-related to any tree is the tree obtained by moving the end to the start (then retracting).

The Goal

Can we generalise combinatorial descriptions from E-unitary inverse semigroup theory into left adequate land? Can we give geometric descriptions of certain presentations of left adequate monoids, or define what the generalisation of E-unitary should be?

Idempath Identification

Fix a set X and an X-generated right cancellative monoid C (or even group).
Definition. An idempath in an X-labelled digraph Γ is a path in Γ labelled by a word $x_{1} x_{2} \cdots x_{n}$ which is equal to the identity in C. We take the empty path to be an idempath. An idempath identification on Γ is the process of 'cycling up' an idempath, i.e. merging the initial and terminal vertex of the idempath.

Example. Take $X=\{x, y\}$ and $C=\mathbb{Z}_{3} \times \mathbb{Z}_{3}=\langle x, y\rangle$. Note that $x x x==_{C} y y y==_{C} x y y x y==_{C} 1$.

Lemma 1 [H., Kambites, Szakács, 2024]. Given a tree $T \in \operatorname{FLAd}(X)$, there exists a unique graph (up to isomorphism) obtainable by sequentially performing all non-trivial idempath identifications (in any order) to T.

Pretzels

Definition. Given any tree $T \in \operatorname{FLAd}(X)$, perform the following:

1. Idempath identify as far as possible...
2. ...then retract anything in the result which can retract.

We call the (uniquely obtained) result the pretzel of T, denoted $\overline{\widetilde{T}}$.

Margolis-Meakin Expansions

Theorem [Margolis, Meakin, 1989]. Let G be an X-generated group. Let $\mathcal{M}(G ; X)$ be the set of pairs (Γ, g) where Γ is a finite connected subgraph of $\operatorname{Cay}(G ; X)$ containing 1 and g as vertices. Define a multiplication on $\mathcal{M}(G ; X)$ by $(\Gamma, g)(\Delta, h)=(\Gamma \cup g \cdot \Delta, g h$) where G acts on subgraphs of $\operatorname{Cay}(G ; X)$ by translation. Then $\mathcal{M}(G ; X)$ is the initial object in the category of X-generated E-unitary inverse monoids with maximal group image G. Moreover,

$$
\left.\mathcal{M}(G ; X) \cong \operatorname{Inv}\langle X| w=w^{2} \text { for } w \in X^{*} \text { with } w=_{G} 1\right\rangle .
$$

Results

Let $\mathcal{P T}(C ; X)=\{\widetilde{\widetilde{T}} \mid T \in \operatorname{FLAd}(X)\}$. Define a multiplication $\Gamma \cdot \Delta$ on $\Gamma, \Delta \in \mathcal{P} \mathcal{T}(C ; X)$ by gluing Δ to Γ start-to-end, performing al idempath identifications in the sense of Lemma 1, then retracting.
Theorem 2 [H., Kambites, Szakács, 2024]. This multiplication is well-defined, associative, and $(\mathcal{P T}(C ; X), \cdot)$ is a left adequate monoid. Moreover, $\mathcal{P T}(C ; X)$ is the initial object in the category of X-generated left adequate monoids with maximal right cancellative image $C^{\prime}=\operatorname{Canc}\langle X| w=1$ for $w \in X^{*}$ with $\left.w==_{C} 1\right\rangle$, with morphisms the idempotent-pure ($2,1,0$)-morphisms.
Theorem 3 [H., Kambites, Szakács, 2024]. For any $C=\mathrm{RC}\langle X\rangle$,

$$
\left.\mathcal{P T}(C ; X) \cong \operatorname{LAd}\langle X| w=w^{2} \text { for } w \in X^{*} \text { with } w==_{C} 1\right\rangle .
$$

Pretzel monoids are one analogue of Margolis-Meakin expansions. It remains open if there are alternative ways to define left adequate expansions of C, perhaps with maximal right cancellative image C.

Figure. The 5 elements of $\mathcal{P} \mathcal{T}\left(\mathbb{Z}_{2} ; x\right)$.

References

[^0]
[^0]: 1] D. Heath, M. Kambites, and N. Szakács. "Pretzel monoids". 2024. arXiv:2405.00589 2] M. Kambites. "Retracts and trees and free left adeauate semigrouss" In. Proce. Edingen. 54(3), pp. 731 . 747 . 2011
 [3] S. W. Margolis and J. C. Meakin. "E-unitary inverse monoids and the Cayley graph of a group presentation". In: J. Pure Appl. Algebra 58(1), pp. 45-76, 1989.

