Pretzel Monoids: A Dive into Geometric Semigroup Theory

Daniel Heath

(He/Him) daniel.heath-2@manchester.ac.uk

University of Manchester Joint work with Mark Kambites and Nóra Szakács

> ITMAIA, University of Exeter February 21–23, 2024

The University of Manchester

Geometric Group Theory

A key goal of *Geometric Group Theory* is to understand properties and structure of *groups* using the geometry of their *Cayley Graphs*. E.g. *Hyperbolic Groups*¹.

Theorem (Gromov, 1987)

Hyperbolic groups have decidable word problem.

Geometric group theory emerged as a stand-alone field of study following Gromov's work.

Question

What techniques from Geometric Group Theory can generalise to semigroups?

Subquestion

What even is a *semigroup*?

¹M. Gromov, "Hyperbolic groups", 1987.

Semigroups and Monoids

Definition

A semigroup (S, \cdot) is a set S equipped with an associative binary operation \cdot . A monoid is a semigroup which contains a (necessarily unique) identity element **1**.

Examples of Monoids:

- Groups.
- Rings under their multiplication.
- \mathbb{N}_0 with +.
- All finite-length words over an alphabet X under concatenation.
 E.g. X = {x, y}. Then elements include ε, xxy, xyx, xxyxyx etc. This is the *free monoid over X*.

Examples of Semigroups:

- Monoids, Groups.
- \varnothing (with any multiplication you like!)
- \mathbb{N} with +.
- All finite-length, **non-empty** words over an alphabet X under concatentation. This is the *free semigroup over* X.

The \mathcal{R}^* relation and left adequacy

Definition

Given a monoid M, define an equivalence relation \mathcal{R}^* on M by $a\mathcal{R}^*b$ if and only if

$$\forall x, y \in M, \quad xa = ya \iff xb = yb.$$

Think: "Elements are \mathcal{R}^* -related iff they 'share' right-cancellativity properties".

Definition

An element e of a monoid is called *idempotent* if $e^2 = e$.

Definition

A monoid is called *left adequate* if:

- Every \mathcal{R}^* -class contains a unique idempotent.
- 3 The idempotents of M commute with each other (ef = fe).

All groups are left adequate monoids (though not all left adequate monoids are groups)!

Why look at this class in particular?

Free left adequate monoids (FLAds) have a geometric interpretation²!

Theorem (Kambites, 2009)

Elements of the free left adequate monoid generated by a set X may be treated as directed, X-edge-labelled trees, with two defined vertices called start (+) and end (\times) , such that:

- Intere the path of the start vertex to every other vertex.
- O No branches of the tree can be 'completely folded in', where we always fix the start/end vertices.

The multiplication ST of trees S and T is given by gluing T to S start-to-end, then folding in any branches we can.

²M. Kambites, Free left and right adequate semigroups, 2009.

The Goal

Fact 1

 $\mathcal{T} \in \operatorname{FLAd}(X)$ is idempotent $\iff \mathcal{T}$ has identified start and end vertex.

Fact 2

The unique idempotent \mathcal{R}^* -related to the tree T is the tree T with endpoint moved to the start (and possibly folded).

Fact 3

Any X-generated left adequate monoid is a quotient of FLAd(X).

Can we similarly describe non-trivial presentations of left adequate monoids? (Hard)

Preliminaries	Left Adequate Monoids	Pretzel Monoids	The Wrap-Up
OO	000	●000	OO
Drotzolal			

Fix a set X and an X-generated group G^{3}

Definition

An *idempath* in an X-labelled digraph Γ is a directed path in Γ labelled by a word $x_1x_2\cdots x_n$ which is equal to the identity in G. We take the empty path with label ϵ to have $\epsilon =_G 1$. An *idempath identification* in Γ is the process of 'looping up' an idempath.

Lemma (H., Kambites, Szakács, 2024)

Given a tree $T \in FLAd(X)$, there exists a unique graph obtainable by sequentially performing all non-trivial idempath identifications (in any order) to T.

Definition

Given any tree $T \in FLAd(X)$, perform the following:

- Idempath identify as far as possible...
- In the fold anything in the result which can fold.

We call the (uniquely obtained) result the *pretzel* of T, denoted T.

³D. Heath, M. Kambites, N. Szakács, *Pretzel Monoids*, 2024 (to appear).

00		

Left Adequate Monoid

Pretzel Monoids

An Example

Take $X = \{x, y\}$ and $G = \mathbb{Z}_3 \times \mathbb{Z}_3$. (so words equalling 1 include xxx, yyy, xxyyxy,...)

Left Adequate Monoids

Pretzel Monoids

Gluing

Take two trees S and T in FLAd(X) and pretzel-ify them w.r.t G. Define a multiplication on pretzels as follows:

- Glue $\overline{\widetilde{T}}$ to $\overline{\widetilde{S}}$, start-to-end.
- Pretzel-ify the result (note that new idempaths could have been created!).

Theorem (H., Kambites, Szakács, 2024)

This multiplication on pretzels is well-defined and associative. Under this multiplication, the set of all pretzels (w.r.t X and G) is a left adequate monoid. The unique idempotent in the \mathcal{R}^* -class of a pretzel Γ is Γ with the endpoint moved to the start (and possibly folded).

Denote this left adequate monoid by $\mathcal{PT}(G; X)$. For example, the 5 pretzels of $\mathcal{PT}(\mathbb{Z}_2; x)$ are:

Properties of Pretzels

Properties

- **()** A pretzel Γ is idempotent in $\mathcal{PT}(G; X) \iff \Gamma$ has identified start and end vertex.
- **3** Any pretzel Γ is a tree of strongly connected subgraphs of Cay(G; X), connected via single edges (which has no non-trivial idempaths or folds).
- $\mathcal{PT}(G; X)$ is X-generated (as a left adequate monoid).
- G is finite $\iff \mathcal{PT}(G; X)$ is finite.
- For $n \ge 1$, $|\mathcal{PT}(\mathbb{Z}_n; x)| = 2^n + n 1$.
- Ill of 1–5 works for G a right cancellative monoid, not necessarily a group!

• The maximal group/right cancellative image of $\mathcal{PT}(G; X)$ is G.

And as promised...

Theorem (H., Kambites, Szakács, 2024) $\mathcal{PT}(G; X) \cong LAd\langle X \mid w^2 = w \text{ for words } w =_G 1 \rangle.$

Pretzel monoids give a family of left adequate monoids with a geometric interpretation.

Open Questions and What's Next

- O Can we describe other presentations using similar geometric methods?
- Image and the second second
- Or an we apply our methods to closely related semigroup classes (e.g. Ehresmann, ample, abundant, amiable, restriction etc.) and their left/right duals?
- What 'traditional' semigroup theory can we apply to $\mathcal{PT}(G; X)$ (e.g. Green's \mathcal{J} -relation)?
- What about the right adequate and two-sided adequate pretzel monoids?

Preliminaries 00

References

Left Adequate Monoid

Pretzel Monoids 0000

Thank you!

- M. Gromov. "Hyperbolic groups". In: Essays in group theory. Vol. 8. Math. Sci. Res. Inst. Publ. Springer, New York, 1987, pp. 75–263
- M. Kambites. Free left and right adequate semigroups. 2009. arXiv: 0904.0916 [math.RA]
- O. Heath, M. Kambites, N. Szakács. Pretzel Monoids. 2024 (to appear)

