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The R∗ relation and Left Adequacy

Definition

Given a monoid M, define an equivalence relation R∗ on M by aR∗b if and only if

∀x , y ∈ M, xa = ya ⇐⇒ xb = yb.

Think: “Elements are R∗-related iff they ‘share’ right-cancellativity properties”.

Definition

A monoid is called left adequate if:

1 Every R∗-class contains a unique idempotent.

2 The idempotents of M commute with each other (ef = fe).
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A Big Diagram

Groups

E -unitary Inverse Monoids
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Ample Monoids
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Left Adequate MonoidsLeft Restriction Monoids

Left Ample Monoids
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Right Ample Monoids

Right Cancellative Monoids Left Cancellative Monoids
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FLAds

Theorem (Kambites, 2009)

Elements of the free left adequate monoid generated by a set X may be treated as directed,
edge-labelled trees, labelled by X , with two distinguished vertices called start and end, such
that:

1 There is a path from the start vertex to every other vertex.

2 No branches of the tree can be ‘completely folded in’, where we always fix the start/end
vertices.

The multiplication ST of trees S and T is given by gluing T to S start-to-end, then folding in
any branches we can.
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Pretzels!

Fix a set X and an X -generated right cancellative monoid C .

Definition

An idempath in an X -labelled digraph Γ is a path labelled by a word x1x2 · · · xn which is equal
to the identity in C . We take the empty path with label ϵ to have ϵ =C 1.
An idempath identification in Γ is the process of ‘cycling up’ an idempath.

Lemma (H., Kambites, Szakács, 2024)

Given a tree T ∈ FLAd(X ), there exists a unique graph obtainable by sequentially performing
all non-trivial idempath identifications (in any order) to T .

Definition

Given any tree T ∈ FLAd(X ), perform the following:

1 Idempath identify as far as possible...

2 ...then retract anything in the result which can retract.

We call the (uniquely obtained) result the pretzel of T , denoted T̃ .
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Example

Take X = {x , y} and C = Z3 × Z3 = Mon⟨x , y⟩.
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Gluing

Take two trees S and T in FLAd(X ) and pretzel-ify them w.r.t C = RC⟨X ⟩.
Define a multiplication on pretzels as follows:

1 Glue T̃ to S̃ , start-to-end.

2 Pretzel-ify the result (note that new idempaths could have been created!).

Theorem (H., Kambites, Szakács, 2024)

This multiplication on pretzels is well-defined and associative.
Under this multiplication, the set of all pretzels (w.r.t X and C ) is a left adequate monoid.

Denote this left adequate monoid by PT (C ;X ). For example, the 5 pretzels of PT (Z2; x) are:
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Properties of Pretzels

Properties

1 PT (C ;X ) is X -generated (as a left adequate monoid).

2 PT (X ∗;X ) ∼= FLAd(X ).

3 For any C = RCanc⟨X ⟩, there exists C ′ = G ∗ Y ∗ with PT (C ;X ) ∼= PT (C ′;X ).

4 PT (C ;X ) is finite ⇐⇒ C is finite =⇒ C is a group.

5 Any pretzel Γ is a tree of strongly connected subgraphs of Cay(G ) for some group G .

Theorem (H., Kambites, Szakács, 2024)

PT (C ;X ) ∼= LAd⟨X | w2 = w for w ∈ X ∗ s.t. w =C 1⟩.

Pretzel monoids are one analogue of Margolis-Meakin expansions from E -unitary inverse land.

M(G ;X ) ∼= Inv⟨X | w2 = w for w ∈ X ∗ s.t. w =G 1⟩.
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