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Left Adequate Monoids

Definition

A monoid M is left adequate if:

1 Idempotents of M commute;

2 For all a ∈ M, there exists a unique idempotent a+ ∈ E (M) such that

∀x , y ∈ M xa = ya ⇐⇒ xa+ = ya+.

Definition

Equivalently, a set M with type (·,+ , 1) and signature (2, 1, 0) is called left adequate if it
satisfies the following quasi-identities:

a(bc) ≈ (ab)c , a1 ≈ a ≈ 1a,

a+a ≈ a, (a+b+)+ ≈ a+b+, a+b+ ≈ b+a+, (ab)+ ≈ (ab+)+,

a2 ≈ a → a ≈ a+ and ac ≈ bc → ac+ ≈ bc+.

Fact: If M is right cancellative, then a+ := 1 makes M left adequate.
Fact: If M is inverse, then a+ := aa−1 makes M left adequate.
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Adequate Monoids

Definition

A monoid M is adequate if M is left adequate and also:

3 For all a ∈ M, there exists a unique idempotent a∗ ∈ E (M) such that

∀x , y ∈ M ax = ay ⇐⇒ a∗x = a∗y .

Definition

Equivalently, a set M with type (·,+ ,∗ , 1) and signature (2, 1, 1, 0) is called adequate if it
satisfies the quasi-identities for left adequate monoids plus:

aa∗ ≈ a, (a∗b∗)∗ ≈ a∗b∗, a∗b∗ ≈ b∗a∗, (ab)∗ ≈ (a∗b)∗,

a2 ≈ a → a ≈ a∗ and ca ≈ cb → c∗a ≈ c∗b.

Fact: If M is cancellative, then a+ := 1 and a∗ := 1 makes M adequate.
Fact: If M is inverse, then a+ := aa−1 and a∗ := a−1a makes M adequate.
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(Bi)unary Classes Floating Around
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Inverse Monoids
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Birestriction Monoids



Adequate Monoids Directed Trees Mongenic Free Left Adequate Monoids Monogenic Free Adequate Monoids

Free Objects

Many of these (quasi)varieties have free objects described by operations on directed graphs.

Munn 1974: Free inverse monoids.

bb−1abaa−1b−1 + ×
b b a b a a b

+

×

b
a

b a

Fountain, Gomes, Gould 2009: Free ample / birestriction monoids.
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a b
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Kambites 2009, 2011: Free adequate / Ehresmann monoids.
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Trees

Definition

An a-tree Γ is a directed graph, with a start vertex and an end vertex such that:

1 The underlying undirected graph of Γ is a tree,

2 There is a directed path from the start vertex to the end vertex.

Definition

A retraction is an idempotent endomorphism
Γ → Γ.

Definition

Γ is called retract-free if Γ admits no
non-trivial retractions.

Examples

+

×

+

×

a(aa)+a a(aa)+aa+

Fact: Any Γ admits a unique retract-free core up to isomorphism, which we denote Γ.
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Free Objects

Theorem (Kambites 2009, 2011)

FAd1 is the set of all retract-free a-trees with:

1 Γ∆ := Γ×∆,

2 Γ+ given by moving the end vertex to the start and retracting,

3 Γ∗ given by moving the start vertex to the end and retracting.

Definition

An a-tree is a left a-tree if every vertex is reachable (directed) from the start vertex.

Theorem (Kambites 2009, 2011)

FLAd1 is the set of all retract-free left a-trees with multiplication and + as above.
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Growth

Definition

The ball of size n B(n) in FAd1 consists of elements which may be created by a +-word
with at most n characters.

The sphere of size n is S(n) := B(n) \ B(n − 1).

We similarly define BL(n) and SL(n) for balls and spheres in FLAd1.

Proposition (Aird, H. 2025+)

1 T ∈ B(n) if and only if T has at most n edges.

2 T ∈ BL(n) if and only if T has at most n edges.

Corollary (Aird, H. 2025+)

1 T ∈ S(n) if and only if T has exactly n edges.

2 T ∈ SL(n) if and only if T has exactly n edges.

The Goal: Akin to free inverse monoids, examine |S(n)| and |SL(n)|, i.e. trees with n edges.
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What do trees in FLAd1 look like?
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Observation 1: Retract-free left a-trees consist of some length trunk, with single, non-splitting
branches off the trunk, of length strictly greater than the remaining trunk.
Observation 2: If there are branches on trunk vertices Y , the number of mandatory red edges
is
∑

i∈Y i .
Observation 3: The blue edges form a strictly decreasing sequence with sum n − k −

∑
i∈Y i .

The blue edges correspond to a partition of n − k −
∑

i∈Y i into |Y | distinct parts.
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Partitions

Theorem (Aird, H. 2025+)

The number of trees in FLAd1 with n edges and k trunk edges is

∑
Y⊆{0,...,k}

Q

(
n − k −

∑
i∈Y

i , |Y |

)

where Q(m, l) is the number of partitions of m into l distinct parts.

Corollary (Aird, H. 2025+)

The number of trees in FLAd1 with n edges and k trunk edges is P(n + 1, k + 1) where
P(m, l) is the number of partitions of m into l parts.

Corollary (Aird, H. 2025+)

In FLAd1, the number of trees with n edges is |SL(n)| = P(n + 1).
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FLAd1 trees with 5 edges
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(6), (5, 1), (4, 2), (3, 3), (4, 1, 1), (3, 2, 1), (2, 2, 2), (3, 1, 1, 1), (2, 2, 1, 1), (2, 1, 1, 1, 1), (1, 1, 1, 1, 1, 1).
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Growth

Theorem (Aird, H. 2025+)

The monogenic free left adequate monoid has intermediate growth.

Proof.

By a famous result of Hardy and Ramanujan,

P(n) ∼ 1

4n
√
3
exp

(
π

√
2n

3

)
∼ exp

(√
n
)
.

Theorem (Aird, H. 2025+)

Free left adequate monoids have exponential growth for rank ≥ 2.

Proof.

Note FAdn contains the free monoid of rank n.
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What do trees in FAd1 look like?

In adequate land, retract-free trees can look much stranger...

×+

Theorem (Aird, H. 2025+)

The semilattice of idempotents E (FAd1) grows exponentially of degree at least 2.
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Enumeration and Open Problems

n 0 1 2 3 4 5 6

|SE (n)| 1 2 3 6 11 28 63

|S(n)| 1 3 6 14 29 74 ?

Table: Size of spheres in FAd1 for 0 ≤ n ≤ 5.

Questions

1 What is the idempotent growth rate of FAd1?

2 Is the growth rate of FAd1 governed by its idempotents?

3 Higher rank? In both FLAdn and FAdn?

Thank you!


	Adequate Monoids
	Directed Trees
	Mongenic Free Left Adequate Monoids
	Monogenic Free Adequate Monoids

