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In natural complex environments, the elevation of the sun and the presence of occluding objects and
mutual reflections cause variations in the spectral composition of the local illumination across time
and location. Unlike the changes in time and their consequences for color appearance and constancy,
the spatial variations of local illumination color in natural scenes have received relatively little attention.
The aim of the present work was to characterize these spatial variations by spectral imaging.
Hyperspectral radiance images were obtained from 30 rural and urban scenes in which neutral probe
spheres were embedded. The spectra of the local illumination at 17 sample points on each sphere in each
scene were extracted and a total of 1904 chromaticity coordinates and correlated color temperatures
(CCTs) derived. Maximum differences in chromaticities over spheres and over scenes were similar.
When data were pooled over scenes, CCTs ranged from 3000 K to 20,000 K, a variation of the same order
of magnitude as that occurring over the day. Any mechanisms that underlie stable surface color percep-
tion in natural scenes need to accommodate these large spatial variations in local illumination color.

© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
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1. Introduction

The color and level of natural illumination, mainly light from
the sun and sky, vary over time and with location in the scene
being viewed. At any particular location, temporal changes can
be slow, such as those arising from the elevation of the sun, pro-
ducing a change from reddish at dawn (and dusk) to bluish at
noon; or they can be fast as when a cloud occludes the sun. These
spectral and colorimetric changes are well characterized and are
considerable - expressed in terms of correlated color temperature
(CCT) they are in the range 4000-40,000 K (Hernandez-Andrés,
Romero, Nieves, & Lee, 2001; Judd, MacAdam, & Wyszecki, 1964;
Lee, 1994; Wyszecki & Stiles, 1982).

Despite these variations, visual sensitivity to global variations
in the color of the illumination is generally low. Being able to
compensate for global variations in illumination color is central
to theories of stable surface color perception, i.e. color constancy,
including Land’s Retinex theory (Land & McCann, 1971; McCann,
McKee, & Taylor, 1976) and other computational color-constancy
algorithms (Gijsenij, Gevers, & van de Weijer, 2011; Hurlbert,
1986). Empirical laboratory studies with complex real three-
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dimensional scenes rendered with spatial color gradients have
shown that sensitivity to smooth spatial variations in illumination
color is also very low (de Almeida & Nascimento, 2009;
Ruppertsberg, Bloj, & Hurlbert, 2008).

Natural environments, however, may contain more abrupt spa-
tial variations of local illumination as a result of their complex spa-
tial structures, which produce shading, mutual reflections, and
occlusions (Chiao, Cronin, & Osorio, 2000; Endler, 1993). The spa-
tial variations in local illumination intensity level have been well
documented (Dror, Willsky, & Adelson, 2004; Morgenstern,
Geisler, & Murray, 2014; Mury, Pont, & Koenderink, 2007, 2009),
as has visual sensitivity to those variations (Lee & Brainard,
2011; McCann, Savoy, Hall, & Scarpett, 1974; Olkkonen &
Brainard, 2011; Ruppertsberg et al., 2008).

Yet unlike the characterization of natural temporal changes in
illumination color, the characterization of natural spatial variations
in local illumination color and their consequences for color con-
stancy have received relatively little attention (cf. Hubel, 2000).
Chromatic spatial variations in natural scenes have been estimated
indirectly from a computer analysis of color images (Gu, Huynh, &
Robles-Kelly, 2014) and from empirical measurements with an
RGB video camera to which a neutral sphere was attached and
was visible in the field of view (Ciurea & Funt, 2003). Both of these
approaches have provided useful but constrained data on local
illumination. There are clearly significant methodological and
experimental difficulties in obtaining more comprehensive data
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on local illumination color by making successive spectroradio-
metric measurements from within the scenes themselves.

The aim of the present work was to characterize the spatial
variations in illumination color in natural scenes by spectral
imaging. Small neutral probe spheres were embedded in the
scenes, which were then imaged with a hyperspectral camera.
From the reflected radiance images, the spectrum of the local
illumination could be estimated simultaneously at each location
(or surface direction) on each sphere in each scene and then
characterized in terms of its chromaticity and CCT. The chosen
scenes were 30 close-up and distant views of rural and urban
environments. It was found that the spatial variations in
local illumination color within these scenes were unexpectedly
large and of the same order of magnitude as variations across
the day.

2. Methods
2.1. Hyperspectral system

Hyperspectral radiance images of natural outdoor scenes were
acquired with an in-house hyperspectral imaging system. It has
been described previously (Foster, Amano, Nascimento, & Foster,
2006), but, in brief, the system consisted of a low-noise
Peltier-cooled digital camera (Hamamatsu, model C4742-95-12ER,
Hamamatsu Photonics K. K., Japan) and a fast tunable liquid-crystal
filter (Varispec, model VS-VIS2-10-HC-35-SQ, Cambridge Research &
Instrumentation, Inc., MA) mounted in front of the lens, together
with an infrared blocking filter. The images were acquired over a
wavelength range from 400 to 720 nm in 10 nm steps with an
effective image size of 1344 x 1024 pixels. The focal length of the
camera lens was typically 75 mm and the field of view was approx-
imately 6.9° x 5.3°. Images were corrected at each wavelength for
dark noise, stray light, and spatial non-uniformities. These corrected
images were then registered over wavelength by uniform scaling
and translation to compensate for small differences in optical image
size with wavelength, i.e. chromatic differences of magnification,
and any small differences in optical image position (Ekpenyong,
2013). Spectral radiances were calibrated with reference to the
spectrum of the light reflected from an embedded surface covered
in matt gray emulsion paint (VeriVide Ltd, Leicester, UK) to produce
the surface reflectance of Munsell N5 or N7. This reference surface
was always present in each scene and its reflected spectrum was
measured with a telespectroradiometer (SpectraColorimeter,
PR-650, PhotoResearch Inc., Chatsworth, CA) at the time of image
acquisition. Depending on the scene the reference surface was
either a small flat surface or one of the neutral probe spheres
embedded in the scene. The hyperspectral radiance data at each
pixel were corrected so that at the reference surface the recorded
spectrum coincided with that measured with the telespectrora-
diometer. A more detailed description of the hyperspectral system
and its calibration is given elsewhere (Ekpenyong, 2013; Foster
et al., 2006).

The spectral accuracy of the hyperspectral system in recovering
spectral reflectance factors of colored samples was established
previously to be within 2% (Foster et al., 2006; Nascimento,
Ferreira, & Foster, 2002) and the recovery of spectral radiance
was therefore also within 2%. In separate measurements, errors
in peak transmittance wavelength of the tunable filter were found
to be less than 1 nm over 400-660 nm and less than 2 nm over
670-720 nm. Errors in peak spectral radiance recorded by the
whole system at 436 and 546 nm were found to be less than
1 nm at the center and edges of the imaging field.

2.2. Scenes and illumination sampling

Hyperspectral radiance data from 30 natural scenes in the
Minho region of Portugal were acquired during late spring and
summer of 2002 and 2003. The sky in most of the scenes was clear
but in five it was overcast with cloud. Each acquisition lasted a few
minutes and took place within the period 11:00-18:00. There were
17 images of rural scenes, containing mainly trees, flowers and
other vegetation, and 13 of urban scenes containing some type of
man-made construction. Both close-up and distant views were
included. The aperture of the camera was deliberately stopped
down to provide a large depth of focus and particular care was
taken to ensure that the spheres in the scenes were in focus. The
line-spread function of the system estimated from the set of
natural images was almost Gaussian with a standard deviation of
1.3 pixels at 550 nm (Foster et al., 2006). Fig. 1 shows color
renditions of the scenes; no region of the images including the
embedded spheres was significantly out of focus.

Where possible, the probe spheres embedded in each scene
were distributed over the field of view. The spheres were made
of glass or plastic material and were covered in Munsell N5 or
N7 matt gray emulsion paint, and, depending on the scene, their
diameters varied from 16 mm to 80 mm. The physical size of the
spheres was not adjusted for constant image size because of their
variable distance from the camera. The number of spheres in each
scene varied from one to seven.

The global illumination in 24 of the scenes was measured at or
close to the time of image acquisition by recording the spectrum
reflected from a barium sulfate plug placed horizontally and
located where only direct illumination was incident. In five of
the scenes it was recorded from the top of one of the spheres in
the scene. In one scene no direct illumination could be recorded.

These images of scenes with multiple embedded spheres were
acquired solely for analyzing spatial variations in local illumina-
tion. Data from these images have not been reported previously
and the images should be distinguished from similar images with-
out multiple spheres used in previous studies for other purposes
(Foster et al., 2006; Linhares, Pinto, & Nascimento, 2008).

2.3. Local illumination estimates

Estimates of the local illumination color were derived as fol-
lows. For each sphere in each scene, radiance spectra were
extracted from the hyperspectral image at 17 sample points dis-
tributed uniformly over the image of the sphere. Each point corre-
sponded to one image pixel. One point was located at the center of
the image of the sphere and the others were distributed evenly
along vertical, horizontal, and the two 45° oblique axes, with spac-
ing one-sixth of the sphere diameter. Any sphere in the camera
view that was partially occluded by other objects (e.g. leaves, trees)
was excluded from the analysis. In total there were 112 spheres
yielding a total of 1904 local illumination sample points.

The radiance spectra at each sample point represented an esti-
mate of the local illumination incident on a planar surface element
tangent to the sphere at that point, scaled by the reflecting proper-
ties of the Munsell paint. More precisely, let L;(6;, ¢;; x,y; 4) be the
spectral radiance at wavelength / incident at the point (x, y) in
the direction (6;, ¢;) with respect to the surface normal (0yy, ¢xy);
let L.(6:, ¢,;X,Y; ~) be the corresponding spectral radiance reflected
in the direction (0, ¢;) defined by the viewing geometry; and let
f(0i, ¢i; 01, ¢r3x,y; A) be the spectral bidirectional reflectance distri-
bution function (Nicodemus, Richmond, Hsia, Ginsberg, & Limperis,
1997). Then
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Fig. 1. Color renditions of the 30 scenes analyzed in this study. The small gray spheres in the scenes were used to estimate the spectrum of the local illumination at different
positions and directions within the scenes. One of the scenes was imaged twice with a 12-day interval.
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where the integration is taken over the solid angle 27 above the
surface element with normal (0xy, ¢x,). If there is no interaction
between the wavelength dependence and geometrical dependence
of reflection, then f(6;, ¢;; 0r, ¢.; x,¥; %) is separable and can be writ-
ten f,(0i, ¢;; 0r, ¢35 X,y) f5(4), where f,(4) is the normalized spectral
reflectance (Nicodemus et al., 1997). Since the viewing geometry
is fixed and the spectral dependence of Munsell paint is known
and is approximately Lambertian, it follows that after correction
by f,(2) the description (1) can be simplified (Nicodemus et al.,
1997, Egs. C1 and C8) thus:

Lr(’@)’% ;“) = %/2 Li(0i7 d’i;xay;j') Cos 0i dCUi. (2)
v

In other words, the corrected spectral radiance L;(x,y; ) in (2)
gives a measure at (x, y) of the integrated local illumination on a
surface element tangent to the sphere at (x,y) with normal
(gxy: ¢xy)-

From each of these local illumination estimates, the corre-
sponding CIE (x, y) chromaticity coordinates and CCT were
calculated in the usual way (CIE, 2004).

3. Results

By way of illustration, Fig. 2 shows data obtained from one of
the scenes containing combinations of light from the sun, sky
and surrounding surfaces. The image on the left is a color rendition

of the scene with six embedded probe spheres indicated by
numbers. The dot plot in the middle shows the CCTs of the local
illumination in each of the 17 directions defined by the sample
points on each of the spheres. The graph on the right shows the
CIE 1931 (x, y) chromaticity coordinates from all 102 (=6 x 17)
sample points. The solid line represents the daylight locus and
the crosses the daylights D65 and D50 included for reference. As
can be seen from the middle plot, there is a marked variation in
the range of CCTs of the local illumination over each of the six
spheres.

Fig. 3 shows summary data from all 30 scenes. The graph on the
left shows the CIE (x, y) chromaticity coordinates of the global illu-
minations recorded from the barium sulfate plug (or from the top
of an exposed sphere). As expected, the recorded values lie close to
the daylight locus. The graph in the middle shows the pooled CIE
(x, y) chromaticity coordinates of all of the local illuminations,
i.e. from each sample point from each sphere from each scene.
The gamut of local illumination colors is much greater than of
the global illuminations owing to the complex spatial structure
of the scenes, especially variations in attached and unattached
shadows and in mutual illumination. Consistent with other
measures of daylight (Hernandez-Andrés et al., 2001; Judd et al.,
1964) the chromaticities tend to lie above the daylight locus. For
comparison with the overall diversity in colors in the scenes, the
inset shows in gray the gamut of colors of 100 randomly selected
points in each image and in black the gamut replotted from the
middle graph (notice the difference in scales).

The histogram on the right in Fig. 3 shows the frequency
distribution of all of the local illuminations expressed in reciprocal
color temperature calculated as 105/CCT and measured in MK™!
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Fig. 2. Correlated color temperatures and chromaticity coordinates from one of the hyperspectral scene images. The color rendition on the left shows the scene with six
embedded probe spheres indicated by numbers. The dot plot in the middle shows the distribution of the CCTs of the local illumination at the 17 sample points on each of the
spheres. The graph on the right shows the CIE 1931 (x, y) chromaticity coordinates from all 102 (6 x 17) sample points within the scene. The solid line represents the daylight

locus and the crosses the daylights D65 and D50.
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Fig. 3. Summary data from 30 natural scenes. The graph on the left shows the CIE 1931 (x, y) chromaticity coordinates of the global illuminations recorded from a barium
sulfate plug (or from the top of an exposed sphere). The graph in the middle shows the pooled CIE (x, y) chromaticity coordinates of all the local illuminations and in the inset
in gray the coordinates of 100 randomly selected points in each image and in black data re-plotted from the main graph (notice the difference in scales). The histogram on the
right shows the frequency distribution of all of the local illuminations expressed in reciprocal color temperature measured in MK~". The continuous curve is a best-fitting

Gaussian distribution.

(reciprocal megakelvin or mired). This inverse scale offers a more
uniform representation of color differences and is used routinely
in illumination studies (Hernandez-Andrés et al., 2001; Masuda &
Nascimento, 2013; Wyszecki & Stiles, 1982). The continuous curve
is the best-fitting Gaussian distribution with peak at 5698 K and a
FWHM of 53 MK~'. A similar value for the peak has been reported
elsewhere as best typifying daylight (Hernandez-Andrés et al.,
2001). The range of CCTs across scenes was considerable with
99% of the values extending over the interval 3000-20,000 K.

To reveal the separate variations of local illumination color
within and across scenes, the maximum variations in CIE 1931
(x, y) chromaticity coordinates were calculated for each condition.
Fig. 4 shows the results. The graph on the left shows maximum
differences in (x, y) chromaticity coordinates over spheres and on
the right maximum differences in (x, y) chromaticity coordinates
over scenes. The two distributions are very similar, with their
convex hulls having 50% overlap.

A high degree of spectral redundancy has been reported for day-
light variations during the day (Hernandez-Andrés et al., 2001;
Judd et al., 1964). With five principal components it is possible to
explain 99.991% of the variance of the 2600 spectra in the range

380-780 nm (Hernandez-Andrés, Nieves, Valero, & Romero,
2004; Hernandez-Andrés et al.,, 2001). A principal component
analysis applied to the present data revealed a similar property
for the variations in local illumination spectra across space.
Fig. 5 shows the first three principal components obtained by
analyzing the 1904 spectra that made up the samples analyzed
here (i.e. from all the points from all the spheres from all the
scenes). Although the spectral ranges are different, the profiles of
these components are similar to the corresponding ones reported
for variations during the day (Hernandez-Andrés et al., 2001) and
account for 99.946% of the variance in the data. The first compo-
nent has a maximum displaced more towards the green part of
the spectrum, an effect presumably due to mutual reflections from
foliage.

With images recorded from both rural and urban scenes, it
might be assumed that the large spatial variations in local
illumination color were derived mainly from urban scenes with
well-defined boundaries typical of the built environment. A com-
parison of the two types of scenes showed in fact that standard
deviations were larger for rural scenes, a representative example
of which is shown in Fig. 2.
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Fig. 4. Variations in chromaticities within and across scenes. The graph on the left shows maximum differences in CIE 1931 (x, y) chromaticity coordinates over spheres and
the graph on the right maximum differences in CIE (x, y) chromaticity coordinates over scenes.
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Fig. 5. Spectral distributions of the first (solid line), second (dashed line) and third
(dotted line) principal components for the 1904 local illumination spectra obtained
from the spheres. The first three components accounted for 99.947% of the variance
in the data.

4. Discussion

The local illumination in natural environments depends not
only on the relative contributions from the sun and sky but,
importantly, also on the presence of occluding objects and mutual
reflections. The resulting spatial variations in the color of the
illumination can be surprisingly large. As shown here by spectral
imaging with embedded probe spheres, the correlated color
temperatures in 30 rural and urban scenes had values ranging from
3000 K to 20,000 K, a variation similar in magnitude to that over
the day in diverse atmospheric conditions and in different
terrestrial latitudes (Hernandez-Andrés et al., 2001; Wyszecki &
Stiles, 1982).

By contrast, the CCTs of the global illumination recorded from a
barium sulfate plug or the top of an exposed sphere in each scene
ranged from just 5000 K to 8000 K. This range, representing the
variation in the light from the sun and sky without occlusions or
reflections, was smaller than anticipated given that the scenes
were imaged at times between 11:00 and 18:00 and in different
atmospheric conditions with clear and overcast skies. Lower mini-
mum CCTs might have been obtained if scenes had been imaged
either earlier or later in the day under direct sun. The Portuguese

summer day lasts for more than 14 h, starting at about 6:00 and
ending about 21:00.

In achieving stable surface color perception, the visual system
seems able to tolerate smooth spatial variations in illumination
color (de Almeida & Nascimento, 2009; Ruppertsberg et al.,
2008). But more abrupt spatial variations present a greater chal-
lenge. By their nature, global changes in illumination occur more
uniformly across scenes and color constancy can involve relatively
slow-acting global chromatic-adaptation mechanisms. Illumina-
tion changes across space have a more immediate impact as the
gaze moves over a scene. Although there are fast-acting
chromatic-adaptation processes (Rinner & Gegenfurtner, 2000),
other non-adaptational mechanisms must be involved to preserve
the simultaneous perception of local illumination differences
(Arend & Reeves, 1986; Joost, Lee, & Zaidi, 2002; Lichtenberg,
1793). One mechanism that might contribute to stable surface
color perception is the spatial ratio of cone excitations arising from
light reflected from different surfaces in a scene (Foster &
Nascimento, 1994; Nascimento et al., 2002). Such ratios were
shown to be approximately invariant under changes in illumina-
tion. For the same pair of surfaces this invariance must hold
whether the changes are in global illumination spectrum on a
scene or the result of a more local change. Invariant ratios may pro-
vide the basis for a range of perceptual color phenomena, including
relational color constancy and displacement color constancy. A
complication with the spatial variations in natural illumination
described here is that their geometry may change over the course
of the day. But provided that the sampling of ratios is constrained
to nearby points or moderate time intervals, spatial ratios remain
approximately invariant (Foster, Amano, & Nascimento, 2016).

In estimating the spectral properties of natural scenes, the fact
that there are large spatial variations in local illumination spectra
does mean that accurate surface spectral reflectances cannot be
recovered from spectral radiance data by assuming a single global
illumination acting uniformly over the scene. Nonetheless the
technique of assigning effective spectral reflectances to surfaces
based on the assumption of a single global illumination (Foster
et al., 2006, Appendix A) does allow the simulation of surfaces in
scenes under different global illuminations (Feng & Foster, 2012;
Linhares et al., 2008; Nascimento et al., 2002). Spatial cone excita-
tion ratios obtained with this technique are almost invariant
(Nascimento et al., 2002), and mean relative deviations in ratios
are of the same order of magnitude as those from actual scenes,
providing that sampling is from points close together in space or
time, as mentioned earlier, or from points separated arbitrarily
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but undergoing even changes in illumination, where, for example,
both are in shade or both are in direct illumination (Foster et al.,
2016).

Whatever the mechanisms are that underlie stable surface color
perception in natural scenes, it is evident that they need to accom-
modate large spatial variations in local illumination color which
can be of the same order of magnitude as the variations across
the day.

The hyperspectral radiance images used in this study are avail-
able from the authors’ web sites, http://online.uminho.pt/pessoas/
smcn/ and http://personalpages.manchester.ac.uk/staff/d.h.foster/.
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