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Efficient quantization of painting 
images by relevant colors
Zeinab Tirandaz 1*, David H. Foster 1*, Javier Romero 2 & Juan Luis Nieves 2

Realistic images often contain complex variations in color, which can make economical descriptions 
difficult. Yet human observers can readily reduce the number of colors in paintings to a small 
proportion they judge as relevant. These relevant colors provide a way to simplify images by 
effectively quantizing them. The aim here was to estimate the information captured by this process 
and to compare it with algorithmic estimates of the maximum information possible by colorimetric 
and general optimization methods. The images tested were of 20 conventionally representational 
paintings. Information was quantified by Shannon’s mutual information. It was found that the 
estimated mutual information in observers’ choices reached about 90% of the algorithmic maxima. 
For comparison, JPEG compression delivered somewhat less. Observers seem to be efficient at 
effectively quantizing colored images, an ability that may have applications in the real world.

Images of the real world and of the objects within it reveal the spatial and spectral complexity of natural  surfaces1 
and their  illumination2,3. But the impression of chromatic detail is likely to be founded on partial information, 
limited by our peripheral color  awareness4, pattern of  gaze5,  attention6,  memory7, and the emotional and semantic 
content of the  scene8,9, and, more fundamentally, by the relative abundances or frequencies of the different colors 
 present10,11. Of course, not all the colors in a scene are needed in order to describe or remember it, and different 
methods have been used to estimate which colors are relevant.

The most direct approach is to ask human observers to make the required judgments. In a psychophysical 
 experiment12, observers selected those pixels in an image of a painting they considered to belong to a “relevant 
chromatic area”. The images were of 20 paintings in the Prado  Museum13, Madrid, and of 20 artworks from the 
database of Khan et al.14. Observers could choose as many colors as they wished. This procedure yielded a mean 
of 21 relevant colors for each image, with the number and identity of the colors varying with both the image 
and the observer.

An alternative theoretical approach is to use colorimetric  methods15. In such an  analysis16, the approximately 
uniform color space  CIELAB17 was divided into cubic cells whose side length was a multiple of the smallest 
discriminable step, and colorimetric arguments were then used to assign the colors of a scene to those cells. The 
images were of 4266 artworks from the database of Khan et al.14. The analysis yielded a mean of 18 relevant colors 
per image, the number and identity again varying with the image. Further details of this colorimetric method 
and of observers’ experimental judgments are given in Methods.

Whatever the method, the use of relevant colors offers a way to simplify an image by quantizing it, that is, 
by reducing a large, essentially continuous range of colors to a much smaller discrete set. It is unclear, however, 
whether this process is efficient. Does it capture the most information about the image for a given number of 
relevant colors?

The present analysis addresses this question. Information was quantified by Shannon’s mutual  information18, 
though other formulations are  possible19. Estimates were made of the mutual information between images and 
the quantized representations implied from observers’ relevant colors and from the colorimetric method and 
then compared with estimates of the maximum mutual information by general optimization methods. These 
methods used clustering to partition the set of colors in each image into n subsets according to some cost or 
objective function. Although values of n were matched to the number of relevant colors for each image obtained 
by each observer and by the colorimetric method, methods for objectively determining n were also considered. 
In all, five clustering algorithms were considered, and were based on k-means++20, maximum entropy clustering 
(MEC)21,22, expectation maximization with a Gaussian mixture model (GMM)21,23, minimum conditional entropy 
(minCEntropy)24–26, and Graph-Cut27–30. Each is explained in Methods, but minCEntropy has the notional 
advantage that it is designed to maximize the mutual information between the data and the clustering.
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The test images are illustrated in Fig. 1. They were chosen for their complex spatio-chromatic content and 
realistic character and are a subset of conventionally representational painting images used  earlier16, for which 
observer estimates of relevant colors were already  available12. The color gamuts of each of these images are 
illustrated in the Methods section. An example of a quantized representation is shown later. Other examples are 
available  elsewhere12,16.

For clarity, this analysis should be distinguished from more abstract  approaches31 in which the efficiency 
of color naming itself is evaluated with uniform color palettes such as the Munsell  set32. It should also be dis-
tinguished from color categorization with a fixed set of basic or salient color  terms33, and from image classi-
fication with a set of color descriptors for database  retrieval34. The relevant colors used here were distributed 
non-uniformly in each image, they were not drawn from fixed categories, and observers were instructed not to 
name them.

It was found that the estimated mutual information in observer judgments of relevant colors was close to the 
estimates from all five clustering methods, including minCEntropy, and the colorimetric method. Observers 
seem to be efficient at effectively quantizing colored images of paintings.

Results
Efficiencies of representations by relevant colors. Figure 2 shows the estimated mutual information 
between each image in Fig. 1 and its quantized representation by relevant colors for each of the five clustering 
methods, k-means++, MEC, GMM, minCEntropy, and Graph-Cut, and by individual observers. The 120 data 
points for each method derive from the 20 images and the six observer’s choices of numbers of relevant colors 
for each  image12. The data are summarized by the superimposed boxplots.

The five clustering methods produced closely similar mean levels of estimated mutual information of about 
2.4 bits, and observers slightly lower levels, about 2.2 bits. The variance in the plotted data, however, is potentially 
misleading in that the estimated mutual information for an image and the number of relevant colors n covary 
across methods and observers. This confound was circumvented by calculating the efficiency of one method 
relative to another for each image and for the same number of relevant colors n. Values of n were drawn from 
observers’ choices, except for the colorimetric method, which determined n automatically for each image. That is, 
for k-means++, MEC, GMM, minCEntropy, and Graph-Cut, multiple values of n were available from observers 
for each image whereas, for the colorimetric method, only one value was available for each image.

The choice of reference method is not critical, and the minCEntropy method was chosen for the property 
mentioned earlier, that is, maximizing the mutual information between the data and the clustering. Thus, suppose 

Figure 1.  Montage of images of conventionally representational paintings in the Prado  Museum13, adapted 
from Ref.12, Fig. 1, licensed under CC BY 4.0. The color gamuts of each of these images are illustrated in Fig. 4 in 
Methods.
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that I is the mutual information between an image and its quantized representation by relevant colors estimated 
by a particular method and that Iref is the corresponding quantity estimated by the minCEntropy method. Then 
the efficiency η of the method for this image and value of n is

which can be averaged over all images and all n. Table 1 shows mean efficiencies η calculated with respect to 
the minCEntropy estimates, along with 95% confidence limits.

Estimates by observers are close to but less than the optimum method, with a mean efficiency of 89%. In the 
light of the 95% confidence limits, this difference is reliable. Estimates with the other clustering methods did not 
differ reliably from the minCEntropy estimate.

Variation in numbers of relevant colors. Observers were free to choose as many relevant colors as they 
 wished12, and, as indicated earlier, they chose different numbers n with each scene. This is evident in Fig. 2 and 
was confirmed statistically (Kruskall-Wallis test, p < 0.001). Crucially, though, observers’ efficiencies η in making 
those choices did not differ significantly (Kruskall–Wallis test, p = 0.8).
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Figure 2.  Information from relevant colors. Estimated mutual information between each of the 20 images in 
Fig. 1 and their quantized representations by relevant colors is shown for five clustering methods and six human 
observers, indicated by different symbols. Horizontal jitter has been added to reduce overlap between  symbols35. 
Estimates for individual images are not distinguished. Boxplots represent median (center line), mean (solid 
square), interquartile range (rectangle), and the 5th and 95th percentiles (whiskers).

Table 1.  Efficiencies of methods for estimating information from relevant colors relative to minCEntropy 
clustering. Mean efficiencies η are given for three clustering methods, the colorimetric method, and six human 
observers. Values of η were averaged over 20 images and numbers of relevant colors n. Estimated 95% BCa 
confidence  limits36 are shown in parentheses, based on 1000 bootstrap replications.

Estimation method Mean efficiency η (%)

k-means++ 99.7 (99.3, 100.0)

MEC 100.3 (100.0, 100.7)

GMM 97.8 (96.9, 98.8)

Graph-cut 98.8 (98.5, 99.2)

Colorimetric 81.4 (78.0, 83.6)

Human observers 89.4 (88.1, 90.6)
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With different numbers of relevant colors for each image, does mutual information increase predictably as 
n increases?

Figure 3 shows estimated mutual information plotted against the logarithm to the base 2 of the number 
of relevant colors for the five clustering methods and six human observers. Both the clustering methods and 
observers behaved broadly appropriately, that is, as the number of relevant colors increased, so did the estimated 
mutual information. The slopes of the regression fits were similar (95% confidence limits in parentheses): 0.67 
(0.65, 0.69) and 0.61 (0.53, 0.66) for the clustering methods and observers, respectively.

Objective estimates of numbers of relevant colors. Rather than depend on observer estimates of the 
number of relevant colors n, is there an objective way of deciding? To this end, three algorithmic methods for 
estimating n for each image were tested. These were the Caliński-Harabasz37 method with upper limits of n = 40 
and n = 80; the Davies–Bouldin38 method with upper limit n = 80; and an adaptive k-means  method39, which 
does not require initialization. All are described more fully in Methods.

Table 2 shows the optimum numbers of clusters averaged over the 20 images, along with corresponding 
averages for observers.

The problems of consistency are evident. The three methods deliver mean optimum numbers that differ reli-
ably from each other, and which fall reliably below those selected by human observers.

Comparison with JPEG coding. The quantized representation of an image by relevant colors can be 
thought of as a lossy compression. As a demonstration, mutual information estimates by the minCEntropy 
and colorimetric methods and from observers were compared with those from the popular JPEG compression 
 algorithm40, although accurate color quantization is not its primary goal. The JPEG implementation in MATLAB 
(version 9.10.0.1602886 (R2021a), The MathWorks, Inc., Natick, MA) was used with a quality setting of zero to 
minimize the normally large number of colors in the representation (e.g., for the image in the second row, third 
column of Fig. 1, a quality setting of 5 gave 6040 colors and a setting of zero gave 2611 colors).

Table 3 shows estimates of mutual information and numbers of colors n with three of the images of Fig. 1 
that produced the largest visual differences across methods. Unlike Table 1 where each method was compared 
with the minCEntropy method for the same n, this normalization was not possible here. Since the colorimetric 
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Figure 3.  Information and number of relevant colors. Estimated mutual information is plotted against 
logarithm to the base 2 of the number of relevant colors n for the five clustering methods and six human 
observers. Horizontal jitter has been added to reduce overlap between  symbols35. The dashed lines represent 
linear regressions on the unjittered data.

Table 2.  Estimated optimum numbers of clusters, averaged over 20 images, according to three methods, and 
different initial values. Data for human observers are included for comparison. Estimated 95% BCa confidence 
 limits36 are shown in parentheses, based on 1000 bootstrap replications.

Caliński-Harabasz, upper 
limit 40

Caliński-Harabasz, upper 
limit 80

Davies-Bouldin, upper 
limit 80 Adaptive k-means Human observers

8.2 (6.2, 11.4) 8.9 (6.5, 12.6) 2.5 (2.2, 3.1) 4.0 (3.6, 4.4) 15.4 (14.0, 17.1)
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method determined n automatically for each image, this value was used for the minCEntropy method. The 
observer representation was then chosen as the one with the value of n closest to that of the colorimetric method.

Even with a JPEG quality setting of zero, the mean number of JPEG unique colors was 3.9 ×  103, more than two 
orders of magnitude larger than with the other three methods. Yet the minCEntropy method, the colorimetric 
method, and individual observers were able to preserve 2.6 bits of information on average over all 20 images, 
more than the 2.1 bits preserved on average with JPEG. For the calculation of the efficiency of JPEG relative to 
the minCEntropy method, it was impracticable to use the same n with minCEntropy, and the value of n from 
the colorimetric method was used instead. The mean JPEG efficiency (with 95% confidence limits) was 72.3% 
(68.6%, 76.1%).

The effects of information loss on appearance are obvious. For all three images in Table 3, JPEG rendered light 
brown as light green, most noticeably the shirt of the figure in the top row on the left, presumably a side-effect of 
downscaling color in JPEG. The colorimetric method showed a similar but smaller bias. Both the minCEntropy 
method and individual observers rendered all the colors well.

Color rendering. To extend the comparisons of color rendering across all the images, mean color differ-
ences were estimated between each painting image and its quantized representation. The RGB values at each 
pixel were converted to CIE 1931 XYZ tristimulus value values (2° observer) and color differences evaluated 
in the approximately uniform color space CIECAM02-UCS17 with respect to a 6500 K illuminant. These differ-
ences were then averaged over the whole image. For comparison, color differences were also evaluated in the 
somewhat less uniform color space S-CIELAB41,42, which takes into account the spatial-frequency filtering of the 
whole image by the eye. The same illuminant was assumed. Table 4 shows these color differences averaged over 
all 20 images for both color spaces. As with Table 3, n was set by the colorimetric method.

Table 3.  Quantized representations of an image by relevant colors and JPEG compression. The original image 
from Fig. 1 is shown in the first column. Subsequent columns show the image quantized by relevant colors 
estimated by the minCEntropy method, the colorimetric method, a human observer, and JPEG with the fewest 
colors. The estimated mutual information in bits and number of relevant colors n are shown beneath the 
corresponding image.

Original image minCEntropy Colorimetric 
method Human observers JPEG

2.82 bits, n = 20 2.23 bits, n = 20 2.61 bits, n = 21 1.76 bits, n = 2611

3.01 bits, n = 23 2.53 bits, n = 23 3.00 bits, n =35 2.04 bits, n = 3267

2.59 bits, n = 19 2.03 bits, n = 19 2.08 bits, n = 14 1.63 bits, n = 2492

Table 4.  Color rendering by relevant colors in two color  spaces17,41,42. Color differences between the original 
image and its quantized representation are shown for minCEntropy clustering, the colorimetric method, six 
human observers, and JPEG, with values averaged over the 20 images. Estimated 95% BCa confidence  limits36 
are shown in parentheses based on 1000 bootstrap replications.

Estimation method Mean CIECAM02-UCS color difference Mean S-CIELAB color difference

minCEntropy 3.7 (3.5, 4.0) 4.1 (3.9, 4.4)

Colorimetric method 7.9 (7.7, 8.2) 9.0 (8.9, 9.3)

Human observers 5.5 (5.1, 6.0) 6.2 (5.7, 6.6)

JPEG 9.1 (8.6, 9.5) 12.7 (12.0, 13.3)
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In principle, a just perceptible color difference of about 0.5 in CIECAM02-UCS is around half that value in 
CIELAB  space43, but larger values of about 1.5 in CIECAM02-UCS and 2.2 in CIELAB space have also been used 
with whole images of natural  scenes44. With any of these thresholds, the color differences in Table 4 manifestly 
represent detectable effects in CIECAM02-UCS and CIELAB space.

That there should be detectable differences is not unreasonable. Quantization by relevant colors entails a 
reduction in the number of unique image colors of about 5000 to 1, on average. While many of the original colors 
coincided with their quantized values, there were inevitably many other colors that did not.

Discussion
Representing images in terms of a limited number of relevant colors reduces their spatial and spectral complex-
ity, but with an inevitable loss of information. The present analysis showed that with representational painting 
images, the estimated information captured by human observers in their choices of relevant  colors12 reached 
about 90% of that possible by algorithmic clustering methods, all of which maximized the estimated mutual 
information between the image and the clustering. Observers seem to be efficient at effectively quantizing these 
images.

In making their choices, observers were not limited to any particular number of relevant  colors12. Reassur-
ingly, whether observers settled on a few or many relevant colors (numbers ranged from 5 to 68 across scenes), 
the colors they chose approached the optimum in each case. As Fig. 3 shows, mutual information estimates 
increased approximately linearly with the logarithm of the number of colors, though not quite as rapidly as 
with algorithmic clustering methods. With this variation, it seems likely that establishing an objective estimate 
of an optimum number of relevant colors for a given image will require explicit observer modeling, along with 
additional constraints. As was clear from Table 2 algorithmic clustering methods produced estimates of optimum 
numbers that were all much lower than for observers.

The focus of this analysis has been on information processing, not on color rendering per se. Even so, there is 
a parallel in the ordering of the outcomes in the two approaches for a given number of colors. Thus, in Table 1, the 
mutual information estimates between original and quantized images progressively decreased across clustering 
methods, observers, and the colorimetric method. Conversely, in Table 4, the mean color differences between 
original and quantized images progressively increased across the same range. But the two kinds of measure are 
not equivalent. The key distinction is that mutual information depends on the relative frequencies of image 
colors whereas color differences depend on the metrical properties of the space used to represent colors. Mutual 
information is not necessarily maximized by minimizing color  differences45,46.

There are several caveats to this analysis. First, in practice, the relevant colors characterizing an image need 
not be the same as the set of colors significant for a particular task. Some colors may additionally have a subjective 
 salience47–49, affecting measures such as gaze  direction5 and search  performance50,51. Second, although the five 
clustering methods invoked different criteria to achieve a solution, the possibility remains that other methods 
could yield higher estimates. Third, the comparison with quantization by JPEG was informative but intended 
only for illustration, since JPEG is designed for overall image compression, not efficient color quantization. A 
range of alternative color spaces has been considered for  JPEG52, though an adaptable color coding using relevant 
colors may offer still better  performance53,54. Fourth and last, all the information estimates were based on images 
of conventionally representational paintings rather than on images of actual scenes, objects, or individuals. That 
said, paintings and real scenes are known to have overlapping gamuts, elongated in the yellow-blue direction, 
albeit with the gamuts of paintings tilted in the red  direction55–57.

Given the levels of performance estimated here, if observers are equally efficient in judging relevant colors in 
the real world, the resulting quantized representations may find applications in a variety of tasks, including the 
description and memorization of scenes, and their eventual recall.

Methods
Image data. The 20 test images of conventionally representational paintings from the Trecento to the 
Romantic era were the same as those used in a psychophysical  study12 to obtain observer estimates of relevant 
colors. They represent rural landscapes, indoor scenes, still lifes, portraits, and historical events. The images, 
made available by the Prado  Museum13, were coded as 24-bit RGB with 6,520,320 to 9,682,560 pixels per image. 
The mean number of unique colors in each image was 1.3 ×  105 within the bit resolution of the dataset.

Figure 4 illustrates the gamuts of the colors in each of the painting images in Fig. 1. Pixels were drawn 
uniformly from each image and plotted, for consistency with earlier data, in the chromaticity plane of the 
approximately uniform color space  CIELAB17, where a* correlates with redness–greenness and b* with yellow-
ness–blueness. Notice the small gamut for the painting in the top row, column 3 of Fig. 1 and the extended blue 
lobe for the painting in the bottom row, column 4 of Fig. 1. The locations of relevant colors with these image 
gamuts are shown in Ref.12.

Observer data. Data on relevant colors chosen by human observers were taken from a previously reported 
psychophysical  experiment12 with six participants, three men and three women. The number of observers was 
of the same order as in similar  works58–60 and the homogeneity of their responses is considered in the Results 
section. The observers sat in front of a monitor with head position stabilized by a chinrest. Images of paint-
ings were displayed with PsychToolbox-361, a package consisting of MATLAB and GNU Octave functions and 
Python toolkits that provided an interactive visual environment. Observers used a mouse to select within the 
image representative locations they considered “valid instances of relevant colors”. The recorded relevant colors 
were defined by the average of 25 pixels around each of the selected locations. The quantized images were cre-
ated after the experiment and so did not influence observers’ choices. The study was conducted according to the 
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guidelines of the Declaration of Helsinki and approved by the Institutional Review Board (Ethics Committee) 
of the University of Granada, Spain (protocol code 1746/CEIH/2020). Informed consent was obtained from all 
participants in that study. Additional detail about the choice of observers is available in Ref.12.

Algorithmic clustering methods. The colorimetric method used  here16 mapped RGB pixel values of the 
original image into CIELAB color  space17, which was then divided into small cubic cells with fixed sides. Based 
on the number of pixels in each cube and whether their luminance and chroma values were within a certain 
range, each cube was designated as relevant or not. Pixels with values in the same relevant cell were assigned the 
average for that cell, and pixels in non-relevant cells were assigned the closest relevant cell average.

The MEC  method21,22 incorporates Shannon  entropy18 in the objective function. Initial clusters were obtained 
by k-means++, and the entropy-based objective function was then maximized, equivalent to minimizing negative 
entropy. Clusters were updated iteratively until the objective function value converged.

With the GMM  method21,23, pixel values are assumed to be generated by k Gaussian mixture components. 
The built-in MATLAB k-means++ clustering function kmeans was used to obtain an initial clustering with the 
mean, covariance, and membership weights forming the objective function. Iterative expectation maximization 
was applied until there was no significant change in the objective function value.

The MinCEntropy  method24–26 is a hill-climbing method. It maximized the mutual information between the 
original pixel values and their quantized representation by clustering. Initialization was again by k-means++ and 
clustering was updated iteratively until the clusters stabilized.

The Graph-Cut method 27–30 is an energy-minimization method based on graph cuts. Initialization was by 
k-means. The graph was then constructed with pixels as its nodes and the probability of pixels belonging to the 
same cluster as its weighted edges. The algorithm then cut through the weak edges to yield a final clustering.

Algorithmic estimates of cluster numbers. Three algorithms for estimating the number of clusters in 
each image were evaluated and compared with results from human observers. The Caliński-Harabasz  index37, 
also known as the variance ratio criterion (VRC), determines the ratio of the sum of between-clusters disper-
sion and inter-cluster dispersion for all clusters, where the dispersion is the sum of squared distances. A range 
was set for the number of clusters and the number within the range with the highest VRC chosen as the optimum 
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number of clusters. The Davies-Bouldin  index38 is based on the ratio of within-cluster distances to between-clus-
ter distances. The measure is unrelated to VRC. The index values were measured for a range of numbers of clus-
ters, and the number with the lowest Davies-Bouldin index was selected as the best solution. Adaptive k-means 
 clustering39 partitions the pixel values without a predetermined number of clusters and is different from the 
built-in k-means++ mentioned elsewhere. The clusters were initialized with the mean values of the RGB image 
planes and then updated with the Euclidean distances of pixel values from these centers until they stabilized.

Estimating mutual information. For a pixel chosen randomly from an image, its RGB values a = (R, G, B) 
may be treated as an instance of a trivariate discrete random variable A whose probability mass function (pmf) 
is p say. The entropy H (A) of A is  defined18 by

where a ranges over the gamut of pixel values and H (A) is in bits if, as here, the logarithm is to the base 2. For 
two images represented by random variables A1 and A2 with respective pmfs p1 and p2, the mutual information 
I (A1; A2) between A1 and A2 can be defined as

where H (A1, A2) is the entropy of A1 and A2 taken  jointly18. Naïve estimates of p can be obtained by binning 
the space of color values a into a finite number of cells and counting the frequency of occurrences in each cell. 
This procedure can, though, lead to bias when the number of samples is  small62. As  elsewhere63, a bias-corrected 
estimator ĤG(A) due to  Grassberger64 was used instead. Estimates were made of the mutual information I (A; 
Aq) between random variables A and Aq representing, respectively, an original RGB image and its quantized 
representation by relevant colors.

Data availability
The images of paintings analysed in this study are available at https:// www. museo delpr ado. es/ en/ the- colle ction. 
Software for estimating mutual information is available at https:// github. com/ imari nfr/ klo. Software for imple-
menting the clustering methods is available at https:// github. com/ kailu gaji/ Color_ Image_ Segme ntati on, https:// 
github. com/ shaib agon/ GCMex, and https:// github. com/ ZT- HT/ Clust ering_ minCE ntropy. Software for convert-
ing images to S-CIELAB color space is available at https:// github. com/ wande ll/ SCIEL AB- 1996/.
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