
Editorial

Special issue: Seeing colors in nature

Color vision is present in a wide range of animals, including insects, 
spiders, fish, amphibians, reptiles, birds, mammals, and humans. It is 
fundamental to the detection, discrimination, and recognition of suit-
able habitats, materials, objects, and other organisms. In the laboratory, 
it is often studied under strongly controlled conditions with simple sets 
of stimuli. Yet the natural environments in which color vision has 
evolved and functions are often complex and challenging for any sensory 
system. The contributions to this Special Issue explore how both verte-
brates and invertebrates address these challenges to seeing colors in 
nature.

Despite the complexities of natural scenes, the primary light source, 
daylight, is spectrally constrained (Judd et al., 1964; Peyvandi et al., 
2016) as are the spectral reflectance functions of natural surfaces seen 
on land or underwater (Chiao et al., 2000; Griffin, 2019). This implies 
that the colors to which vision must adapt are also constrained. In 
humans, the color gamuts are smaller than the maximum theoretically 
possible and oriented around a yellowish-bluish axis (Burton & Moor-
head, 1987; Webster & Mollon, 1997). In two articles in this Special 
Issue, Su, Shi, and Wachtler (2024) show how the distribution of colors 
in natural environments can influence hue perception, and Marques and 
Nascimento (2024) show that the yellow-blue bias may influence color 
discrimination by dichromats, particularly the orientation of the color 
gamut.

The spectral constraints on daylight also benefit adaptation mecha-
nisms contributing to color constancy. In their article, Karimipour and 
Witzel (2024) investigate how expectations about the shifts in surface 
color under changing illumination conditions relate to color constancy. 
Ojeda, Romero, and Nieves (2023) examine the influence of the corre-
lated color temperature of daylight on several spatio-chromatic prop-
erties of natural scenes. Another aspect of color constancy is addressed 
by Falkenberg and Faul (2024) in a study of how complexities of natural 
stimuli influence transparency perception in transparent layer 
constancy.

The intricate three-dimensional nature of natural scenes creates 
complicated lighting environments, characterized by shadows and 
multiple sources of indirect illumination (Endler, 1993). Shadows may 
be colored and their interpretation can present a challenge for both 
physicists and artists. Smith (2023) explores the role of shadows in 
paintings and how they are perceived and depicted by artists.

Despite the dominance of chlorophyll-filtered light, the interplay of 
lightness and chromatic variation in forests affects many behaviors of 
forest-dwelling species (Tedore & Nilsson, 2019). Changes in forest 
vegetation structure, whether through direct or indirect human inter-
vention, can have consequences for the visual ecology of various species. 
Boycott, Sherrard, Gall, and Ronald (2023) model how visual signaling 

in a wide range of avian species in temperate deciduous forests is 
affected by deer management programs.

In humans, color vision is primarily mediated by cone photorecep-
tors, but there have been suggestions that intrinsically photosensitive 
retinal ganglion cells (ipRGCs) may also be involved in color perception. 
Barrionuevo, Salinas, and Fanchini (2024) provide a comprehensive 
review of the hypotheses and evidence for this involvement. They 
consider how ipRGC signals might encode natural image statistics and 
contribute to maintaining color constancy under varying lighting 
conditions.

The phenomenon of infrared vision in humans and other animals by 
a process of two-photon absorption is reviewed by Komar (2024). It was 
discovered in the 1960s, though it was not explained until around 50 
years later. This article sets out our current knowledge of the phenom-
enon and its clinical and other applications.

The evolution of visual opsin genes underpins our understanding of 
color vision development across species. Opsins have been lost and new 
opsins evolved in many animal groups (e.g. Kelber & Jacobs, 2016), and 
it is generally assumed that the diversity of color coding reflects 
evolutionary adaptation and resource optimization. Lin, Wang, Chung, 
and Wang (2024) identify the locations of visual opsin genes, their 
neighbors, and tuning sites in 39 amphibian genomes and suggest that 
missing genes in some species may be correlated with their cryptic 
lifestyles. Ramirez (2023) considers the theoretical optimization of color 
information encoding in retinae that use colored oil droplets, such as 
those found in birds, coupled with clever retinal circuitry to encode 
spectral information, as found in zebrafish. It is argued that the presence 
of colored oil droplets may compromise spectral encoding efficiency.

Iwanicki, Steck, Bracken-Grissom, and Porter (2024) examine the 
visual opsins in several species of pelagic shrimp from the superfamily 
Oplophoroidea, and provide molecular evidence of opsin protein local-
ization in ocular tissues. Also with a study of opsin protein components 
in jumping spiders (Salticidae), Steck, Hanscom, Iwanicki, Sung, Out-
omuro, Morehouse, and Porter (2024) show that the spiders’ secondary 
eyes have the potential for color vision, with differences between species 
probably linked to different ecologies and task requirements.

These contributions to this special issue address seeing color at 
multiple levels: perceptual, aesthetic, ecological, physiological, and 
genetic-molecular. They consider how the spectral and chromatic 
properties of natural scenes and natural lighting influence color 
discrimination, hue perception, color constancy, and the perception and 
artistic representation of shadows. They show how human action can 
change the visual ecological balance; how other processes such as two- 
photon absorption and intrinsically photosensitive retinal ganglion cell 
activity can expand visual experience; and how the evolution of visual 
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opsins and their location provide cues to how different species adapt to 
differing visual environments. Overall, they demonstrate the extraor-
dinary flexibility of color vision in accommodating the challenges of the 
natural world.
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