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The colours of surfaces in a scene may not appear constant with a change in
the colour of the illumination. Yet even when colour constancy fails, human
observers can usually discriminate changes in lighting from changes in sur-
face reflecting properties. This operational ability has been attributed to the
constancy of perceived colour relations between surfaces under illuminant
changes, in turn based on approximately invariant spatial ratios of cone
photoreceptor excitations. Natural deviations in these ratios may, however,
lead to illuminant changes being misidentified. The aim of this work was
to test whether such misidentifications occur with natural scenes and
whether they are due to failures in relational colour constancy. Pairs of
scene images from hyperspectral data were presented side-by-side on a com-
puter-controlled display. On one side, the scene underwent illuminant
changes and on the other side, it underwent the same changes but with
images corrected for any residual deviations in spatial ratios. Observers sys-
tematically misidentified the corrected images as being due to illuminant
changes. The frequency of errors increased with the size of the deviations,
which were closely correlated with the estimated failures in relational
colour constancy.
1. Introduction
Colour signals can be ambiguous in the real world. When we view a scene under
the blue of the midday sky or the yellow-orange of the setting sun, we accept that
surfaces may look different but also that their reflecting properties are probably
unchanged. Similar inferences can be made with other changes in lighting, not
just those due to the gradual elevation of the sun [1–5], but those that are
more abrupt, as when direct light is interrupted by a passing cloud or by
moving foliage [1,6]. The effects may be amplified by the complex structures of
natural environments [7], which can produce large temporal and spatial vari-
ations of illumination at ground level, quantified in spatial [8], directional
[9,10], and time-lapse scene measurements [11–13]. The ensuing changes in
appearance constitute a failure of what is usually referred to as colour constancy,
that is, the constant perceived or apparent colour of a surface despite changes in
the intensity and spectral composition of the illumination [14–18].

With these uncertainties in appearance, how do observers make reliable jud-
gements about surface reflectances? Such judgements seem central to ensuring
a stable visual representation of the world and veridical interactions within it.
One possibility is that observers use relational colour constancy [19], which
refers to the constancy of perceived colour relations between surfaces rather
than of the perceived colours of the surfaces themselves. It is a weaker con-
stancy in the sense of being necessary but not sufficient for colour
constancy [19]. It has the advantage of enabling an observer ‘to correctly

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2023.1676&domain=pdf&date_stamp=2023-11-29
mailto:smcn@fisica.uminho.pt
https://doi.org/10.6084/m9.figshare.c.6927524
https://doi.org/10.6084/m9.figshare.c.6927524
http://orcid.org/
http://orcid.org/0000-0002-2503-9003
http://orcid.org/0000-0003-2428-715X
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

290:20231676

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

29
 N

ov
em

be
r 

20
23

 

attribute changes in the colour appearance of a scene either
to changes in the spectral composition of the illuminant or to
changes in the reflecting properties of that scene [20]. This
operational task is not concerned with perceptual properties
such as hue and saturation but with objective events in the
environment [21,22]. Observers can readily perform the task
[23], with some mentioning that illuminant changes tended
to be seen as a coloured wash over the display whereas
reflectance changes had a more uneven appearance [20].

A quantity that could provide a physiological basis for
relational colour constancy [19] is the spatial ratios of cone-
photoreceptor excitations produced by light reflected from
different surfaces, where the excitations are within not
between long-, medium-, and short-wavelength-sensitive (L,
M, and S) cone classes. More precisely, for any two points
in a scene, let rL be the ratio of L-cone excitations at the
two points, and let rM and rS be the corresponding ratios of
M- and S-cone excitations. Let r = (rL, rM, rS) be the resulting
three-dimensional vector under the given illuminant and let
r0 ¼ ðr0L, r0M, r0SÞ be this vector under another illuminant.
Then, averaged over pairs of points, deviations between
values of r and r0 are of the order of 4% in natural scenes
even with large changes in illuminant [24]. This approximate
invariance in spatial ratios is maintained with ratios of linear
combinations of cone signals, for example, non-opponent and
opponent-colour combinations associated with achromatic
and chromatic coding [25]. By definition, spatial ratios
cannot provide a complete basis for colour constancy because
they are independent of overall scene colour.

Although the average size of deviations in spatial ratios in
scenes undergoing an illuminant change may be small, their
statistical distribution generally has a long tail [24], where
deviations are more noticeable. These deviations may be mis-
interpreted by observers as being due to reflectance changes
instead of illuminant changes. Limited experimental tests of
this prediction have been undertaken with the operational
approach [26,27] with scenes consisting of simple regular
(Mondrian) arrays of spatially uniform Munsell pigmented
surfaces [28] under different illuminants. Images that were
corrected for deviations in spatial ratios were systematically
misidentified by observers as being the result of illuminant
changes, rather than the uncorrected images.

It is not obvious, however, whether this finding with
Mondrian arrays extends to natural scenes. In addition to
their different spatial and spectral structures [7,8], the colour
gamuts of individual scenes are typically limited, with larger
variations in lightness than in chromaticity [29–35] and
chromatic biases towards a yellow–blue axis [30–32,35]. A
further complication is that the invariance of spatial ratios
depends on the type of scene [24,36], the distance between
the surfaces being compared [11], and whether there are
geometrical illumination changes, as with shadows [37].

The aim, then, of the work reported here was to test the
hypothesis that illuminant misidentifications occur with natu-
ral scenes and that the misidentifications are due to failures in
relational colour constancy. Experimental observers viewed
pairs of images of the same scene presented side-by-side on
a computer-controlled display. On one side, the scene under-
went illuminant changes; on the other side, it underwent the
same changes but with images corrected for any residual devi-
ations in spatial ratios. The expectation was that observers
would misidentify the side with the corrected images as the
one produced by illuminant changes alone. In the event,
they made the expected errors, with frequency increasing
with the estimated changes in colour relations.
2. Methods
(a) Scenes and images
Colour images for the experiment were derived from hyperspec-
tral images of 10 natural scenes chosen from a larger dataset
[31,38,39], as explained shortly. They were considered natural
in the sense of being part of everyday outdoor rural and urban
environments, as opposed to being constructed in the laboratory,
for example, as physical tableaux. Colour images of the 10 scenes
are illustrated in figure 1. The choice of scenes was determined
by whether they could be rendered on the monitor display
(§2e), which excluded mainly those with highly saturated colours
that fell outside the display gamut. This limitation contributes to
a conservative test of the experimental hypothesis since in real-
world scenes saturated colours produce larger deviations in
spatial cone-excitation ratios and potentially greater failures of
relational colour constancy [36].

Each hyperspectral image had dimensions approximately
1344 × 1024 pixels, corresponding to a camera angle of approxi-
mately 6.9° × 5.3° and spectral range 400–720 nm sampled at
10 nm intervals. The images were processed as effective spectral
reflectance images so that illumination changes could be simu-
lated by taking the product of the image with the spectra of
global illuminants (§2b) to produce radiance images [36,38].
Details of the imaging system, acquisition methodology, and
data processing used to derive the spectral reflectance at each
pixel have been reported previously [38].

These reflectance images were smoothed by spatial averaging
over 2 × 2 pixels in order to reduce non-imaging noise in the
unaveraged source data [38] and pixel–pixel correlations with
the 1.3-pixel line-spread function of the hyperspectral camera
[41]. All images for the experiment were generated full size
(excluding a narrow strip of pixels at one of the edges where a
grey calibration surface was visible). They were later scaled
down to 40% of their full sizes for display purposes.

(b) Illuminants
Illumination changes were simulated with spectral changes in a
global illuminant, that is, one defined by a constant, spatially uni-
form, spectral distribution. This approach ensures that equal
changes in illumination spectrum take place at each point in the
scene, isolating the role of surface reflectance from other factors
such as illumination geometry [36,39,42]. The implications of
incorporating the spatial and spectral variation of real illumination
changes are considered in the Discussion.

To obtain a wide range of illuminant spectra with low to high
correlated colour temperatures, pairs of illuminants were drawn
randomly from a Planckian radiator with temperatures from an
orangish 2000 K to a blueish 100 000 K. Planckian radiation is
similar to daylight [2] but allows a larger range of smoothly
parameterized spectra than standard models of daylight cover-
ing 4000 K to 25 000 K [43]. In practice, samples were drawn
from the inverse of the Planckian temperature scale to secure
an approximately uniform distribution of illuminant colours [44].

(c) Cone excitations
Radiance images were converted to estimated L, M, and S cone
excitations at each point according to the CIE 2° cone fundamen-
tals proposed by Stockman & Sharpe [45]. All colorimetric
conversions, including the calibration of the monitor display,
were implemented using the CIE 2° colour matching functions
[43], which are also linear combinations of the Stockman &



(1) (2) (3) (4) (5)

(6) (7) (8) (9) (10)

Figure 1. Colour images of 10 scenes used to generate the experimental stimuli. The images are rendered in sRGB format [40] from hyperspectral reflectance data
with a daylight illuminant of correlated colour temperature 6500 K. The images are for illustration only. The Methods section describes how they were rendered
under different illuminants in the experiment.
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Sharpe cone fundamentals [46]. All spectral computations were
carried out with the same spectral range and resolution as the
hyperspectral images.

Spatial ratios of cone excitations at pairs of points were defined
as indicated in the Introduction; that is, if qL(1) and qL(2) are
L-cone excitations at points 1 and 2, respectively, then their
spatial ratio is given by rL = qL(1)/qL(2), and analogously for
M- and S-cone excitations, where all divisors were assumed
to be positive. If r ¼ (rL, rM, rS) and r0 ¼ (r0L, r

0
M, r0S) are the

three-dimensional vectors of these ratios under two different
illuminants, then a sensitive measure of their generally small
differences [11, appendix A] is their relative deviation defined by
Dr ¼ jr0 � rj=min{jr0j, jrj} where the vertical bars represent the
magnitude of the vectors defined by the Euclidean norm [24,26].

Random samples of 50 000 pairs of points were drawn from
the combinatorially large number of possible pairs in each image.
With this sample size, the mean relative deviation (MRD) in
spatial ratios Dr for the sample varied little across independent
resamplings.
(d) Ratio corrections
The following procedure was used to correct images for residual
deviations in spatial cone-excitation ratios. For clarity, it refers to
the way stimuli were produced, not how they were processed
visually.

For each cone class, L say, cone excitations qLðiÞ at each point i
under one illuminant were regressed on the corresponding cone
excitations q0LðiÞ under the other illuminant, and then replaced by
their fitted values q̂LðiÞ, where q̂LðiÞ is given by kLq0LðiÞ for some
constant kL [19]. Analogously for M and S cones. This procedure
preserves spatial cone-excitation ratios exactly, since for points 1
and 2, the ratio under one illuminant qLð1Þ=qLð2Þ is corrected to
q̂Lð1Þ=q̂Lð2Þ, which is equal to kLq0Lð1Þ=kLq0Lð2Þ, which coincides
with q0Lð1Þ=q0Lð2Þ under the other illuminant [26, appendix].

Figure 2 shows a sample of cone excitations for scene 3 of
figure 1 under a 10 000 K illuminant and a 2900 K illuminant,
with and without ratio corrections. The fitted line is a linear
regression of values of qL, qM, qS at 10 000 K on values at
2900 K. The crosses show how excitations deviate from the
linear regression line, the largest with L cones and progressively
smaller with M and S cones, as expected with the presence of
reddish flowers [36]. The solid circles mark the corrected
values with zero deviations for all three cone classes.

Figure 3 illustrates the effect on appearance for scene 3 (a)
under the 10 000 K illuminant, (b) under the 2900 K illuminant,
and (c) under the 2900 K illuminant with ratio corrections. The
differences in hue of the green foliage in (b) and (c) are percepti-
ble but not the differences in lightness of the reddish flowers,
despite larger deviations in ratios. Panel (d) marks in white
where the largest tenth of the deviations are located.

Over all scenes, the MRD Dr in spatial ratios varied from 0%
to 7%. For computational purposes, ratios were classified into
bins of width 1%.

(e) Monitor display
Images were displayed on a 31.5-inch, 1920 × 1080 pixels, 120 Hz,
LCD (Display++, Cambridge Research Systems, Rochester, Kent,
UK) with 14 bits per gun intensity resolution (Colour++ mode).
The monitor was calibrated with a telespectroradiometer (Spec-
traScan PR-650, Photo Research, Chatsworth, CA). All images
were displayed with an average luminance of 8 cd m–2 and
were selected to have at least 95% of their colours within the
colour gamut of the display. The software was written in
MATLAB (version 9.8.0.1380330 (R2020a) Update 2, The Math-
Works, Inc., Natick, MA) with the aid of the Psychophysics
Toolbox Psychtoolbox (v. 3.0.18) [47].

( f ) Colorimetry
For later analysis, the colour appearance of the images was
expressed within the approximately uniform colour space
CAM02-UCS [43], which has coordinate J as a correlate of
lightness, and chromaticity coordinates a and b, respectively,
as correlates of redness-greenness and yellowness-blueness
(notation has been simplified from the standard [43] to avoid
confusion). The terms redness-greenness and yellowness-
blueness refer to variables within CAM02-UCS, and should not
be taken to apply outside that context.

To help establish the connection between colour relations and
spatial cone-excitation ratios, sometimes taken as implicit [19,36],
colour relations were assumed to be represented colorimetrically
by vectors of colour differences. Thus, given a pair of points,
their vector colour difference under a particular illuminant
is defined by Dc ¼ ðDJ, Da, DbÞ, as explained elsewhere [48].
If their vector colour difference under another illuminant
is Dc0 ¼ ðDJ0, Da0, Db0Þ, then the change in colour differences
can be quantified with the Euclidean norm DE ¼ jDc0 � Dcj,
which, although not developed here, measures the degree of
generalized metamerism [39], that is, the extent to which two
different colours maintain their colour difference under a change
in illuminant.

To show the effects on colour appearance of correcting
images for deviations in spatial ratios, figure 4 shows J, a, b
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Figure 3. Images of scene 3 from figure 1 (a) under a 10 000 K illuminant, (b) under a 2900 K illuminant, (c) under a 2900 K illuminant but corrected for deviations
in spatial cone-excitation ratios, and (d ) with the locations of the largest tenth of the relative deviations marked in white.
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values corresponding to the L, M, S cone excitations of figure 2
under 10 000 K and 2900 K illuminants, with and without correc-
tions. The fitted line is a locally weighted linear regression [49,50]
of J, a, b values at 10 000 K on values at 2900 K. Notice that the
deviations in J values are of the same order as in a values, consist-
ent with the large deviations in L-cone excitations in figure 2.

(g) Psychophysical procedure
Observers participated in a spatial two-alternative forced-choice
experiment. In each trial, two identical images of the same scene
under the same illuminant, for example, image (a) of figure 3,
were initially presented side by side. The two images then under-
went an illuminant change, one without and the other with
correction for deviations in spatial cone-excitation ratios, with
the side chosen randomly in each trial; for example, image (a)
was replaced by image (b) on the left side and by image (c) on
the right side. The interval between image interchanges was 1
s. Four cycles of this alternating sequence were performed to
allow observers enough time to look from one side to the other
in order to decide which was due only to an illuminant
change. After 8 s, the display was darkened and observers sig-
nalled their judgement, left or right, by pressing on a keyboard.

Before the experiment, observers were shown how a spatially
uniform change with a global illuminant could be simulated with
colour filters and overlays [51,52], mimicking the phenomenology
of illuminant changes [20] described in the Introduction. They
were not asked whether the illuminant change was natural or not
[26] since the judgement risked being confounded with judgements
about the larger changes in illuminant correlated colour temperature.
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The viewing distance to the monitor screen was
1.2 m. Individual images subtended approximately 9° × 7° and
were displayed symmetrically to the left and right of the centre
of the display with a gap of 4° between them. Experiments
were carried out in a darkened room, with an ambient
illumination level of less than 1 lm m–2.

In each session, all 10 scenes were tested at each of the seven
levels of MRDs Dr in spatial ratios, making 70 trials in all. Scenes
were chosen in random order. Each session lasted for about
15 min and observers could take a break every 10 trials. In all,
observers participated in 10 sessions spread across 2 to 4 days.

(h) Observers
Five postgraduate students at the University of Minho (four
female, one male, mean age 27 years) acted as experimental
observers. All had normal or corrected-to-normal visual acuity
and normal colour vision as assessed by the Colour Assessment
and Diagnosis Test (City Occupational Ltd, Cumbria, UK) and
the Heidelberger Multi-Colour-Anomaloskop (OCULUS, Inc.,
Wetzlar, Germany). They had a basic knowledge of colour
vision and some laboratory experience mainly with clinical psy-
chophysical colour tests but not in connection with colour
constancy. They were unaware of the design and purpose of
the experiment. Informed consent was obtained from all obser-
vers participating in the experiment. The experimental protocol
and data handling were approved by the Ethical Committee of
the University of Minho (Comissão de Ética para a Investigação
em Ciências da Vida e da Saúde, CEICVS 052/2021).

(i) Statistical analysis
Uncertainties in mean values were quantified with estimated
95% confidence intervals based on Efron’s BCa bootstrap
method with 1000 bootstrap replications [53]. An inverse cumu-
lative Gaussian transformation with a variable lapsing rate
[26,54] was used to fit plots of percentage misidentifications
against MRDs and transformations of these quantities. A linear
regression was used to fit plots of the change in colour
differences within images against deviations in spatial cone-
excitation ratios. A locally weighted quadratic regression [50]
was also tested, with little benefit. Goodness of fit was measured
by R2, the proportion of variance explained, adjusted for the
degrees of freedom of the regression [55].
scene. Symbols show percentages averaged over observers and relative devi-
ations in spatial cone-excitation ratios from 2.5% to 6.5%. Error bars mark
95% confidence intervals [53]. The guessing misidentification rate was 50%.
3. Results

(a) Misidentification frequencies
Figure 5 shows the percentage of observers’ misidentifica-
tions, that is, an ‘illuminant change’ response to images
corrected for deviations in spatial cone-excitation ratios,
plotted against the MRD in ratios. The percentage of misiden-
tifications increased with MRD from chance level of 50% to
around 75%. The fitted inverse cumulative Gaussian curve
accounted for 92% of the variance in observers’ responses.
The percentage of misidentifications appears to asymptote
once MRD reaches about 4%.

For comparison, observers’ discrimination performance,
expressed as values of the mean discrimination index d’
from detection theory [56], was plotted against MRD, as
shown in electronic supplementary material, figure S1. The
pattern of performance was similar.

Observers’ descriptions of the phenomenology followed
earlier accounts [20]. They reported that with uncorrected
images they could see the ‘pop-out’ of elements of the scene
and that less pop-outwasmore like a global illuminant change.
(b) Individual scenes
Estimates of the percentages of misidentifications with individ-
ual scenes are less reliable because of the smaller sample sizes,
but to indicate scene-by-scene variation, figure 6 shows per-
centages for each scene averaged over observers and MRDs
of 2.5% to 6.5%, for which performance approached an asymp-
tote (figure 5). All percentages were reliably higher than the
guessing rate of 50%, and the highest tended to be those
with scenes containing reddish reflecting surfaces [36]. Corre-
sponding values of the mean discrimination index d’ for
each scene are shown in electronic supplementary material,
figure S2. The pattern of performance was similar.

To confirm the influence of reddish reflecting surfaces in
scenes, the percentage of misidentifications in each scene
was plotted against the direction of the major axis of scene
chromatic variation, as shown in electronic supplementary
material, figure S3. There was a reliable trend for percentages
to increase as the axis direction approached 0°, the
reddish-greenish axis of CAM02-UCS.
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(c) Changes in colour differences
Figure 7 shows mean changes in estimated colour differences
DE within scenes due to illuminant changes plotted against
MRDs in spatial cone-excitation ratios for samples of pairs
of points. The fitted lines are linear regressions with two
degrees of freedom. Values of the adjusted goodness of fit
R2 range from 94% to 98%. These close correlations are con-
sistent with deviations in spatial ratios being manifested
perceptually as nonuniform illumination changes, that is, as
failures in relational colour constancy [19,36]. It is stressed
that these are average values and changes in colour differ-
ences across some pairs of points are larger (see figure 4).
Electronic supplementary material, figure S4 shows the
percentage of misidentifications of illuminant changes
directly as a function of mean changes in colour differences.
4. Discussion
Despite the complex spatial and spectral structures of natural
scenes, observers made the same kinds of errors in judging
illuminant changes as they do with Mondrian arrays [26,27].
Presented with either images of scenes undergoing global illu-
minant changes or the same images corrected for deviations
in spatial cone-excitation ratios, observers misidentified
the corrected images as being due to illuminant changes.
There are, though, some issues to consider before linking
misidentifications to relational colour constancy.

(a) Spatial cone-excitation ratios
The threshold for detecting changes in spatial cone-excitation
ratios was of the same order of magnitude as with Mondrian
arrays [26,27]. With both types of images, MRDs in spatial
ratios of about 4% led to about a 75% chance of misidentify-
ing an illuminant change. But crucially with natural scenes,
the percentage of misidentifications did not increase beyond
this level, by contrast with Mondrian arrays where percen-
tages continue to increase, reaching an asymptote nearer to
90% [26]. The ceiling effect with natural scenes may be due
either to their greater uncertainty [48] or to differences in
the statistical distribution of deviations in spatial ratios [24].
An analysis with 50 natural scenes [36] showed that about
a quarter of them had 5% of their relative deviations greater
than 10%. As a side note, the detection thresholds assumed in
the course of that analysis appear consistent with observers’
average levels of detection recorded here (figure 5).

Although large deviations in scenes may well have
attracted observers’ attention, they were free to vary their
gaze and compare regions close together or far apart, pre-
sumably depending on the image structure and chromatic
content [11]. Whether their viewing strategies were optimal
is an open question [57].
(b) Illumination changes
The use in this experiment of uniform changes in illumination
spectrum ensured that surface reflectances were treated
the same at each point in a scene [39]. Yet, as emphasized
earlier, real-world changes in illumination spectrum are
rarely spatially uniform and are generally confounded with
geometrical changes [8,38], as the direction of the solar
beam varies [1,3,4], leading to a reduction in the number
of surfaces identifiable by their colour [37]. Under these
conditions, spatial cone-excitation ratios are preserved only
for points near each other in space and time [11]. Thus, as
with the limited gamut display, the use of global illuminant
changes contributes to a conservative test of the experimental
hypothesis. The impact of real-world failures of relational
colour constancy may therefore be underestimated.

It might still be contended that treating shaded and
unshaded regions of scenes as if they were under the same
illumination could inflate the extent of relational colour
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constancy. As a counter, masking shaded regions of images
[39] has been found to have little effect on the estimated fre-
quency of metamerism and therefore probably also on
failures in relational colour constancy (§2f).

(c) Colour relations
Extracting colour relations from scenes has both theoretical
[58,59] and computational [60,61] advantages. Nevertheless,
the evidence that observers use these properties to discrimi-
nate illuminant from non-illuminant changes remains
indirect. As Olkkonen & Ekroll [62] noted, performance
measures with the operational approach do not tell us how
colour appearance changes. On the other hand, it is possible
to test the converse, that is, whether candidate perceptual
properties can quantitatively explain observers’ performance.
As shown in §3c, changes in perceived colour relations, rep-
resented as changes in colorimetric differences between
pairs of points, accounted for most of the variance in obser-
vers’ misidentifications. In this sense, then, colour relations
give a sufficient account of performance.

This kind of argument does not determine whether such an
account is unique or minimal [63], but something similarly
quantitative would be needed for any alternative explanation,
for example, one proposed by Davies based on an awareness
of changes in both material and lighting colour appearance [64].
5. Conclusion
As anticipated, observers misidentified illuminant changes in
natural scenes. The frequency of misidentifications increased
with the size of deviations in spatial cone-excitation ratios
between surfaces. In turn, these deviations were closely corre-
lated with the extent of failures in relational colour constancy,
estimated by changes in colour appearance. Given the
conservative design of the experiment, it is possible that mis-
identifications are at least as common in the real world,
where surfaces may be more colourful and illumination
changes more complex than those used here.
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