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Estimating information from image colors: an
application to digital cameras and natural scenes

Iván Marı́n-Franch and David H. Foster

Abstract—The colors present in an image of a scene provide
information about its constituent elements. But the amount of
information depends on the imaging conditions and on how
information is calculated. This work had two aims. The first
was to derive explicitly estimators of the information available
and the information retrieved from the color values at each point
in images of a scene under different illuminations. The second
was to apply these estimators to simulations of images obtained
with five sets of sensors used in digital cameras and with the cone
photoreceptors of the human eye. Estimates were obtained for 50
hyperspectral images of natural scenes under daylight illuminants
with correlated color temperatures 4000 K, 6500 K, and 25000 K.
Depending on the sensor set, the mean estimated information
available across images with the largest illumination difference
varied from 15.5 to 18.0 bits and the mean estimated information
retrieved after optimal linear processing varied from 13.2 to 15.5
bits (each about 85% of the corresponding information available).
With the best sensor set, 390% more points could be identified
per scene than with the worst. Capturing scene information from
image colors depends crucially on the choice of camera sensors.

Index Terms—Color vision, color information, digital color
cameras, color processing, information theory, natural scenes,
kth-nearest-neighbor statistics, color constancy.

I. INTRODUCTION

COlor provides information about the reflecting properties
of surfaces, thereby allowing regions of a scene to be

demarcated and the elements of regions to be distinguished.
Yet how much information about the content of a scene is
captured by the colors of the reflected light? More specifically,
if images of a scene under a particular illumination are
obtained with a digital trichromatic camera, to what extent
can the elements of the scene be identified by their colors,
independent of spatial position?

A priori, it seems unlikely that all the elements in a
scene can be characterized in this way. One problem is that
the color values at each point in an image depend on the
spectrum of the illumination on the scene, so that when the
illumination changes, so generally do the color values. This
confounding effect of illumination can be largely discounted
by correcting color values by so-called von Kries scaling [1],
[2], although not completely. Another problem is that different
reflectance spectra at different points in the scene under the
same illumination can produce the same color values. This
is the phenomenon of metamerism [3] and is a consequence
of the number of degrees of freedom in natural reflectance
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spectra being greater than the number of degrees of freedom
in color values, namely three with a trichromatic camera.

Nevertheless, there remains a strong dependency between
the color values of different images of the same scene under
different illuminations. This dependency can be quantified
with Shannon’s mutual information [4]–[6]. The advantages
of this measure over other measures of dependency, such as
linear correlation, are well known [7]–[10].

Two kinds of mutual information associated with the images
of a scene were used here, namely the information available
from the color values at each point in the scene imaged under
different illuminations and the information retrieved in the
basic task of matching points across those images by their
color values. The information available is, by construction [4]–
[6], founded on a theoretical camera with an infinite number
of pixels. It sets, therefore, an upper (finite) bound on the
information actually available from any camera with a finite
number of pixels, which can yield only a finite sample of
color values. The information available necessarily depends
on factors such as the spectral reflectances of the surfaces in
the scene and their relative abundances, the spectral radiances
of the illuminations on the scene, and the spectral sensitivities
of the camera sensors. The information retrieved depends not
only on these factors, but also on how the sensor signals are
processed and then matched, for example, by von Kries scaling
and by nearest-neighbor matching. The information available
is also an upper bound on the information retrieved.

In previous analyses, estimates of the information available
and information retrieved have been used to reveal both the
efficiency and the limits of color processing by the human eye
in viewing natural scenes under different illuminations. In one
application [11], it was shown that coding at the receptors was
highly redundant, as expected given the overlap of the spectral
sensitivities of the medium- and long-wavelength-sensitive
cone pigments [12]. But with optimal linear postreceptoral
processing, redundancy was reduced and efficiency increased
so that the information retrieved from color images of natural
scenes under different daylight illuminants reached almost
90% of that achievable by an ideal observer. The coefficients
of the linear transformations describing this postreceptoral pro-
cessing are similar to those estimated independently by behav-
ioral methods [13]. Such calculations illustrate the importance
of estimating both kinds of mutual information associated with
the images of a scene.

One of the two aims of this work was to put on a firmer
basis the derivation and verification of the estimators of the
information available and the information retrieved to answer
the question posed earlier, namely how much information
about a scene’s content is captured by its colors. The other
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aim of the work was to illustrate an application of these
estimators to five sets of sensors used in commercial digital
trichromatic cameras. To provide a reference, the estimators
were also applied to the cone photoreceptors of the human
eye. Conveniently, mutual information can be interpreted as
the logarithm of the mean number of distinct elements or
points that can be identified without error across images of the
scene under different illuminations [11], [14]. The resulting
information estimates therefore provided an answer to the
more specific question of the extent to which the elements
of a scene can be identified by their colors, independent of
spatial position.

The organization of this work was as follows. Images of
natural scenes were generated from a set of 50 hyperspectral
images of rural and urban scenes under each of three day-
light illuminants with correlated color temperatures (CCTs)
of 4000 K, 6500 K, and 25000 K. Information available and
information retrieved were estimated for images of a scene
under pairs of these illuminants. As a practical matter, naı̈ve
estimates of mutual information based on histograms, here of
color values at each point, are known to be susceptible to
bias, and so methods were employed that were asymptotically
unbiased and reasonably efficient for both kinds of information
estimate. As already implied, by the nature of these calcu-
lations, information estimates did not incorporate any spatial
data. Thus, images were not segmented into uniform regions in
any way, except for the trivial limit defined by pixel resolution,
and any estimate of the number of identifiable points was
assumed to be an upper bound on the number of identifiable
regions. No allowance was made for noise in the sensors or
in post-sensor processing. In this way, the effects of spectral
tuning of the sensors could be most clearly demonstrated.

It was found that for the largest difference in daylight
illuminants—with CCTs of 25000 K and 4000 K—the mean
estimated information available varied from 15.5 bits to 18.0
bits, depending on the set of sensors. These values are equiv-
alent to 4.7 × 104 and 2.7 × 105 distinct identifiable points
per scene, an increase of 470% from the worst to the best
sensor set. The corresponding estimated information retrieved
was lower, at 13.2 and 15.5 bits, equivalent to 9.5× 103 and
4.7× 104 distinct identifiable points per scene, an increase of
390% from the worst to the best sensor set.

For the eye, the mean estimated information available and
information retrieved for the same illuminants were 17.1 and
14.7 bits, respectively, equivalent to 1.37× 105 and 2.7× 104

distinct identifiable points per scene, similar to the highest
values recorded with some camera sensors.

To help set these estimates in context, the pointillistic
painting by Georges Seurat “A Sunday Afternoon on the Island
of La Grande Jatte” (1884-1886) would require 16.6 bits to
code the more than 105 “points” on the canvas.

Some implications of present findings, and their limitations,
are considered in the Discussion.

II. SENSOR SIGNALS AND IMAGE ENTROPY

Consider a scene illuminated by a spatially uniform global
illuminant with incident spectral radiance e(λ) at wavelength

λ. Suppose that at a point (x, y) in the scene the effective
spectral reflectance [15] is ρ(λ;x, y) so that the reflected
spectral radiance is given by c(λ;x, y) = e(λ)ρ(λ;x, y).1

Suppose that this reflected spectrum is sampled by the long-
, medium-, and short-wavelength-sensitive (conventionally, R,
G, and B) sensors of a digital camera (or cone photoreceptors
of the eye) with spectral sensitivities sR(λ), sG(λ), and sB(λ),
respectively. The corresponding triplet of color values (r, g, b)
at (x, y) encodes the spectrum c(λ;x, y) thus

r =

∫
sR(λ)c(λ;x, y) dλ ,

g =

∫
sG(λ)c(λ;x, y) dλ ,

b =

∫
sB(λ)c(λ;x, y) dλ ,

(1)

where the integral is evaluated over the visible wavelength
range. If the point (x, y) within the scene is chosen randomly,
the color values r, g, and b in (1) may be treated as instances
of continuous random variables [12], R, G, and B, say. The
triplet a = (r, g, b) is an instance of a trivariate continuous
random variable A = (R,G,B), whose probability density
function (pdf) is f , say. This pdf characterizes the nature of
the unpredictability of the color values for a particular scene,
illuminant, and set of sensors.

A discretized version of the continuous random variable A
can be obtained [6] by partitioning the space in which the
(bounded) variables R, G, and B take their values. Suppose
that the partition has a finite number of bins, D say, indexed
by an integer d with 1 ≤ d ≤ D. Suppose that each bin has
equal edge lengths ∆r = ∆g = ∆b, and let ∆a = ∆r∆g∆b.
For each d, let ad be the value of a within the dth bin such
that

f(ad)∆a =

∫ rd+∆rd

rd

∫ gd+∆gd

gd

∫ bd+∆bd

bd

f(r, g, b)drdgdb .

Denote by A∆ = (R∆, G∆, B∆) the discretized version of A
whose probability mass function (pmf) p is given by

p(ad) = P
{
A∆ = ad

}
= f(ad)∆a, for d = 1, . . . , D . (2)

The entropy H(A∆) of the discrete random variable A∆ for a
particular scene, illuminant, and set of sensors is then defined
[4]–[6] by

H(A∆) = −
D∑
d=1

p(ad) log p(ad) , (3)

where the probabilities p(ad) are given by (2) and where
conventionally 0 log 0 = 0. The entropy H(A∆) ranges from
zero to logD. If the logarithm is to the base 2, then the entropy
is in bits; if it is the natural logarithm, then the entropy is in
nats.

1 With a spatially uniform global illuminant e(λ), the effective spectral
reflectance ρ(λ;x, y) at (x, y) is defined by c(λ;x, y)/e(λ), given that
e(λ) > 0 for all λ. This representation confounds variations in spectral
reflectance with the effects of surface orientation, occlusion, and mutual
illumination, but this confound is not critical in this application [15]. The
notation in [15] differs slightly from that used in this work.
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If all the points in a scene have the same color value, so that
the pmf p(ad) of A∆ is zero except at one particular value of
d, e.g., if the scene is a perfectly homogeneous surface so that
all the points have the same effective reflectance spectrum or
if the binning is too coarse (i.e., D is too small) to capture
the differences in effective spectral reflectance between points,
then there is no uncertainty about the color value at any chosen
point, and H(A∆) = 0. Conversely, if all the points in a scene
have different color values, so that the pmf of A∆ is uniform,
i.e., p(ad) = 1/D for all d = 1, . . . , D, then the uncertainty
about the color value of the chosen point is maximum and
H(A∆) = logD.

III. INFORMATION AVAILABLE AND ITS ESTIMATORS

In general, two different global illuminants, say e1(λ) and
e2(λ), illuminating the same scene, one at a time, give rise
to two different continuous random variables, A1 and A2,
respectively, with pdfs f1 and f2 and joint pdf f12, and,
likewise, to two different discrete random variables, A∆

1 and
A∆

2 , with pmfs p1 and p2 and joint pmf p12. As noted earlier,
the random variables A1 and A2 are strongly dependent on
each other and so are A∆

1 and A∆
2 . The mutual information

between A∆
1 and A∆

2 can be derived from their entropies, as
follows.

For each d1 = 1, . . . , D, let p2|1(a2d2 |a1d1) be the condi-
tional probability that A∆

2 = a2d2 for each d2 = 1, . . . , D.
The entropy H(A∆

2 |A∆
1 = a1d1) of A∆

2 , given A∆
1 = a1d1 , is

defined [6] by

H(A∆
2 |A∆

1 = a1d1) =

−
D∑

d2=1

p2|1(a2d2 |a1d1) log p2|1(a2d2 |a1d1) .

The conditional entropy H(A∆
2 |A∆

1 ) is then defined [4], [5]
as the value of H(A∆

2 |A∆
1 = a1d1) averaged over all possible

values of A∆
1 ; that is,

H(A∆
2 |A∆

1 ) =

D∑
d1=1

p1(a1d1)H(A∆
2 |A∆

1 = a1d1) .

The conditional entropy measures the uncertainty about ran-
dom variable A∆

2 given that the value of A∆
1 is known.

It is always lower than H(A∆
2 ), unless the two random

variables are independent, in which case the two quantities
are equal. The difference H(A∆

2 )−H(A∆
2 |A∆

1 ) gives [4], [5]
the mutual information I(A∆

1 ;A∆
2 ) between A∆

1 and A∆
2 . As

the conditional entropy H(A∆
2 |A∆

1 ) is simply the difference
between the joint entropy H(A∆

1 , A
∆
2 ) and H(A∆

1 ), the mutual
information may therefore be written as

I(A∆
1 ;A∆

2 ) = H(A∆
1 ) +H(A∆

2 )−H(A∆
12) , (4)

where A∆
12 stands for (A∆

1 , A
∆
2 ). Explicitly [6],

I(A∆
1 ;A∆

2 ) =
D∑

d1=1

D∑
d2=1

p12(a1d1 , a2d2) log
p12(a1d1 , a2d2)

p1(a1d1)p2(a2d2)
.

(5)

Shannon’s channel-coding theorem [4], [5] gives the mutual
information an operational interpretation which was alluded to
earlier. That is, since the maximum number of points that can
be encoded with I bits is 2I , if I = I(A∆

1 ;A∆
2 ), then 2I is

the maximum number of distinct points that can be identified
reliably across two images of a scene under the two global
illuminants e1 and e2 [11].

As bin size ∆r = ∆g = ∆b tends to zero, the entropies
H(A∆

1 ), H(A∆
2 ), and H(A∆

12) each tend to infinity, but not
the mutual information I(A∆

1 ;A∆
2 ), which tends to the limit

[16, Chapter 4], [6, Chapter 9]

I(A1;A2) =

∫
f12(a1, a2) log

f12(a1, a2)

f1(a1)f2(a2)
da2da1 , (6)

the continuous analog of (5). The value of (6) is invariant un-
der differentiable invertible transformations of the continuous
random variables A1 and A2, and decreases otherwise [16,
Chapter 4]. The quantity I = I(A1;A2) is the least upper
bound on the mutual information I(A∆

1 ;A∆
2 ) defined over

all possible discretizations of the continuous random variables
A1 and A2 [16, Chapter 4]. This least upper bound I is the
information that is available across two images of a scene each
under a different illuminant.

Let
NI = 2I . (7)

Then NI is the least upper bound on the number of distinct
points that can be identified reliably across two images of
the scene. Notice that if A1 = A2, the mutual information
I(A1;A2) is infinite.

In practice, estimating the information available, i.e.,
I(A1;A2), is not straightforward. Several methods, including
some used in this analysis, make use of the fact that mutual
information can be expressed as a combination of differential
entropies [4]–[6]. The differential entropy h(A1) of A1 is
defined [4], [5] by

h(A1) = −
∫
f1(a1) log f1(a1) da1 , (8)

which, unlike the limit of discrete entropy (3) as bin size tends
to zero, need not be infinite, although it does depend on the
units in which the values of A1 are expressed. The differential
entropy h(A2) of A2 and the joint differential entropy h(A12)
of A12 = (A1, A2) are defined analogously. The information
available is [6]

I(A1;A2) = h(A1) + h(A2)− h(A12) , (9)

mirroring (4).
One method of estimating I(A1;A2) is to estimate the pdfs

f1 and f2 and the joint pdf f12, and use them to estimate
h(A1), h(A2), and h(A12) from the corresponding definitions,
e.g., (8). The estimates of f1, f2, and f12 are necessarily
based on finite samples. Accordingly, suppose that N points
{(xi, yi) | i = 1, . . . , N} are sampled uniformly from a scene
and their color values are calculated from (1) for illuminants
e1 and e2, yielding the sets

{a1i = (r1i, g1i, b1i) | i = 1, . . . , N} ,
{a2i = (r2i, g2i, b2i) | i = 1, . . . , N} ,

(10)
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and
{a12i = (a1i, a2i) | i = 1, . . . , N} . (11)

The difficulty is arriving at the estimates of f1, f2, and f12

from these samples. If the sample size N is large enough,
reliable estimates of f1, f2, and f12 may be obtained by
simple histogram-based methods such as binning and adaptive
partitioning [17]. This is equivalent to D-bin quantization with
pmfs as in (2), although if partitioning is adaptive, variable
values of ∆r, ∆g, and ∆b are needed. Even so, D must be
very large to obtain accurate estimates; otherwise the pdf is not
well approximated by the empirical pmf, leading to bias [18].
In addition, the sample size N has to be much larger than the
number of bins with non-zero probability [19]. Some of these
disadvantages can be overcome with the use of kernel density
estimators [10], [18], but systematic errors in the differential
entropy estimates remain [20], [21].

By contrast, methods based on kth-nearest-neighbor statis-
tics [20], [21] avoid estimating pdfs and instead involve
calculating distances in the neighborhood of each point in
a sample drawn from the spaces spanned by A1, A2, and
A12, such as the sets in (10) and (11). The advantages of kth-
nearest-neighbor estimators have been documented elsewhere
[21]–[23].

For completeness, four estimators were used to estimate the
information available: (A) a kernel density estimator [10]; (B)
a generalized version of a nearest-neighbor estimator due to
Kozachenko and Leonenko [20], [24]; (C) a nearest-neighbor
estimator due to Kraskov, Stögbauer, and Grassberger [21];
and (D) an experimental offset modification [14] used to
improve both estimators (A) and (B).

A. Kernel density estimator

A kernel density estimator provides estimates f̂1, f̂2, and
f̂12 of the corresponding pdfs f1, f2, and f12 by smoothing
each finite sample of N color values (10) and (11) with a
kernel function Kσ , which, in one dimension, is often chosen
as a Gaussian density, Kσ(u) = (2πσ2)−1/2 exp(−u2/2σ2)
[18], where σ is the bandwidth of the smoother. Thus, for any
point a1 = (r1, g1, b1) in the space spanned by A1, the kernel
density estimate f̂1(a1) of f1 at a1 is defined by

f̂1(a1) =
1

N

N∑
i=1

KσR
(r1 − r1i)KσG

(g1 − g1i)KσB
(b1 − b1i) .

(12)

If required, the product of the three univariate Gaussian densi-
ties can be replaced by a single multivariate Gaussian density.
The estimates f̂2(a2) and f̂12(a12) are defined analogously.
An inappropriate choice of bandwidth σ can, however, give
misleading results, and two automatic methods are described
in Appendix A.

The kernel-density-based estimator ĥKD(A1) of the differ-
ential entropy h(A1) is obtained [10] by plugging the estimator
f̂1(a1) into (8); that is,

ĥKD(A1) = −
∫
f̂1(a1) log f̂1(a1) da1 ;

and analogously for ĥKD(A2) and ĥKD(A12). The kernel-
density-based estimator ÎKD(A1;A2) of the information avail-
able I(A1;A2) follows from (9); that is,

ÎKD(A1;A2) = ĥKD(A1) + ĥKD(A2)− ĥKD(A12) .

B. Generalized Kozachenko-Leonenko estimator

The nearest-neighbor estimator of differential entropy pro-
posed by Kozachenko and Leonenko [20] was generalized by
Goria et al. [24] to estimators based on kth-nearest neighbors.
For a fixed integer k with 0 < k < N , let µ1i be the
Euclidean distance between a1i and its kth-nearest neighbor
for the illuminant e1. If ψ denotes the digamma function and
v = πm/2/Γ(m/2 + 1) is the volume of an m-dimensional
open ball of unit radius, then the generalized Kozachenko-
Leonenko estimator ĥKL(A1) of the differential entropy h(A1)
is defined, in nats, by

ĥKL(A1) =
m

N

N∑
i=1

lnµ1i + ln(N − 1)− ψ(k) + ln v ,

where m = 3, the dimension of A1. The estimators ĥKL(A2)
and ĥKL(A12) are defined analogously with m = 3 and 6, re-
spectively. The Kozachenko-Leonenko estimator ÎKL(A1;A2)
of the information available I(A1;A2) then follows, as before,
from (9); that is,

ÎKL(A1;A2) = ĥKL(A1) + ĥKL(A2)− ĥKL(A12) .

C. Kraskov-Stögbauer-Grassberger estimator

Two nearest-neighbor estimators were described by Kraskov
et al. [21], but they yielded similar results, and only the
one giving the smaller systematic errors was used, namely
that denoted by I(2) in [21]. For a fixed integer k with
0 < k < N , let l1i and l2i be the edge lengths of the smallest
rectangle around (a1i, a2i) containing k neighbors. For some
norm || · ||, let n1i and n2i be the numbers of a1j and a2j ,
i 6= j, in the paired sample such that ||a1i − a1j || ≤ l1i/2
and ||a2i − a2j || ≤ l2i/2. Denote by ψ̄ the average of the
values ψ(n1i) + ψ(n2i) of the digamma function over all i.
The Kraskov-Stögbauer-Grassberger estimator ÎKSG(A1;A2)
of the information available I(A1;A2) is then defined, in nats,
by

ÎKSG(A1;A2) = ψ(k)− 1/k − ψ̄ + ψ(N) .

D. Offset estimators

The foregoing estimators were found to converge slowly
with Gaussian images (Appendix B). To improve the con-
vergence of the kernel density estimator and Kozachenko-
Leonenko estimator, each was decomposed into two compo-
nents: one, the mutual information between equivalent Gaus-
sian variables with known variance-covariance structure; the
other, an offset obtained by applying the estimator to normal-
ized versions of A1, A2, and A12. This decomposition was not
possible with the Kraskov-Stögbauer-Grassberger estimator
ÎKSG(A1;A2), which estimates mutual information directly.



5

In more detail, if A is a random variable and t an invertible
linear transformation, then in general

h(A) = h(tA)− log |t| , (13)

where |t| is the absolute value of the determinant of the matrix
representing t. Set t1 = (VarA1)−1/2, t2 = (VarA2)−1/2,
and t12 = Var (A12)−1/2. Let IEG(A1;A2) be the mutual
information [6] of the equivalent Gaussian variables, i.e.
having the same variance-covariance structure as A1 and A2,
so that

IEG(A1;A2) =
1

2
log

(
|VarA1||VarA2|
|VarA12|

)
. (14)

Accordingly, from (13) and (9), the mutual information be-
tween A1 and A2 can be written

I(A1;A2) = IEG(A1;A2)+h(t1A1)+h(t2A2)−h (t12A12) .
(15)

An estimator ÎEG of IEG is obtained by replacing the variances
in (14) by the sample variances. The offset versions of the
kernel-density estimator and Kozachenko-Leonenko estimator
are then obtained by applying each to the three differential
entropies h(t1A1), h(t2A2), and h(t12A12) in (15).

In Appendix C, the convergence of the kernel density es-
timator and the Kozachenko-Leonenko estimator is compared
with that of their offset versions by applying each of them to
Gaussian images.

IV. INFORMATION RETRIEVED AND ITS ESTIMATORS

As already noted in Section III, the quantity NI defined by
(7) is the least upper bound on the number of distinct points
that can be identified reliably across two images of a scene
under illuminants e1 and e2. This identification does, however,
assume that matching is by maximum likelihood [25] or its
equivalent. That is, for a sample of N points (10), a particular
point (xj , yj) with color value a2j is matched to the point
(xi, yi) with color value a1i that maximizes the probability of
a1i given a2j .

For maximum-likelihood matching to be applied, the con-
ditional pmfs p1|2 must be known or estimated reliably, which
is not generally feasible. Instead, a nearest-neighbor criterion
may be used, which may not be optimal [25], but may
approach optimality with a judiciously chosen metric. The
information retrieved is then the logarithm of the maximum
number of distinct points that can be reliably identified by
nearest-neighbor matching across two images of a scene under
different illuminants. It is always lower than or equal to the
information available. An equivalent definition of information
retrieved in the more general case is µ-capacity; see e.g. [25].
By contrast with the information available, invertible trans-
formations of the sample values (10) can increase the in-
formation retrieved. With a nearest-neighbor criterion defined
in accordance with a measure µ, typically the Euclidean or
Mahalanobis distance, the transformations t1 and t2 that make
the transformed values

{t1a1i | i = 1, . . . , N} ,
{t2a2i | i = 1, . . . , N} ,

(16)

as close to each other as possible maximize the information
retrieved. These optimal transformations depend on the sample
values (10); they were here constrained to be linear.

In practice, estimating the information retrieved is more
difficult than estimating the information available [25]. Ap-
proximations, upper bounds (tighter than the trivial one given
by the information available) and lower bounds have been
proposed for µ-capacity [25]–[27] and specifically for color-
dependent identification [28], [29]. The approximations in
[28], [29] were based, as in [27], on additive Gaussian noise
channels, for which the nearest-neighbor criterion with a
Mahalanobis distance coincides with the maximum-likelihood
criterion [6].

In more detail, suppose that the means of t1A1 and t2A2

coincide, so that, for some zero-mean random variable W ,

t2A2 = t1A1 +W . (17)

If the random variables in (17) are Gaussian and t1A1 and W
independent of each other, then the mutual information takes
a particularly simple form, which may be used to approxi-
mate the information retrieved. This Gaussian approximation
IGA(t1A1; t2A2) is given by

IGA(t1A1; t2A2) =
1

2
log

(
|Var(t2A2)|

|Var(t2A2 − t1A1)|

)
. (18)

An estimator ÎGA of IGA is obtained by replacing the vari-
ances in (18) by the sample variances. A slightly different
version in which the variance of the numerator of (18) is
assumed to be |Var(t1A1) + Var(t2A2 − t1A1)| was used in
[28], [29]. The results obtained with the two versions were
similar.

If, instead, the random variables in (17) are not necessarily
Gaussian but t1A1 and W are still independent of each
other, then the mutual information can be expressed as a
difference between two differential entropies, which may also
be used to approximate the information retrieved. The additive
approximation IAA(t1A1; t2A2) is given by

IAA(t1A1; t2A2) = h(t2A2)− h(t2A2 − t1A1) . (19)

An estimator ÎAA of IAA is obtained by replacing the differ-
ential entropies h in (19) by the offset Kozachenko-Leonenko
estimator ĥKLo. These approximations (18) and (19) are rough
but useful and were used (Section VIII) to explore optimal
post-sensor processing.

A very different approach to estimating the information
retrieved, outlined in [28], [29], is to quantify the entropy of
point matching. Some results have been reported in [11], [14].

A. Nearest-neighbor errors and entropy of point matching

The estimator of the information retrieved that was devel-
oped in [11], [28], [29] was based on the entropy of the error of
a theoretical observer making nearest-neighbor matches across
two images of a scene under different illuminants. A slightly
different interpretation of that estimator can be derived from
the relationship between the minimum number of bits needed
to encode a random variable and the entropy of that variable
[6, Chapter 5].
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Fig. 1. Identification errors across images of a scene under daylight illuminants with correlated color temperatures of (a) 25000 K and (b) 4000 K. After
scaling of sensor responses to the spatial mean (see Section VII), the color values of points in image a marked 1, 2, . . . , 8 (not all are distinguishable) are all
closer to those of point 1 in image b than those of point 9, the correct match. For the purposes of illustration, the images themselves have not been scaled to
the mean.

Without any prior information, the number of bits needed
to encode a sample of N points from an image of a scene
with color values t1a1i under illuminant e1 is logN , i.e., the
entropy of a random variable with a discrete uniform distri-
bution. But with prior information, namely the color values
t2a2j of the N points of the same scene under illuminant e2,
the number of bits is reduced. Thus, for a point (xj , yj) with
color value t2a2j under illuminant e2, there is only a subset
of points (xi, yi) whose color values t1a1i under illuminant
e1 are sufficiently close to t2a2j to be confused with (xj , yj),
with respect to some nearest-neighbor criterion µ. The largest
such subset excluding (xj , yj) is given by

{(xi, yi) | µ(t1a1i, t2a2j) < µ(t1a1j , t2a2j)} . (20)

The number m of points in (20) (where m should not to be
confused with the dimensional variable m of Section III-B) is
an instance of a random variable with pmf pm specifying the
number of mismatches. The entropy of that random variable,

H(M) = −
N−1∑
m=0

pm log pm ,

is the entropy of point matching [11]. It yields the number
of bits needed to encode the N surfaces in an image of a
scene under illuminant e1 given an image of the same scene
under illuminant e2. If matching is perfect, so there are no
incorrect matches for any point, then H(M) = 0. Conversely,
if matching is uniformly random, then H(M) = logN . Figure
1 shows an example of the actual errors in point matching.

The difference logN −H(M) is the reduction in number
of bits needed to encode the N points in an image of a scene
under illuminant e1 given an image of the same scene under il-
luminant e2. An estimator of information retrieved by nearest-
neighbor matching INN(t1A1; t2A2) is defined precisely by
that difference. That is,

INN(t1A1; t2A2) = logN −H(M) .

The dependence of this estimator on the distributions of color
values in the images and on the nearest-neighbor criterion is
evident in eq. (20).

B. Grassberger estimator

The naı̈ve estimator of the entropy H(M) in Section IV-A is
usually biased when the number of non-zero probabilities pm
is close to the sample size N , and a bias-corrected estimator
due to Grassberger [19] was therefore used in this analysis.
If ψ denotes the digamma function, the Grassberger estimator
ĤG(M) of H(M) is defined, in nats, by

ĤG(M) = lnN −
N−1∑
m=0

pmψ(Npm) .

The Grassberger estimator ÎNNG(t1A1; t2A2) of the informa-
tion retrieved is accordingly

ÎNNG(t1A1; t2A2) = logN − ĤG(M) .

In Appendix D, the naı̈ve estimator and the Grassberger
estimator are compared by applying each of them to Gaussian
images.

V. EXPERIMENTAL SIMULATIONS

As mentioned earlier, calculations were based on a set of
50 hyperspectral images of rural and urban scenes [15], [30],
illuminated by simulated daylights with CCTs of 4000 K,
6500 K, and 25000 K. The five camera sensor spectral sensi-
tivities are shown in Fig. 2 for (a) an Agilent CMOS sensor
array from a Concord EyeQ digital camera, data digitized from
Fig. 8(C) in [31]; (b) a Foveon X3 sensor array from a Sigma
SD9 digital camera, data digitized from Fig. 7 in [31]; (c) a
Kodak frame-transfer CCD sensor array from a Kodak DCS-
460 digital camera, data digitized from Fig. 8(A) in [31]; (d)
a CCD sensor array from a Nikon D1 digital camera, data



7

0

0.5

1.0

 

 

 
R

el
at

iv
e 

se
ns

iti
vi

ty
a

 

 

  

b

 

 

  

c

400 500 600 700
0

0.5

1.0
 

 

R
el

at
iv

e 
se

ns
iti

vi
ty

d

Wavelength, nm

400 500 600 700

 

  

e

Wavelength, nm

400 500 600 700

 

 

 

Wavelength, nm

f

Fig. 2. Normalized spectral sensitivities for (a) an Agilent CMOS sensor array from a Concord EyeQ digital camera [31], (b) a Foveon X3 sensor array
from a Sigma SD9 digital camera [31], (c) a Kodak CCD sensor array from a Kodak DCS-460 digital camera [31], (d) a CCD sensor array from a Nikon D1
digital camera [32], (e) a Sony CCD sensor array from a Hewlett-Packard digital camera [31], and (f) the cone photoreceptors of the human eye [33].

Fig. 3. Color images of a sample of eight scenes from the 50 scenes analyzed in this work. The upper row is from mainly vegetated scenes and the lower
row from mainly nonvegetated scenes.

digitized from Fig. 9 (top) in [32]; and (e) a Sony interline
CCD sensor array from a Hewlett Packard digital camera, data
digitized from Fig. 8(B) in [31]. The spectral sensitivities of
the cone photoreceptors of the eye in (f) are from the Stockman
and Sharpe fundamentals [33].

The 50 hyperspectral images were divided into two groups
of 29 mainly vegetated scenes and 21 mainly nonvegetated
scenes [15]. Example images are shown in Fig. 3. Each
hyperspectral image had spatial dimensions ≤ 1344 × 1024

pixels and spectral range 400–720 nm sampled at 10-nm
intervals. At each pixel (x, y), the effective spectral reflectance
r(λ;x, y) was therefore defined at 33 values of λ (Section III
and Footnote 1), which is sufficiently dense for the present
purposes [34], [35]. Further details about the hyperspectral
images and effective global illuminants and reflectances can
be found in [15]. To reduce computation time, and to accom-
modate the approximately 1.3 pixel line spread function of
the camera system [15], images were spatially subsampled,
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with only alternate pixels being used, so that the subsampled
images had spatial dimensions ≤ 672× 512. Results obtained
with these subsampled images were closely similar to those
obtained with full-sized images.

For convenience, the three daylight illuminants were recon-
structed from daylight basis functions [36], although the use of
these functions has no particular significance in this analysis.
The two pairs with CCTs of 4000 K and 6500 K and of
6500 K and 25000 K had similar chromaticity differences and
the remaining pair with CCTs of 25000 K and 4000 K had a
much larger chromaticity difference.

The kernel density estimator (Section III-A) was im-
plemented with the Kernel Density Estimation Toolbox,
KDE 2003, for MATLAB (The MathWorks, Inc., Natick,
MA), at http://www.ics.uci.edu/∼ihler/code/. The Kozachenko-
Leonenko estimator (Section III-B) was implemented with the
Approximate Nearest Neighbor Searching Library, ANN, ver
1.1.1, at http://www.cs.umd.edu/∼mount/ANN/ [37], which
contained an efficient C++ routine for exact nearest-neighbor
search. The Kraskov-Stögbauer-Grassberger estimator (Sec-
tion III-C) was implemented with MILCA 2004 for MATLAB
at http://www.klab.caltech.edu/∼kraskov/MILCA/ [21], [23].
The naı̈ve estimator and the Grassberger estimator of infor-
mation retrieved (Sections IV-A and IV-B) were implemented
with the ANN, ver 1.1.1, library.

VI. ESTIMATES OF INFORMATION AVAILABLE

Figure 4 shows the convergence of the estimates of the
information available with increasing size N of random
samples from Scene d of Fig. 3 under daylight illuminants
with CCTs of 25000 K and 4000 K. The sensors were
from the Foveon X3 sensor array (Fig. 2 b). The esti-
mators were the equivalent Gaussian estimator ÎEG (dash-
dotted curve), Section III-D; the offset kernel density es-
timators ÎKDo each with a different automatic bandwidth-
selection method, namely rule-of-thumb (dashed curve), Sec-
tions III-A and III-D, Appendix A, and likelihood cross-
validation (dotted curve), Sections III-A and III-D, Ap-
pendix A; and the offset Kozachenko-Leonenko estimator
ÎKLo (solid curve), Sections III-B and III-D. Sample size N
ranged from 23 to 218 for all estimates except for the kernel
density estimator with likelihood cross-validation for which
the maximum sample size was limited to 216 because of the
lengthy computation time required with larger samples.

The kernel density estimator ÎKDo with automatic band-
width selection by rule-of-thumb and the offset Kozachenko-
Leonenko estimator ÎKLo converged to similar values, whereas
the equivalent Gaussian estimator ÎEG appears biased upwards
with respect to these estimators. The kernel density estimator
ÎKDo with automatic bandwidth selection by likelihood cross-
validation did not have an obvious asymptote, even as N
approached the maximum sample size.

The rate of convergence depends on the linear correlation
between the images of the scene. With this particular scene,
illuminants, and the Foveon X3 sensor set, the correlation
between the two images was very strong, with average corre-
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Fig. 4. Sample-size dependence of estimates of the information available
across images of Scene d of Fig. 3 under daylight illuminants with CCTs
of 25000 K and 4000 K. Information available is plotted against sample
size N for the equivalent Gaussian estimator ÎEG (dash-dotted curve),
offset kernel density estimator ÎKDo with rule-of-thumb (RoT, dashed curve)
and likelihood cross-validation (LCV, dotted curve), and offset Kozachenko-
Leonenko estimator ÎKLo (solid curve). The sensors were from the Foveon
X3 sensor array (Fig. 2 b).

lation coefficient2 ρ = 0.9994.
Appendices B and C set out a systematic comparison of

these and other estimators with both strongly and weakly
correlated synthetic Gaussian images, the outcome of which
suggests that the offset Kozachenko-Leonenko estimator ÎKLo

was the best estimator of those tested. In the following,
estimates of the information available are reported only for
ÎKLo.

Figure 5 shows a dotplot of the mean estimated information
available with the estimator ÎKLo and each of the sets of
sensors of Fig. 2. Different symbols show results from scenes
under daylight illuminants with large chromaticity differences
(circles) and small chromaticity differences (inverted and
upright triangles). Mean estimated information available for
illuminants with CCTs of 25000 K and 4000 K varied over the
sets of sensors from 15.5 to 18.0 bits. From (7), these values
correspond to 4.7 × 104 and 2.7 × 105 distinct identifiable
points per scene. Mean estimated information available for
illuminants with CCTs of 25000 K and 6500 K and of 4000 K
and 6500 K were, as expected, larger, and varied over the
sets of sensors from 18.5 to 20.6 bits, which correspond to
3.6×105 and 1.54×106 distinct identifiable points per scene.

The estimated information available was usually less with
mainly vegetated scenes than with mainly nonvegetated scenes,
by 0.7–1.5 bits, depending on the set of sensors (cf. [15]).
The estimates varied little over scenes, with SDs of 1.1–
1.4 bits, a result that extends an earlier finding [28] with
the Gaussian approximation (18) of information retrieved
described in Section IV.

2The average correlation coefficient was defined as
(cor (R1, R2) + cor (G1, G2) + cor (B1, B2))/3, where cor (X,Y ) =
cov (X,Y )/(var (X)var (Y ))1/2.
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Fig. 5. Mean estimated information available across images of scenes under
pairs of daylight illuminants with correlated color temperatures of 25000 K
and 4000 K (circles), 25000 K and 6500 K (inverted triangles), and 4000 K
and 6500 K (upright triangles). Estimates from the offset Kozachenko-
Leonenko estimator ÎKLo (Sections III-B and III-D) are for each of the sensors
of Fig. 2. Means were taken over 50 scenes. SDs were 1.1–1.4 bits. The
horizontal scale has been extended to allow comparison with other information
plots.

VII. ESTIMATES OF INFORMATION RETRIEVED

The information retrieved with a nearest-neighbor criterion
depends critically on the transformations t1 and t2 of the
sample values (16). Typically, t1 and t2 represent scaling by
von Kries’ rule. As originally conceived by von Kries [1], [2],
the eponymous scaling assumes that the spectral effects of
the prevailing light on the sensitivity of long-, medium-, and
short-wavelength-sensitive cone photoreceptors of the eye are
contingent only on the response of each photoreceptor class
and in a linear way. But von Kries’ rule leaves unspecified
precisely how the prevailing light determines the coefficients
that describe the adjustment of each photoreceptor sensitivity
(see e.g. [38], [39]).

Many machine models of color constancy, including Land’s
Retinex models [40], [41], assumed that von Kries scaling
applies also to lights reflected from surfaces. Subsequent
analysis showed that it does indeed give a good description of
the effects of illuminant changes with artificial scenes [42],
[43] and natural scenes [30]. Departures from von Kries’
rule have been addressed by relaxing the scaling so that it
is dependent on the signals from all three sensor classes [44]–
[46] or by making it nonlinear [47].

For von Kries scaling proper, the transformations t1 and t2
(16) can each be expressed as a diagonal matrix transformation
[48]. The coefficients of the transformations depend on the
spectral sensitivities of the sensors, the scene being imaged,
and the illuminants. A common procedure for determining
the coefficients is by the so-called gray-world assumption
[41], [49]; that is, taking the inverse of the spatial average
of the N sample color values a1i, i = 1, . . . , N , for t1,
and a2i, i = 1, . . . , N , for t2. In deciding on the coefficients,
however, it is important to distinguish between the problem of
estimating the spectrum e1 or e2 [50], [51] and the problem
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Fig. 6. Sample-size dependence of estimates of the information retrieved
across images of Scene d of Fig. 3 under daylight illuminants with CCTs
of 25000 K and 4000 K. Information is plotted against sample size N
for Gaussian approximation ÎGA (dash-dotted curve), additive approximation
ÎAA (dotted curve), naı̈ve estimator of the information retrieved ÎNN dashed
curve), and the Grassberger estimator ÎNNG (solid curve).

of finding an approximately correct one-to-one correspondence
between triplets given the illuminants [52]. Only the second
problem is relevant here, and it does not matter whether the
mean reflectance of the scene is neutral.

Figure 6 shows the convergence of the estimates of the
information retrieved with increasing size N of random sam-
ples from Scene d of Fig. 3 under daylight illuminants with
CCTs of 25000 K and 4000 K. The sensors were from the
Foveon X3 sensor array (Fig. 2 b). The estimators were the
Gaussian approximation ÎGA (dash-dotted curve), Section IV;
the additive approximation ÎAA (dotted curve), Section IV; the
naı̈ve estimator of information retrieved ÎNN (dashed curve),
Section IV-A; and the Grassberger estimator ÎNNG (solid
curve), Section IV-B. The sample size N ranged from 23 to
218 for all estimators.

The differences between the naı̈ve estimator ÎNN and the
Grassberger estimator ÎNNG were very small in this example.
The additive approximation ÎAA was slightly biased upwards
with respect to these two estimators, and the Gaussian ap-
proximation ÎGA rather more so. Small differences between
ÎNN and ÎNNG also emerged with strongly correlated synthetic
Gaussian images (see Appendix D). In the following, estimates
of the information retrieved are reported only for ÎNNG.

Figure 7 shows a dotplot of the mean estimated information
retrieved with the Grassberger estimator ÎNNG and each of the
sets of sensors of Fig. 2. Mean estimated information retrieved
from scenes under daylight illuminants with CCTs of 25000
K and 4000 K varied over the sets of sensors from 5.9 to 9.2
bits, which correspond, respectively, to 62 and 592 distinct
identifiable points per scene. As with information available,
information retrieved was higher for illuminants with smaller
chromaticity differences. Thus, mean estimated information
retrieved from scenes under illuminants with CCTs 25000 K
and 6500 K and of 4000 K and 6500 K varied over the sets
of sensors from 8.0 to 11.6 bits, corresponding to 260 and
3.2 × 103 distinct identifiable points per scene. The mean
estimated information retrieved was again less with mainly
vegetated scenes than with mainly nonvegetated scenes, by
0.2–1.0 bits, depending on the set of sensors. The estimates
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Fig. 7. Mean estimated information retrieved with the Grassberger estimator
ÎNNG and von Kries scaling of the sensor signals. SDs were 1.0–1.3 bits.
Other details as for Fig. 5.

varied little over scenes, with SDs of 1.0–1.3 bits.
The information retrieved is much less than the information

available, as is evident from a direct comparison of Fig. 7
with Fig. 5. For all except the Foveon X3 sensor set, the
mean estimated information available was 50–62% of the
information available; for the Foveon X3, it was only 38%.
The ordering of the sets of sensors by information retrieved is
also quite different from that by information available (Fig. 5).

VIII. OPTIMIZED SENSOR TRANSFORMATIONS

Fortunately, more information can be retrieved if spec-
tral sensitivities are first transformed effectively by sharp-
ening [43]–[45], before von Kries scaling, so that nearest-
neighbor matching approaches more closely maximum-
likelihood matching. The required sharpening transformation
can be represented as a linear combination of the signals from
the sensors of the camera (or from the cone photoreceptors of
the eye, for which these transformations have been justified
on both behavioral and physiological grounds, although their
effects extend beyond narrowing spectral sensitivities [53],
[54]; see also [11], [13]). When sharpening is combined with
von Kries scaling, the transformations t1 and t2 of the random
variables A1 and A2 (16) can be written as t1 = t′1t0 and
t2 = t′2t0, where t0 represents the sharpening transformation
(the same for the two images) and t′1 and t′2 the diagonal matrix
transformations representing von Kries scaling (different for
the two images). The task is to find the coefficients of t0
that maximize the information retrieved between t′1t0A1 and
t′2t0A2.

Given two images of a scene under two different illumi-
nants, one way to estimate the coefficients of t0 from (17) is
to represent the random variable A2 as a linear transform of
A1 and a noise term, that is,

A2 = t−1
0

(
t′−1
2 t′1

)
t0A1 + t−1

0 t′−1
2 W ,

and then find a linear mapping t = t−1
0 (t′−1

2 t′1)t0 that
maximizes the information retrieved between tA1 and A2

(alternatively, it is possible to find a linear mapping t that
minimizes the sum of the squares of the differences between
tA1 and A2, as in [44]). A unique solution for t0 is obtained
from the eigenvectors of t (see e.g. [44]) by setting the
diagonal elements of t0 to unity and preserving the ordering
of the spectral locations of the modified spectral sensitivities.
The information retrieved may be maximized with one of the
approximations or estimators introduced in Sections IV, IV-A,
and IV-B. For the Gaussian approximation ÎGA (Section IV)
the solution is given by the linear mapping t for which tA1

and A2 − tA1 are uncorrelated. If Cov (A1, A2) is the matrix
of covariances between the elements of A1 and A2, that is,

Cov (A1, A2) = cov (R1, R2) cov (R1, G2) cov (R1, B2)
cov (G1, R2) cov (G1, G2) cov (G1, B2)
cov (B1, R2) cov (B1, G2) cov (B1, B2)

 ,

then the optimal linear mapping is given by

t = Cov (A2, A1) (VarA1)
−1

. (21)

For the additive approximation ÎAA(tA1;A2) (Section IV)
and the Grassberger estimator ÎNNG(tA1;A2) (Section IV-B),
there is no analytic solution.

A simplex optimization algorithm (see e.g. [55]) was used
to find the coefficients of the sharpening transformation t0 for
which information retrieved with the Grassberger estimator
ÎNNG was maximum. Random samples of size 212 were used
to compute the value of ÎNNG at each iteration of the simplex
algorithm. The algorithm was initialized with the solution (21)
maximizing the Gaussian approximation ÎGA to the informa-
tion retrieved, although similar results, not reported here, were
obtained with initial values from the additive approximation
ÎAA and by least squares in exploratory simulations with the
spectral sensitivities of the photoreceptors of the eye.

The six off-diagonal coefficients of the optimal sharpening
transformation varied markedly from camera to camera owing
to their different sensor spectral sensitivities. Nevertheless,
with the exception of the Foveon X3 sensor set (Fig. 2 b),
the optimal coefficients varied little over the 50 scenes and
the three illuminant pairs, with SDs from 3.7 × 10−3 to
7.9 × 10−2 bits. For the Foveon X3, the SDs of the optimal
coefficients were considerably larger, from 0.1 to 0.6 bits.

The optimal sharpening transformation can be averaged
over scenes and illuminant pairs, yielding a unique, fixed
transformation for each set of sensors. Figure 8 shows a
dotplot of the mean estimated information retrieved with the
Grassberger estimator ÎNNG and the sensors of Fig. 2 with
a fixed sharpening transformation. The mean estimated infor-
mation retrieved as a percentage of the information available
was 63–81%. This is larger than for estimates without sensor
sharpening and with von Kries scaling by 18%–25% (see
Section VII). As with the previous estimates without sensor
interactions (Fig. 7), the estimates of the information retrieved
varied little over scenes, with SDs lower than 1.5 bits, except
again for the Foveon X3, with SDs as high as 2.3 bits.

Rather than keeping the sharpening transformation t0 fixed
for each set of sensors, it can be allowed to vary over
scenes and illuminants. Figure 9 shows a dotplot of the
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Fig. 8. Mean estimated information retrieved with the Grassberger estimator
ÎNNG and optimal sensor sharpening fixed for each camera and the eye. SDs
were 1.1–2.3 bits. Other details as for Fig. 5.
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Fig. 9. Mean estimated information retrieved with the Grassberger estimator
ÎNNG and optimal sensor sharpening varying over cameras and the eye,
scenes, and illuminant pairs. SDs were 0.8–1.2 bits. Other details as for
Fig. 5.

mean estimated information retrieved with the Grassberger
estimator ÎNNG and the sets of sensors in Fig. 2 with variable
sensor sharpening. The mean estimated information retrieved
as a percentage of the information available was 82–86%.
This is larger than for estimates with a fixed sharpening
transformation by 3–10%, except for the Foveon X3, for which
the increase was considerably larger, by 21%. Such an increase
is consistent with the larger variabilities in the coefficients of
the optimal sharpening transformation noted earlier for the
Foveon X3. The maximum SD over scenes declined from 1.5
to 1.2 bits for all the sets of sensors, except for the Foveon
X3, for which the decline in SD was more substantial, from
2.3 to 0.9 bits.

The extent of the mean information retrieved as a proportion
of the information available with a variable sharpening trans-

formation may be a slight underestimate. An analysis of the
information retrieved with the cone photoreceptors of the eye
[11] showed that with a variable sharpening transformation,
the convergence of the Grassberger estimator ÎNNG failed to
asymptote at the maximum sample size N available, i.e. 218.

IX. DISCUSSION

Capturing scene information from image colors depends
crucially on the choice of camera sensors. Although not all of
the information available can be retrieved with any particular
set of sensors, providing that the sensor spectral sensitivities
are optimally modified with a sharpening transformation, the
information retrieved can approach the information available,
depending of course on the scene and illumination. As shown
in this work, estimating the continuous and discrete informa-
tional quantities involved and comparing them over different
sets of camera sensors is not straightforward, but clear differ-
ences between sensor sets did emerge over a range of natural
scenes and daylight illuminants. Most notably, with the best
sensor set about 390% more points could be identified per
scene than with the worst. In the following subsections, some
of the factors contributing to these differences in performance
are examined in more detail.

A. Estimators and estimates

For the information available, which requires an estimator
for trivariate continuous random variables (Section III), the
offset Kozachenko-Leonenko estimator proved the best of the
several estimators tested: in addition to its fast convergence,
it has the important property of asymptotic unbiasedness [20],
[24]. For the information retrieved, which requires an estimator
for discrete random variables (Section IV), the Grassberger
estimator [19], which also has the property of asymptotic
unbiasedness, sufficed. Both the offset Kozachenko-Leonenko
estimator and the Grassberger estimator yielded good estimates
with Gaussian images (Appendices C and D).

Importantly, despite the different nature of these two esti-
mators, one for continuous variables, the other for discrete,
the estimated information retrieved from Gaussian images
converged to the estimated information available as sample
size increased. This convergence provided an essential control,
for with Gaussian images a nearest-neighbor criterion based on
a Mahalanobis distance coincides with a maximum-likelihood
criterion.

With the 50 natural scenes considered here, illuminated by
daylights with the largest chromaticity difference, i.e. with
CCTs of 25000 K and 4000 K, the mean estimated information
available across each pair of images varied from 15.5 bits
to 18.0 bits, depending on the set of sensors. These values
correspond to 4.7 × 104 and 2.7 × 105 distinct identifiable
elements or points per scene, i.e., a ratio of 570% between the
best and worst set of sensors. The mean estimated information
retrieved with the same daylight illuminants, and with a
sharpening transformation optimized for scenes, illuminants,
and sensor sets, varied from 13.2 to 15.5 bits, respectively,
corresponding to 9.5× 103 and 4.7× 104 distinct identifiable
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points per scene, i.e., a ratio of 490% between the best and
worst set of sensors.

For the human eye, the mean estimated information avail-
able for the same daylight illuminants was 17.1 bits, corre-
sponding to 1.37 × 105 distinct identifiable points per scene,
and the mean estimated information retrieved was 14.7 bits,
corresponding to 2.7 × 104 distinct identifiable points per
scene.

For daylight illuminants with smaller chromaticity differ-
ences, both the information available and the information
retrieved were fittingly larger. For illuminants with CCTs
of 25000 K and 4000 K and of 4000 K and 6500 K, the
mean estimated information available varied over the sets of
sensors from 18.5 to 20.6 bits, corresponding to 3.6×105 and
1.54 × 106 distinct identifiable points per scene. The mean
estimated information retrieved varied from 15.4 to 16.9 bits,
corresponding to 4.4×104 and 1.22×105 distinct identifiable
points per scene.

Both the estimates of the information available and the
information retrieved were fairly stable over scenes, with
SDs of about 1.2 bits for each. Estimates were larger for
nonvegetated scenes than for vegetated ones, by about 1.0
and 0.5 bits, respectively, consistent with the lower frequency
of metamerism found in nonvegetated scenes [15]. Although
expressed as points per scene, these estimates of the numbers
of distinct identifiable points refer effectively to the number of
surfaces or surface elements in a scene with distinct spectral
reflectances. Such numbers therefore express precisely how
well the elements of a scene can be identified by their
color values, independent of spatial context or their spatial
position. Incorporating processing noise into the estimates
would inevitably lower these values, as has been demonstrated
elsewhere by including the probabilistic nature of human
judgments in estimates of the number of perceptually distinct
surface colors in natural scenes [56].

B. Camera sensors

Of the five sets of camera sensors tested, the Foveon X3 [31]
yielded the greatest information available (Fig. 5) and with
a sharpening transformation optimized for both scenes and
daylight illuminants, it also yielded the greatest information
retrieved (Fig. 9), namely 15.5 bits, corresponding to 4.7×104

distinct point per scene, although it was not so successful with
a fixed sharpening transformation (Fig. 8). More generally, the
ranking of camera sensors by information available (Fig. 5)
coincided with the ranking by information retrieved with a
variable sharpening transformation (Fig. 9), unlike that with
von Kries scaling alone (Fig. 7) or with a fixed sharpening
transformation (Fig. 8).

The advantage of a fixed over a variable sharpening trans-
formation for each camera is in the simplification of the
estimation problem, i.e. determining three coefficients instead
of nine [44], [46]. But the simplification is at a cost: for
the Agilent, Kodak, Nikon D1, and Sony sets of sensors, the
reduction in information retrieved with a fixed rather than
variable sharpening transformation was only about 3–6% of
the information available. For the cone photoreceptors of the

eye, it was about 10% and for the Foveon X3 set of sensors,
21%.

In spite of the marked differences between some sensor sets,
caution should be exercised in extrapolating these results to
camera performance in practice. This analysis took no account
of design features such as the spatial resolution of the camera,
its color depth, and the level of internal noise, all of which
can influence the identifiability of reflected spectra.

C. Sampling limits
In general, with a particular set of scenes and daylight illu-

minants, the factors that determine the information available
are primarily the spectral positions of the sensors, i.e. the
wavelengths at which sensitivity is maximum, and the spectral
widths of the sensors. Determining the optimum spectral po-
sitions of a set of sensors is a sampling problem, complicated
by the variation with wavelength of reflected spectra under
changes in illuminant. Determining the optimum spectral
width is also a sampling problem, albeit constrained by the
trade-off between the von Kries invariance provided by an
infinitesimal spectral width and the spectral coverage provided
by a spectral width that extends over the visible spectrum. Both
factors can be modulated by the sharpening transformation
discussed in Section VIII. For the sets of sensors considered
here, the mean spacing of the peaks actually accounted for
little of the variance in the information available. The area
under the spectral sensitivity curves accounted for somewhat
more, i.e. 20–65%. Ultimately, optimization is an empirical
issue.

Although most of the information available in a scene can
be retrieved by von Kries scaling and sensor sharpening,
i.e. 82–86% depending on the set of sensors and the daylight
illuminants, still more information can be retrieved if nonlinear
sensor transformations or probabilistic methods are allowed.
As indicated in Section IV, the ideal approach to matching
would be by maximum likelihood, but this would require the
estimation of the conditional probability density functions of
sensor signals contingent on scene and illuminants, which, in
turn, require very large image samples. If that were achievable,
then the information retrieved would tend to the information
available. Given their simplicity, however, linear models per-
formed remarkably well in retrieving the information available.

Even so, it is important to recognize the real limits on
the recovery of scene information from image colors. With
the largest difference in daylight illuminants, a retrieval of
82–86% of the information available when interpreted as
numbers of distinct identifiable points per scene represents
just 8–22% of the points available. The fact that for the cone
photoreceptors of the eye the number of distinct identifiable
points per scene falls in the upper part of this range suggests
that even with the reduction in performance associated with
noise in the photoreceptors and in postreceptoral processing,
the spectral positioning of cone photopigments may be close
to optimal with natural scenes.
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APPENDIX A
AUTOMATIC BANDWIDTH-SELECTION METHODS

Any kernel density estimator (Section III-A) requires an
estimate to be made of its bandwidth. For the estimated
differential entropy ĥKD(A1) of the random variable A1 =
(R1, G1, B1) with pdf f1, two automatic methods were used,
namely rule of thumb and likelihood cross-validation [18],
[57]. These two were chosen for their different assumptions
and different dependencies on data.

The rule-of-thumb method uses a bandwidth that is optimal
for Gaussian images. The bandwidths σR, σG, and σB selected
for R1, G1, and B1 were the sample SDs of R1, G1, and B1

multiplied by the constant N−1/(m+4), where N is the sample
size, as in (10), and m = 3, the dimension of A1. Bandwidths
for ĥKD(A2) and ĥKD(A12), where A12 = (A1, A2), were
selected analogously.

The likelihood cross-validation method uses a maximum-
likelihood criterion to determine the adequacy of the fit [18].
In its leave-one-out form [58], the bandwidths σR, σG, and
σB were selected to maximize the score function

N∑
i=1

log f̂
(−i)
1 (a1i;σR, σG, σB) ,

where f̂ (−i)
1 is a kernel density estimator for f1 at that point

based on the N −1 data points excluding a1i [58]. Analogous
expressions hold for f2 and f12.

APPENDIX B
ESTIMATES OF INFORMATION AVAILABLE WITH GAUSSIAN

IMAGES

To test the estimators of the information available (Sec-
tions III-A to III-D), pairs of Gaussian images were cre-
ated with defined variance-covariance structures. The ex-
act information available was then calculated and compared
with the estimates from the kernel density estimator ÎKD,
the Kozachenko-Leonenko estimator ÎKL, and the Kraskov-
Stögbauer-Grassberger estimator ÎKSG as a function of sam-
ple size and different bandwidth-selection and neighborhood
criteria. In more detail, the procedure was as follows.

Gaussian random variables A1 and A2 were sampled from
trivariate Gaussian distributions with constant diagonal cor-
relation matrices, so that cor (R1, R2) = cor (G1, G2) =
cor (B1, B2) = ρ, and zero off-diagonal elements. The mutual
information I is given exactly [6] by

I = −3

2
log
(
1− ρ2

)
. (22)

The correlation coefficient was assigned two values, ρ = 0.9
for strongly correlated images and ρ = 0.1 for weakly
correlated images, which yielded values for I of 3.59 bits
and 0.02 bits, respectively.

Figure 10 shows as a function of random sample size N
estimates of the information available given by ÎKD (a and d)
averaged over 10 iterations of the procedure, by ÎKL (b and e),
and by ÎKSG (c and f) averaged over 100 iterations. Sample
size N ranged from 23 to 218. Only 10 iterations were used
for ÎKD because of its lengthy computation time. The value

of N was limited to 216 with the likelihood cross-validation
method for the same reason. The upper panels a, b, and c
are for strongly correlated images, ρ = 0.9, and the lower
panels d, e, and f for weakly correlated images, ρ = 0.1.
The true information available I is indicated by the horizontal
gray lines. For clarity, SDs are not shown. They decreased as
sample size N increased, and for the maximum sample size
N = 218, they were < 0.008 bits. For ÎKD with the likelihood
cross-validation method, for which the maximum sample size
N = 216, the SDs were < 0.018 bits.

For both strongly and weakly correlated images, the con-
vergence of ÎKL (b and e) and ÎKSG (c and f) to the true
information available was faster than that of ÎKD (a and d).
Moreover, information available was always underestimated
by ÎKL and ÎKSG, whereas with ÎKD the bias could be either
downwards or upwards.

With strongly correlated images, the performance of ÎKL (b)
and ÎKSG (c) was similar, but with weakly correlated images,
the convergence of ÎKL (e) was slower than that of ÎKSG (f).
As noted in Section VI, real images are strongly correlated
under different daylight illuminants, and it is clear from panels
b and c that convergence to the true value of the information
available was fastest with a nearest-neighbor criterion, that is,
with k = 1.

Although ÎKL and ÎKSG behaved similarly with strongly
correlated Gaussian images, the convergence of both was more
biased for all sample sizes as the correlation between the im-
ages increased further (for ÎKL, compare Fig. 10 b with Fig. 11
of Appendix C). Improving the speed of convergence by the
offset method, described in Appendix C, was possible only
with ÎKD and ÎKL, since ÎKSG estimates mutual information
directly rather than from differential entropy.

APPENDIX C
OFFSET ESTIMATORS WITH GAUSSIAN IMAGES

As explained in Section III-D, in the offset method, the
estimators ÎKD(A1;A2) and ÎKL(A1;A2) of the mutual in-
formation between A1 and A2 were each decomposed into
two components. One component was the mutual information
between equivalent Gaussian variables with known variance-
covariance structure; the other component was an offset that
was obtained by applying the estimator to variance-scaled
versions of A1, A2, and A12 = (A1, A2).

Very strongly correlated Gaussian images were generated
as in Appendix B but with correlation coefficient ρ = 0.9999
corresponding to an information available of 18.4 bits. This
particular correlation coefficient was chosen because the true
information available was then of the same order as that
with images of natural scenes obtained with the Foveon
X3 sensor set (Fig. 5, Section VI). Figure 11 shows, as a
function of the size N of the random sample, estimates of the
information available given by ÎKD with the likelihood cross-
validation bandwidth-selection method (dash-dotted curve)
and ÎKL (dotted curve) and their corresponding offset versions
ÎKDo (dashed curve) and ÎKLo (solid curve). The number of
iterations over which estimates were averaged and the range
of samples sizes N were the same as in Appendix B. The true
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Fig. 10. Estimates of the information available from Gaussian images as a function of sample size N for (a, d) the kernel density estimator ÎKD with
bandwidth selection by rule of thumb RoT (solid curves) and likelihood cross-validation LCV (dashed curves); (b and e) the Kozachenko-Leonenko estimator
ÎKL with neighborhood criteria k = 1, 2, and 3 (solid, dashed, and dotted curves, respectively); and (c and f) the Kraskov-Stögbauer-Grassberger estimator
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information available I is indicated by the horizontal gray line.
Estimates given by ÎKD with rule-of-thumb bandwidth selec-
tion were omitted as the likelihood method always performed
better. Comparison estimates from ÎKSG were also omitted
as they were closely similar to those given by ÎKL. Standard
deviations were < 0.009 bits at the maximum sample size
N = 218 for all except the kernel density estimator; for the
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Fig. 11. Estimates of the information available from Gaussian images as a
function of sample size N with the kernel density estimator ÎKD with the
likelihood cross-validation bandwidth-selection method (dash-dotted curve),
its offset version (dashed curve), the Kozachenko-Leonenko estimator ÎKL

(dotted curve), and its offset version (solid curve). The true information
available is indicated by the horizontal gray line. The images were very
strongly correlated, ρ = 0.9999. Other details as for Fig. 10.

latter, the SD was approximately 0.030 bits at N = 216.
The convergence to the information available of the esti-

mates obtained with the offset method was evidently much
faster than with the original estimators. Among all the estima-
tors tested and over all the simulations, the offset Kozachenko-
Leonenko estimator ÎKLo always converged the fastest.

APPENDIX D
ESTIMATES OF INFORMATION RETRIEVED FROM GAUSSIAN

IMAGES

To test the estimators of the information retrieved (Sections
IV-A and IV-B), pairs of Gaussian images were created with
defined variance-covariance structures as in Appendix B. As
noted in Section IX, for pairs of Gaussian images, the nearest-
neighbor criterion based on the Mahalanobis distance for point
matching is equivalent to the maximum-likelihood criterion
and, therefore, information retrieved coincides with informa-
tion available. Again as in Appendix B, the exact information
available was calculated and compared with the estimates from
the naı̈ve estimator ÎNN and the Grassberger estimator ÎNNG

as a function of sample size.
Figure 12 shows, as a function of the size N of the random

sample, the mean estimated information retrieved with the
naı̈ve estimator ÎNN (dashed curves) and with the Grassberger
estimator ÎNNG (solid curves), averaged over 100 iterations.
Sample size N ranged from 23 to 218. Panel a is for strongly
correlated images, ρ = 0.9, and panel b for weakly correlated
images, ρ = 0.1. The true information retrieved I is indicated
by the horizontal gray lines. The SDs decreased with N ,
falling to < 0.01 bits at N = 218. For weakly correlated
images, the Grassberger estimator ÎNNG was closer to the true
information retrieved. For strongly correlated images, ÎNN and



3

ÎNNG behaved similarly, although ÎNNG was systematically
slightly lower. With a larger correlation coefficient ρ = 0.99
(corresponding to a true information retrieved of 8.48 bits),
the difference in estimates fell to 0.02 bits. This particular
correlation coefficient was chosen because the true information
retrieved was then of the same order as that with images of
natural scenes obtained with the Foveon X3 sensor set (see
Fig. 7, Section VII). The difference in the two estimators was
even smaller with still larger values of ρ.
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Fig. 12. Estimates of the information retrieved from Gaussian images as
a function of sample size N with the naı̈ve estimator ÎNN (dashed curves)
and the Grassberger estimator ÎNNG (solid curves). Panel a is for strongly
correlated images, ρ = 0.9, and panel b for weakly correlated images, ρ =
0.1. The true information retrieved, which coincides here with the information
available, is indicated by the horizontal gray lines. Means were taken over
100 iterations.




