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Variations in illumination on a scene and trichromatic sampling by the eye limit inferences about scene con-
tent. The aim of this work was to elucidate these limits in relation to an ideal observer using color signals
alone. Simulations were based on 50 hyperspectral images of natural scenes and daylight illuminants with
correlated color temperatures 4000 K, 6500 K, and 25,000 K. Estimates were made of the (Shannon) informa-
tion available from each scene, the redundancies in receptoral and postreceptoral coding, and the information
retrieved by an observer identifying corresponding points across image pairs. For the largest illuminant dif-
ference, between 25,000 K and 4000 K, a postreceptoral transformation providing minimum redundancy
yielded an efficiency of about 80% in the information retrieved. This increased to about 89% when the trans-
formation was optimized directly for information retrieved, corresponding to an equivalent Gaussian noise am-
plitude of 3.0% or to a mean of 3.6�104 distinct identifiable points per scene. Using color signals to retrieve
information from natural scenes can approach ideal observer efficiency levels. © 2009 Optical Society of
America
OCIS codes: 330.1690, 330.1715, 330.1720, 330.1880, 330.4060, 110.3055.
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. INTRODUCTION
“All vision is colour vision, for it is only by ob-
serving differences of colour that we distinguish
the forms of objects.” James Clerk Maxwell
(1871)

Although color may be a compelling cue to the identity
f objects, it is not entirely reliable. This is because the
ight reflected from the same surfaces changes with
hanges in the spectrum of the illumination on the scene,
nd these changes cannot be fully discounted by adapta-
ion in the eye. Conversely, under the same illumination,
ight reflected from different surfaces can produce the
ame responses in the receptors of the eye, a phenomenon
nown as metamerism [1], which is a consequence of the
ature of trichromatic sampling. In short, there is no cer-
ain one-to-one correspondence between surfaces and re-
eptor responses.

This physical uncertainty sets limits on the informa-
ion that can be retrieved by an observer using color sig-
als alone to identify the constituent elements of a scene,

ndependent of accidents of position. A previous study [2]
stimated possible upper bounds on the information
vailable but did not establish a least upper bound, and
nother study [3] estimated the approximate information
etrieved from small samples of varying size, but not its
symptotic value. The aim of this work was to elucidate
oth of these limits in a computational analysis of ob-
erver performance. Natural scenes and daylight illumi-
ants were used to generate image data because of their
biquity, complexity, and influence in the development of
he eye [4,5].
1084-7529/09/110B14-11/$15.00 © 2
Information was interpreted in the sense of Shannon
6–8], i.e., as a measure of the reduction in uncertainty or
ntropy. Previous work (e.g., [9]) has explored the issue of
ptimal coding of color information in relation to the deco-
relation of receptor signals. An advantage of an
nformation-theoretic approach is that it deals with signal
ependencies that are more general than linear ones. Al-
hough independence implies the absence of correlation,
he converse need not.

The organization of this work was as follows. The first
tep was to define the entropy associated with an image of

scene represented by triplets of long-, medium-, and
hort-wavelength-sensitive cone responses and then de-
ne the information available from the scene itself. Under
ery general conditions, the transformation of cone re-
ponses by adaptation and by postreceptoral cone-
pponent interactions leaves information unaltered, but
his transformation does affect the redundancy of the cod-
ng [4]. The second step was to make explicit the sources
f this redundancy. The third step was to define an inde-
endent estimate of the information retrieved by an ob-
erver making the best trichromatic matches possible in
rder to identify spatially corresponding points across im-
ges of a scene under different illuminants. The assump-
ions underlying this performance are set out later. Un-
ike the information available, the information retrieved,
efined for finite samples of points drawn from the image,
epends on the nature of the postreceptoral coding. The
ourth step was to make numerical estimates of the re-
uired quantities: the information available, the redun-
ancies in coding at receptoral and postreceptoral levels,
nd the information retrieved as a function of sample
009 Optical Society of America
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ize. The final step was to optimize the postreceptoral
ransformation to minimize redundancy, and, indepen-
ently, to maximize the information retrieved, and then to
ompare the results with the information available.

For the largest illuminant difference, between a corre-
ated color temperature (CCT) of 25,000 K and one of
000 K, the transformation providing minimum redun-
ancy allowed about 14 bits to be retrieved of the 17 bits
vailable, equivalent to an efficiency of about 80%. When
he transformation was optimized for maximum informa-
ion retrieved, the efficiency increased to about 89%, cor-
esponding to an equivalent Gaussian noise amplitude of
.0% or to a mean of 3.6�104 distinct identifiable points
er scene. Using color signals to retrieve information from
atural scenes can thus approach ideal obsever efficiency

evels.
Limits on observer performance need not, of course, be

uantified only with information-theoretic measures,
hether in the sense of Shannon or otherwise. Indeed,
istorically, ideal observer performance in discrimination
nd identification tasks has been expressed largely within

signal-detection framework [10], where information-
heoretic considerations have been uncommon. One ratio-
ale has been that the information transmitted is un-
hanged by a systematic reassignment of responses ([11],
. 132), but in the present work, this property is actually
xploited in the calculation of the information available.

. INFORMATION MEASURES FOR
RICHROMATIC REPRESENTATIONS
. Probability Densities
uppose that at each point �x ,y� in a scene, the reflected

ight at the eye has spectral radiance c�� ;x ,y�, where
avelength � ranges over the visible spectrum. This spec-

ral radiance c�� ;x ,y� may be treated as the product of a
patially uniform global illumination on the scene with
ncident spectral radiance e��� and an effective spectral
eflectance r�� ;x ,y� at each �x ,y�. Such a representation
oes not distinguish between variations in spectral reflec-
ance and variations in surface orientation, occlusion, and
utual illumination, but this is unimportant here; see

omments in Subsection 3.A and discussion in [12], Ap-
endix A.

ig. 1. Image statistics. The image in panel a is of a scene unde
istograms in panels b, c, and d are naïve estimates of the respon
f 1000 points drawn randomly from the image a. The small gray
y a mask. Responses were normalized to a mean of 1.0 (equiva
d).The continuous smooth curves are exponential model density
ines indicating the fit over the remainder of the range.
For this spectral radiance c�� ;x ,y�, the respective re-
ponses, l, m, and s, of the long-, medium-, and short-
avelength-sensitive (L, M, and S) cones, with corneal

pectral sensitivities l̄���, m̄���, and s̄���, are therefore
iven by

l�x,y� =� l̄���c��;x,y�d�,

m�x,y� =� m̄���c��;x,y�d�,

s�x,y� =� s̄���c��;x,y�d�, �1�

here the integrals are evaluated over the visible spec-
rum. For the purposes of this analysis, the actual posi-
ions �x ,y� in Eq. (1) are irrelevant, and the triplet of cone
esponses �l ,m ,s� may be treated as the values of a
rivariate continuous random variable �L ,M ,S� [9]. Let
he probability density function (pdf) of �L ,M ,S� be f.
hen the (marginal) pdf of the random variable L is given
y �f�l ,m ,s�dmds, and analogously for the random vari-
bles M and S. Figure 1(a) shows an image of a natural
cene under a daylight illuminant with CCT 6500 K, and
igs. 1(b)–1(d) show the corresponding naïve estimates of

he pdfs of L, M, and S.

. Entropy and Mutual Information
ntropy may be thought of generally as a measure of un-
ertainty of a random variable, whether discrete or con-
inuous, but its use with continuous variables requires
ome care [8]. For the continuous trivariate random vari-
ble �L ,M ,S�, the Shannon differential entropy is defined
8] by

h�L,M,S� = −� f�l,m,s�log f�l,m,s�dldmds, �2�

here, here and elsewhere, the integral is assumed to ex-
st and is taken over the set for which f�l ,m ,s��0. If the
ogarithm is to the base 2, then the differential entropy is

easured in bits. The differential entropies of the indi-
idual variables L, M and S, and of their combinations,
re defined analogously. Although the value of the differ-
ntial entropy depends on the space in which the vari-

ylight illuminant with correlated color temperature 6500 K. The
ability density functions of L, M, and S cones based on a sample

e at the bottom left of the image was excluded from the analysis
von Kries scaling; abscissas and ordinates have been truncat-

ons fitted by maximum likelihood to responses �1.0, with dotted
r a da
se prob
spher
lent to
functi
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bles L, M, and S range, this dependence disappears
hen differences in differential entropies are taken [8], as

n the calculation of mutual information, whose definition
ollows.

Two different illuminants, with incident spectral radi-
nces e1 and e2, say, will usually give rise to different ran-
om variables �L1 ,M1 ,S1� and �L2 ,M2 ,S2�, with pdfs f1
nd f2, say. Each of these variables provides a different
epresentation of the scene, not merely because of a dif-
erence in mean reflected spectrum but also because of
he uncertainties in a trichromatic representation, as
oted in the Introduction. The information that the rep-
esentations have in common is essentially the overlap of
he separate entropies. This overlap is the mutual infor-
ation.
More formally, the mutual information I�L1 ,M1 ,S1 ;

2 ,M2 ,S2� between �L1 ,M1 ,S1� and �L2 ,M2 ,S2� is given
8] by

I�L1,M1,S1;L2,M2,S2� = h�L1,M1,S1� + h�L2,M2,S2�

− h�L1,M1,S1,L2,M2,S2�. �3�

his quantity I�L1 ,M1 ,S1 ;L2 ,M2 ,S2� may be interpreted
s the reduction in uncertainty about �L1 ,M1 ,S1� given
L2 ,M2 ,S2�, and vice versa, i.e., I�L1 ,M1 ,S1 ;L2 ,M2 ,S2�
I�L2 ,M2 ,S2 ;L1 ,M1 ,S1�. More importantly here, I�L1 ,
1 ,S1 ;L2 ,M2 ,S2� represents the invariant elements of

he scene, for it quantifies the mean number of points in
he scene that, in principle, are available for reliable iden-
ification across the two illuminants. If I�L1 ,M1 ,
1 ;L2 ,M2 ,S2�=a, say, in bits, then this number is 2a [8].
ny additional noise introduced at either receptoral or
ostreceptoral levels [13,14] serves only to diminish this
alue. If �L1 ,M1 ,S1� and �L2 ,M2 ,S2� are independent of
ach other, then I�L1 ,M1 ,S1 ;L2 ,M2 ,S2�=0, and no points
n the scene are reliably identified.

Another way of interpreting the value of
�L1 ,M1 ,S1 ;L2 ,M2 ,S2� is in terms of equivalent Gaussian
ignals and noise. Suppose that L2=L1+Z, where the sig-
al L1 and noise Z are distributed independently and nor-
ally with variances �2 and �Z

2, respectively, and analo-
ously for M1, M2 and S1, S2. For these Gaussian signals
the actual distributions are strongly non-Gaussian),
�L1 ,M1 ,S1 ;L2 ,M2 ,S2�= �3/2�log�1+�2 /�z

2� [8]. If I�L1 ,
1 ,S1 ;L2 ,M2 ,S2�=a, again in bits, then the percentage

oise amplitude 100�N/� is given by 100�22a/3−1�−1/2�
00�2−a/3.
These estimates of mutual information, which concern

he stable reflecting properties of scenes independent of
lluminant, should be distinguished from the optimal rep-
esentation of colors in images of a scene under a fixed il-
uminant (e.g., [14]).

. Postreceptoral Interactions
s a result of postreceptoral cone-opponent interactions,
ach of the triplets of cone responses �l ,m ,s� yields a trip-
et of postreceptoral responses, denoted by �l# ,m# ,s#�, to
nticipate the fact that their optimum spectral sensitivi-
ies are spectrally sharpened forms of the L-, M-, and
-cone corneal spectral sensitivities [15,16]. The effect of
hese interactions may be represented by a linear invert-
ble transformation T [17]; thus �l# ,m# ,s#�=T�l ,m ,s �
1 1 1 1 1 1
or illuminant e1 and �l2
# ,m2

# ,s2
#�=T�l2 ,m2 ,s2� for illumi-

ant e2. Examples are given later. The random variables
L1 ,M1 ,S1� and �L2 ,M2 ,S2� are therefore transformed to
ostreceptoral random variables

�L1
#,M1

#,S1
#� = T�L1,M1,S1�,

�L2
#,M2

#,S2
#� = T�L2,M2,S2�. �4�

Responses were assumed to be subject to perfect von
ries scaling [18,19] (compare [20]), and variables were

herefore normalized to a mean of 1.0. Provided that the
ransformation T is smooth (differentiable) and invertible
necessarily true by definition), the mutual information
etween �L1

# ,M1
# ,S1

#� and �L2
# ,M2

# ,S2
#� is the same as that

t a receptoral level (Appendix A); that is,

I�L1
#,M1

#,S1
#;L2

#,M2
#,S2

#� = I�L1,M1,S1;L2,M2,S2�. �5�

or brevity, let I�L1 ,M1 ,S1 ;L2 ,M2 ,S2� be denoted by ILMS
nd I�L1

# ,M1
# ,S1

# ;L2
# ,M2

# ,S2
#� by ILMS

# .
This invariance (5) is crucial in that the information es-

imate (3) is independent of whether it is computed before
r after postreceptoral interactions; in particular, it does
ot depend on the specific values of receptor or postrecep-
oral signals, just their pdfs (Appendix A). In principle,
LMS provides a least upper bound on the information re-
rieved, which does depend on these values.

. Redundancies
lthough the information available may be invariant, the
edundancies in the coding at receptoral and postrecep-
oral levels need not be so, for in general there will be dif-
erent dependencies between the variables. The depen-
ency between more than two random variables can be
uantified by the multi-information [21], and this is used
ere to measure the redundancy. Thus, with differential
ntropies defined as in Eq. (2), the redundancy R1
R�L1 ;M1 ;S1� in the random variables L1, M1, and S1
ith illuminant e1 and redundancy R2=R�L2 ;M2 ;S2� in

he random variables L2, M2, and S2 with illuminant e2
re given by

R1 = h�L1� + h�M1� + h�S1� − h�L1,M1,S1�,

R2 = h�L2� + h�M2� + h�S2� − h�L2,M2,S2�. �6�

A higher-order redundancy R12=R�L1 ,L2 ;M1 ,M2 ;
1 ,S2� in the pairs of random variables �L1 ,L2�, �M1 ,M2�,
nd �S1 ,S2� is given by

R12 = h�L1,L2� + h�M1,M2� + h�S1,S2�

− h�L1,L2,M1,M2,S1,S2�. �7�

here are analogous expressions for the redundancies R1
#,

2
#, and R12

# in the postreceptoral variables �L1
# ,M1

# ,S1
#�

nd �L2
# ,M2

# ,S2
#�.

The redundancies R1 and R2 decrease as the three
ypes of cone responses become more independent of one
nother, and, for a given level of response dependence, the
igher-order redundancy R12 decreases as the changes in
one responses with illuminant changes become more in-
ependent of one another [22]. All three redundancies are
ecessarily nonnegative [21].
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Although redundancies at the receptoral level are set
y the spectral tuning of the L, M, and S cones, at a pos-
receptoral level they depend on the transformation T
Eq. (4)]. Unfortunately, it is not possible to find a single
ransformation that simultaneously minimizes the pos-
receptoral redundancies R1

# and R2
#, but it is possible to

nd one that minimizes the higher-order redundancy R12
# ,

hich has a useful side effect.

. Decomposing the Information Available
he information available ILMS=I�L1 ,M1 ,S1 ;L2 ,M2 ,S2�
an be thought of as having components from individual
one classes, i.e., IL=I�L1 ;L2� between L-cone responses,
M=I�M1 ;M2� between M-cone responses, and IS
I�S1 ;S2� between S-cone responses, where

IL = h�L1� + h�L2� − h�L1,L2�,

IM = h�M1� + h�M2� − h�M1,M2�,

IS = h�S1� + h�S2� − h�S1,S2�. �8�

But their sum IL+IM+IS does not necessarily coincide
ith ILMS. As shown in Appendix B, the difference can be

raced to the redundancies defined in Subsection 2.D.
hat is,

ILMS = IL + IM + IS − R1 − R2 + R12. �9�

An analogous decomposition holds for the postrecep-
oral variables �L1

# ,M1
# ,S1

#� and �L2
# ,M2

# ,S2
#�; that is,

ILMS
# = IL

# + IM
# + IS

# − R1
# − R2

# + R12
# . �10�

All the quantities on the right-hand side of Eq. (10) de-
end on the transformation T [Eq. (4)], but, as already
oted from Eq. (5), the quantity on the left-hand side of
q. (10) does not.

. Information by Identification
he estimates of mutual information given by Eq. (3) or
q. (9) depend directly or indirectly on the pdfs f1 and f2
f the random variables �L1 ,M1 ,S1� and �L2 ,M2 ,S2�, and
n the joint pdf f12 of �L1 ,M1 ,S1 ,L2 ,M2 ,S2�. There is,
owever, a different approach to calculating information
hat reflects performance of an observer undertaking an
dentification task based on trichromatic matching [2].

ig. 2. Identification errors across images of the scene in Fig.
5,000 K and b, 4000 K. The points marked 1, 2, 3, 4 (not all are
, after cone responses were scaled to a mean of 1.0 (von Kries
mages in a and b have not been normalized. The histogram in c
rrors based on a sample of 1000 points drawn randomly from t
tted to identification errors �5.0, with a dotted line indicating
Given the images in Figs. 2(a) and 2(b) of the scene in
ig. 1(a) under two different illuminants e1 and e2, here
aylight illuminants with CCTs of 25,000 K and 4000 K,
espectively, draw N points randomly from the image in
ig. 2(b) (only one such point is shown) and consider the
ask of finding the spatially corresponding points in the
mage in Fig. 2(a) solely on the basis of the triplets of cone
esponses generated, i.e., with a nearest-neighbor crite-
ion in the space of responses. It is emphasized that
richromatic matching at the level of the receptors (or
ostreceptorally) is not assumed to be necessarily opti-
um for identifying spatially corresponding points. As
oted earlier (Subsection 2.C), responses were assumed to
e fully adapted, but to illustrate the effect of illuminant,
he images in Figs. 2(a) and 2(b) have not been normal-
zed. Being able to establish a one-to-one spatial corre-
pondence between points independent of illuminant
hanges is closely related to being able to make color-
onstancy judgments [23].

In more detail, if the point j=1 in the image in Fig. 2(b)
s one of the N points in the sample, the task is to find the
oint i in the image in Fig. 2(a) whose triplet of responses
l1�i� ,m1�i� ,s1�i�� is closest to the triplet of responses
l2�j� ,m2�j� ,s2�j��. There are several candidate trichro-
atic matches in Fig. 2(a), namely, points i=1,2,3,4 (not

ll are distinguishable), with i=1 being the closest, i=2
he next closest, and so on. The correct identification is
he fourth closest. How these incorrect identifications oc-
ur is quantified colorimetrically in [3].

In performing this task, the observer is assumed not to
e affected by receptoral or postreceptoral noise or by dis-
ractions from signals elsewhere in the scene, or by atten-
ion and memory, including previous performance and
cene familiarity. The extent to which nearest-neighbor
atching is optimal in this task determines how close

erformance approaches that of an ideal observer [24].
A relevant way to quantify the error in performance is

o measure how far the incorrect identification i is from
he correct identification j in terms of the number k of
ther identifications closer to j than i [2]. This number ob-
iously depends on the number of alternatives available,
hat is, on the size N of the sample. To accommodate the
ariance–covariance structure of the sample, matching
as determined not by the Euclidean distance between

ignals but by the Mahalanobis distance. The identifica-

der a daylight illuminant with correlated color temperature a,
guishable) in a are candidate trichromatic matches to point 1 in
) for the sample (see text). For the purposes of illustration, the
naïve estimate of the probability mass function for identification
ge. The smooth curve is an exponential model density function
over the remainder of the range.
1(a) un
distin

scaling
is the
he ima
the fit
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ion errors k may be treated as the values of a discrete
andom variable, say, K, with probability mass function
pmf) pk. The discrete entropy HN�K� of K is then given [8]
y

HN�K� = − � pk log pk, �11�

here the sum is taken over all k for which pk�0. Apart
rom a reordering, which does not affect the value of

N�K�, the probabilities pk define a transition matrix of a
ymmetric channel [8]. Figure 2(c) shows the naïve esti-
ate of pk, i.e., relative frequency as a function of k, for

he two images in Figs. 2(a) and 2(b). As the N points are
ampled uniformly, the a priori probability of any one in
articular being chosen is 1/N. The entropy of the sample
s therefore the entropy of the constant pmf with value
/N at each point; that is, H�1/N�=log N. The mutual in-

ormation afforded by the sample is given [8] by the dif-
erence between H�1/N� and HN�K�, denoted here by
K�N�; that is,

IK�N� = log N − HN�K�. �12�

This quantity provides a measure of the information re-
rieved, but unlike the information available [Eq. (3)], it
epends on the postreceptoral transformation T [Eq. (4)],
nd it does not have a straightforward decomposition of
he kind given in Eqs. (9) and (10).

When the random variables �L1 ,M1 ,S1� and
L2 ,M2 ,S2� are identical, IK�N�=log N, since HN�K�=0.

hen they are independent, IK�N�=0, since pk=1/N, and
N�K�=log N. But IK�N� does not grow indefinitely with
. When N is small, the risk of mismatch is small, so

K�N� is close to log N, but as N increases, the risk of a
ismatch increases, with the result that IK�N� increases

ess and less rapidly. The limit of IK�N� as N tends to in-
nity represents the maximum information retrieved by
his procedure.

At a postreceptoral level, the task is analogous: that is,
iven point j in the image in Fig. 2(b), to find the point i in
he image in Fig. 2(a) whose triplet of responses
l1
#�i� ,m1

#�i� ,s1
#�i�� is closest to the triplet of responses

l2
#�j� ,m2

#�j� ,s2
#�j��. An expression for the discrete entropy

nalogous to Eq. (11) holds at a postreceptoral level

HN�K#� = − � pk
# log pk

#, �13�

nd analogous to Eq. (12) for the information retrieved

K
# �N�, that is,

IK
# �N� = log N − HN�K#�. �14�

The asymptotic values of the information retrieved
Eqs. (12) and (14)] may be expressed as a proportions of
he information available [Eqs. (9) and (10)], providing a
easure of the efficiency of the nearest-neighbor match-

ng procedure [6,25]. Thus, at a receptoral level, the effi-
iency is given by

lim
N→�

IK�N�/ILMS �15�

nd, at a postreceptoral level, by

lim
N→�

IK
# �N�/ILMS

# . �16�
The relationship between information available and in-
ormation retrieved for a known distribution is considered
n Appendix C. Some general results concerning nearest-
eighbor decoding are described in [24].
A priori, efficiency might be expected to be reasonably

ood. It is known that von Kries scaling is effective, with
r without cone-opponent interactions [16,26], and may
e improved by being replaced by a general linear trans-
ormation [27] or by a nonlinear von Kries transformation
28].

. EXPERIMENTAL METHODS
. Image Data
alculations were based on data generated from a set of
0 hyperspectral images of natural rural and urban
cenes [12,29]. Each hyperspectral image had
imensions�1344�1024 pixels and spectral range
00–720 nm in 10 nm steps, providing an effective spec-
ral reflectance r�� ;x ,y� at each wavelength � and point
x ,y� (Subsection 2.A).

The raw spectral radiance images, acquired under day-
ights with CCTs of approximately 4400 K to 8200 K,
ere corrected for dark noise, spatial nonuniformities,

tray light, and any wavelength-dependent variations in
agnification or translation [12]. The effective spectral

eflectances r�� :x ,y� were obtained by dividing the spec-
ral radiance of the image by the spectral radiance of a
mall neutral (Munsell N5 or N7) reference surface em-
edded in the scene and then multiplying by the known
pectral reflectance of the surface. The effect of a different
aylight was simulated by multiplying r�� ;x ,y� at each
oint �x ,y� by the chosen illuminant spectrum. This pro-
edure is not intended to model geometric changes in the
cene as the sun moves across the sky, merely the effects
f a change in incident spectrum at any particular surface
lement. A detailed rationale for this approach and esti-
ates of metamerism with and without masking shad-

wed regions are given in [12].
No reflectance spectrum coincided numerically with

ny other within a hyperspectral image, and therefore
ach spectrum corresponded to a unique element in the
cene (within the spatial resolution of the image). As the
resent approach is neutral with respect to spatial struc-
ure, subsets of different reflectances were not grouped
ccording to whether they might have been drawn from
ifferent parts of the “same” surface, an issue that is ad-
ressed more fully in [12], Subsection 2.D.
In simulations, scenes were illuminated by different

aylight illuminants e1��� and e2���: an extreme pair, as
n Fig. 2, with CCTs of 25,000 K and 4000 K, and a more
losely spaced pair with CCTs of 4000 K and 6500 K. Still
arger illuminant differences could have been considered,
ut 25,000 K and 4000 K define useful practical limits in
he CIE system [30], and represent the sun and sky at dif-
erent times of the day [31]. As a control, daylight and
kylight spectra from the Iberian peninsula [32] were also
ested. Differences in estimates of the information avail-
ble for the CCTs available were �6%.
Triplets of cone responses �l ,m ,s� at each point in each

mage of each scene were calculated according to Eq. (1)
rom the Stockman et al. [33] and Stockman and Sharpe
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34] estimates of corneal cone spectral sensitivities l̄���,
¯ ���, and s̄���. Because of the approximately 1.3 pixel
ine spread function of the camera system [12], images
ere spatially subsampled, with only alternate pixels be-

ng used. Any similarity between spectral reflectances at
oints in the scene is automatically accounted for in the
stimate of the mutual information. Integrations were
erformed numerically over 400–720 nm at 10 nm inter-
als (Subsections 2.A and 2.B).

. Estimation Algorithms
s already illustrated in Fig. 1, naïve estimates of the
dfs f1, f2, and f12 of the random variables �L1 ,M1 ,S1�,
L2 ,M2 ,S2�, and �L1 ,M1 ,S1 ,L2 ,M2 ,S2� (Subsections 2.A
nd 2.B) may be obtained by binning, i.e., partitioning the
one-response spaces into finite cells and counting the fre-
uencies of responses in each cell [35]. But systematic er-
ors in estimating the information available then occur
36]; examples of how this bias arises are given in [37,38].
hese errors may be minimized by introducing correction
erms, but, instead, k-nearest-neighbor statistics were
sed here [39,40], the results of which are efficient and
daptive and have minimal bias [36].
Estimates of the information available (3) and its de-

omposition (9) based on differential entropies (2) were
btained from a modified version of the k-nearest-
eighbor estimator due to Kozachenko and Leonenko
39]. In this modification [22], the entropy estimate was
artitioned into a Gaussian component, which has known
ntropy, and a non-Gaussian component to which the
ozachenko–Leonenko estimator was applied. This offset
stimator had the advantage of converging more rapidly
nd accurately [41] than when the Kozachenko–Leonenko
stimator was applied directly to the response variables.
hus, if Var�L ,M ,S� denotes the variance–covariance
atrix of �L ,M ,S� and �L* ,M* ,S*� denotes the product

Var�L ,M ,S��−1/2 �L ,M ,S�, then the differential entropy
�L ,M ,S� is given [8] by

h�L,M,S� = h�L*,M*,S*� + 1
2 log	Var�L,M,S�	,

here |·| denotes the determinant. The log-variance
erm on the right-hand side of this equation is the differ-
ntial entropy of a trivariate Gaussian random variable
ith variance–covariance matrix Var�L ,M ,S� [8] less a

onstant factor. The offset Kozachenko–Leonenko estima-
or of h�L ,M ,S� is the sum of the Kozachenko–Leonenko
stimate of h�L* ,M* ,S*� and the log-variance term (see
ppendix C). Notice that although this estimator is based
n a finite sample (the maximum size of which was, in
rinciple, 1344�1024=1,376,256=220.39), it is shown in
ppendix C that this did not limit the size of the esti-
ated differential entropy or, in turn, estimates of the

umber of distinct, identifiable points in a scene.
Systematic errors also occur in estimating the informa-

ion retrieved from the pmf pk of the random variable K
Subsection 2.F) from each finite sample of size N. The
aïve estimators of the probabilities pk in Eq. (11) and pk

#

n Eq. (13), obtained by counting the observed frequencies
t each value of k, as illustrated in Fig. 2, are negatively
iased. The Kozachenko–Leonenko estimator cannot be
sed since it applies to an infinite population, and, in-
tead, a bias-corrected version of the naïve estimator due
o Grassberger ([42], Eqs. (23) and (27)) was used to esti-
ate the discrete entropies receptorally [Eq. (11)] and

ostreceptorally [Eq. (13)]. Estimates of the information
etrieved receptorally [Eq. (12)] and postreceptorally [Eq.
14)] were then obtained as a function of increasing
ample size N.

Both the offset Kozachenko–Leonenko estimator and
he Grassberger estimator were validated against a
nown distribution (Appendix C).
The coefficients of the 3�3 matrix representing the

ostreceptoral transformation T [Eq. (4)] were optimized
ccording to two cost functions: first, as explained in Sub-
ection 2.D, by minimizing the magnitude of the higher-
rder redundancy R12

# in the information available and,
econd, in order to test whether it was optimal for match-
ng, by maximizing the limiting value of the information
etrieved IK

# �N�. Optimizations were performed with a
implex algorithm with multiple initializations.

. RESULTS AND COMMENT
. Information Available
igure 3(a) shows the decomposition (9) of the informa-

ion available ILMS at the level of the receptors. Estimates
ere for daylight illuminants with CCTs 25,000 K and
000 K (solid symbols) and 4000 K and 6500 K (open
ymbols). Means and sample standard deviations (SDs)
ver the 50 natural scenes are shown for the information
vailable ILMS; the individual contributions IL, IM, and IS
f L, M, and S cones; and the redundancies R1, R2, and
12. Figure 3(b) shows the corresponding estimates for

he decomposition (10) of the information available ILMS
#

t a postreceptoral level. The postreceptoral transforma-
ion T (4) was chosen to minimize the higher-order redun-
ancy R12

# , but the other redundancies R1
# and R2

# were
lso reduced as a consequence.
Other daylight illuminants were also tested. The infor-
ation available from illuminants with CCTs of 4000 K

nd 25,000 K was always less than that from any other
air drawn from within the same range.
Both receptoral and postreceptoral estimates of ILMS

nd ILMS
# were obtained as the sums of the corresponding

omponents and redundancies (9) and (10), respectively,
nd, as expected, their mean values were indistinguish-
ble, at 17.1 bits (SD 1.2 bits) for CCTs of 25,000 K and
000 K and 20.0 bits (SD 1.2 bits) for CCTs of 4000 K and
500 K. These values also coincided with the result of di-
ect estimation (3), providing a control on the indepen-
ent estimates on the right-hand sides of Eqs. (9) and
10). The particular values of 17.1 and 20.0 bits corre-
pond to 1.37�105�=217.1� and 1.03�106�=220.0� distinct
oints per scene that, in principle, are available for iden-
ification through the images (Subsection 2.B). The
quivalent Gaussian percentage noise amplitudes for
hese two information estimates were 1.9% and 1.0%, re-
pectively (Subsection 2.B).

At a receptoral level, the mean estimates of the redun-
ancies R1+R2 and R12, as proportions of the information
vailable ILMS, were 92% and 96% for daylight illumi-
ants with CCTs of 25,000 K and 4000 K, and 78% and
0% for CCTs of 4000 K and 6500 K, respectively. Postre-
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eptorally, with the transformation T [Eq. (4)] optimized
or minimum R12

# , the mean estimates of R1
#+R2

# and R12
# ,

s proportions of the information available, fell to 64%
nd 58% and to 55% and 48%, respectively.
The mean transformation T (with sample SDs in pa-

entheses) for the 50 scenes for daylight illuminants with
CTs of 25,000 K and 4000 K is given, in matrix notation,
y

T = 

1 − 0.931�0.060� 0.066�0.025�

− 0.259�0.096� 1 − 0.156�0.032�

0.003�0.054� − 0.035�0.087� 1
� .

�17�

or CCTs of 4000 K and 6500 K, the result was similar;
hat is,

T = 

1 − 0.971�0.048� 0.093�0.028�

− 0.249�0.056� 1 − 0.173�0.034�

0.005�0.041� − 0.034�0.070� 1
� .

�18�

The small SDs indicate the stability of T over the 50
cenes. The effect of T on the corneal spectral sensitivities
f the L, M, and S cones is to shift their peaks from 570,
43, and 442 nm at a receptoral level to 604, 541, and
42 nm at a postreceptoral level [15,16].

. Information Retrieved
igure 4(a) shows, for daylight illuminants with CCTs of
5,000 K and 4000 K, mean estimates of the information
etrieved receptorally IK�N� (circles) and postreceptorally

K
# �N� (squares) as a function of the logarithm of the size

of the sample. The mean estimate of the information
vailable ILMS [Eq. (3)] is indicated by the horizontal line.
he postreceptoral transformation T was optimized for
inimum higher-order redundancy R12

# (Subsection 3.B).
igure 4(b) shows the corresponding estimates for CCTs
f 4000 K and 6500 K.

ig. 3. Decomposition of the mean estimated information avai
eceptoral and b, postreceptoral levels. The postreceptoral trans
ancy R12

# (b). Means were taken over 50 scenes and for daylight
solid symbols) and 4000 K and 6500 K (open symbols). Horizont
The mean estimate of IK�N� with CCTs of 25,000 K and
000 K (Fig. 4(a)) reached its asymptotic value of about
.7 bits (SD 1.0 bits), and with CCTs of 4000 K and
500 K (Fig. 4(b)), it was still increasing slightly at the
argest sample size feasible N=218, reaching about
0.4 bits (SD 1.2 bits). The mean estimate of IK

# �N� clearly
ailed to asymptote at N=218 with both pairs of illumi-
ants.
In the absence of an analytic expression for the asymp-

otes, an empirical estimate was constructed. The ob-
erved dependence of the mean estimate of IK�N� on N
ith CCTs of 25,000 K and 4000 K was first fitted by a lo-

ally weighted linear regression g (loess; see [43]). The
unction g was then scaled and shifted to provide the best
t g� to the observed dependence of the mean estimate of
K�N� on N with CCTs of 4000 K and 6500 K and of IK

# �N�
n N with both illuminant pairs. The bandwidth [43] of g
as adjusted iteratively for minimum mean square error

n the fit of g�, to obtain a common template. With the in-
lusion of a small ��3% � quadratic correction to the fit of
�, the root mean square error was 0.05 bit with residual
egrees of freedom 11 per data set. The results are shown
y the solid curves in Fig. 4, with arrows indicating the
stimated asymptotic values. With CCTs of 25,000 K and
000 K, the estimated asymptote for IK�N� was 10.4 bits
SD 1.3 bits), differing from the value at N=218 by
0.1 bit. For IK

# �N� the estimated asymptote was 13.6 bits
SD 1.7 bits) with CCTs of 25,000 K and 4000 K and
7.0 bits (SD 2.0 bits) with CCTs of 4000 K and 6500 K,
ach less than the corresponding mean estimate of the in-
ormation available ILMS, namely, 17.1 and 20.0 bits, re-
pectively.

These estimated postreceptoral asymptotes of 13.6 and
7.0 bits with the two pairs of CCTs correspond to means
f 1.28�104 and 1.29�105 distinct points per scene that
an be identified reliably by postreceptoral trichromatic
atching across images (Subsection 2.B). The correspond-

ng efficiencies were about 80% and 85% respectively [Eq.
16)], which may be compared with those at the receptors
f 45% and 52% respectively [Eq. (15)]. The equivalent

nto individual information components and redundancies at a,
ion T [Eq. (4)] was optimized for minimum higher-order redun-
ants with correlated color temperatures of 25,000 K and 4000 K

s show ±1 sample SD.
lable i
format
illumin
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aussian percentage noise amplitudes (Subsection 2.B)
or these two information estimates were 4.3% and 2.0%,
espectively.

Figures 5(a) and 5(b) show the corresponding results
hen the postreceptoral transformation T was optimized

or maximum information retrieved IK
# �N� rather than

inimum redundancy R12
# . The estimated asymptote for

K
# �N� was larger, at 15.2 bits (SD 1.4 bits) with CCTs of
5,000 K and 4000 K and 18.3 bits (SD 1.7 bits) with
CTs of 4000 K and 6500 K. These two estimates corre-
pond to means of 3.6�104 and 3.2�105 distinct points
er scene that can be identified reliably. The correspond-
ng efficiencies were about 89% and 92% [Eq. (16)], re-
pectively. The equivalent Gaussian percentage noise am-
litudes were 3.0% and 1.5%, respectively.
Replacing postreceptoral von Kries scaling by a general

inear transformation [27] increased the estimated effi-
iencies to about 91% and 93%, but given their depen-
ence on extrapolation, these and the preceding larger es-
imates should be treated with some caution.

ig. 4. Information retrieved. The mean estimate of the inform
squares) is shown as a function of the logarithm of the size N of
ures of a, 25,000 K and 4000 K and b, 4000 K and 6500 K. The p
edundancy R12

# . The bounding value of the discrete entropy of a
he information available ILMS by the horizontal line (different
egressions derived from a best-fitting template from which asym
0 scenes.

ig. 5. Information retrieved. Details as for Fig. 4, except that
ation retrieved I# �N�. Data for information retrieved receptora
K
Whether optimized for minimum redundancy R12
# or

aximum information retrieved IK
# �N�, the mean trans-

ormation T was almost identical. Root-mean-square dif-
erences in the entries in the matrix expressions (17) and
18) were about 0.02 and 0.01, respectively. The expres-
ions (17) and (18) do, however, differ somewhat from sen-
or transformations designed to achieve optimal spectral
harpening based on Munsell reflectance spectra [16].

. GENERAL DISCUSSION
he information available to the eye about the constitu-
nt elements of a scene depends both on the scene and on
he spectrum of the illumination. For the 50 rural and ur-
an scenes considered here, the mean estimated informa-
ion available was about 17 bits for daylight illuminants
ith correlated color temperatures of 25,000 K and
000 K, and this increased to about 20 bits with CCTs of
000 K and 6500 K. These values of information available

retrieved receptorally IK�N� (circles) and postreceptorally IK
# �N�

mple for two daylight illuminants with correlated color tempera-
eptoral transformation was optimized for minimum higher-order

of size N is shown by the dashed line and the mean estimate of
tes in a and b). The smooth curves are locally weighted linear
values were estimated, shown arrowed. Means were taken over

streceptoral transformation was optimized for maximum infor-
e identical to those in Fig. 4 and have been omitted.
ation
the sa
ostrec
sample
ordina
ptotic
the po
lly wer
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orrespond to means of about 1.4�105 and 1.0�106 dis-
inct points in each scene that, in principle, are available
or reliable identification.

From Fig. 3, it is clear that coding at the receptoral
evel is highly redundant. Not only are there large inter-
ependencies in the responses of L, M, and S cones to a
cene under a particular illuminant as revealed in the re-
undancies R1 and R2, there are even greater interdepen-
encies in the way that these responses change with
hanges in that illuminant, as revealed by the higher-
rder redundancy R12, despite full adaptation to the mean
y von Kries scaling. Unsurprisingly, these interdepen-
encies were reduced with an appropriate postreceptoral
ransformation T. When T was optimized for a minimum
n the higher-order postreceptoral redundancy R12

# , the
alue of the latter declined to about 60% of R12, and the
ostreceptoral redundancies R1

# and R2
# also declined, with

eans about 70% of their receptoral counterparts. The
hoice of the pair of daylight illuminants had little effect
n these reductions.

With this transformation T, the estimated information
etrieved by postreceptoral trichromatic matching across
wo images of a scene yielded asymptotic means of about
4 bits for CCTs of 25,000 K and 4000 K and about
7 bits for CCTs of 4000 K and 6500 K. These values rep-
esent efficiencies of about 80% and 85%, respectively,
nd correspond to means of about 1.3�104 and 1.3�105

istinct points in each scene that can be identified reli-
bly by trichromatic matching. The equivalent Gaussian
ercentage noise amplitudes were about 4.3% and 2.0%,
espectively.

The limit on the information retrieved is set by the
ransformation T, assumed to be linear [17], and the
atching procedure. In fact, only with Gaussian distrib-

ted signals is nearest-neighbor matching in the space of
esponses certain to be optimal [24] (Appendix C). As il-
ustrated in Figs. 1 and 2, the distributions of both recep-
or responses and identification errors have tails much
onger than Gaussian, falling off approximately exponen-
ially. Even so, with T optimized directly for maximum in-
ormation retrieved, rather than for minimum redun-
ancy, the estimated efficiencies increased to about 89%
nd 92%, respectively, approaching ideal obsever effi-
iency levels, although the extrapolated values were more
ncertain. These asymptotes correspond to means of 3.6
104 and 3.2�105 distinct points per scene that can be

dentified reliably. By allowing the scaling of postrecep-
oral responses by a general linear transformation rather
han by von Kries scaling, the estimated efficiencies could
e increased slightly further still, but precise estimates
ere difficult.
This analysis was developed with reference to an ideal

bserver. For a real observer, in addition to the noise
resent at receptoral and higher levels in the visual path-
ay, there are other uncertainties to do with attention,
emory, and the nature of the experimental task. Never-

heless, there is evidence from observers’ judgments of
hether materials are constant across differently illumi-
ated scenes that suggests that identification is probably
s good as it can be considering the theoretical limitations
f the task [44]. With some natural scenes where there is
ittle metamerism, performance can actually approach
he ideal [45]. In neither [44] nor [45] was the spatial
tructure of the stimuli apparently critical.

PPENDIX A: DIFFERENTIAL ENTROPIES
F IMAGES

uppose that a scene under illuminants with incident
pectral radiances e1 and e2 gives rise to continuous ran-
om receptor-response variables �L1 ,M1 ,S1� and
L2 ,M2 ,S2�, and joint random variable
L1 ,M1 ,S1 ,L2 ,M2 ,S2�, with pdfs f1, f2, and f12, respec-
ively. The corresponding differential entropies
�L1 ,M1 ,S1�, h�L2 ,M2 ,S2�, and h�L1 ,M1 ,S1 ,L2 ,M2 ,S2�
re given [8] by

h�L1,M1,S1� = −� f�l1,m1,s1�log f�l1,m1,s1�dl1dm1ds1,

h�L2,M2,S2� = −� f�l2,m2,s2�log f�l2,m2,s2�dl2dm2ds2,

�L1,M1,S1,L2,M2,S2�

= −� f�l1,m1,s1,l2,m2,s2�

� log f�l1,m1,s1,l2,m2,s2�dl1dm1ds1dl2dm2ds2, �A1�

here the integrals are assumed to exist and are taken
ver the support sets of �L1 ,M1 ,S1�, �L2 ,M2 ,S2�, and
L1 ,M1 ,S1 ,L2 ,M2 ,S2�.

The mutual information I�L1 ,M1 ,S1 ;L2 ,M2 ,S2� be-
ween �L1 ,M1 ,S1� and �L2 ,M2 ,S2� is defined [8] by

�L1,M1,S1;L2M2,S2�

=� f12�l1,m1,s1,l2,m2,s2�

� log
f12�l1,m1,s1,l2,m2,s2�

f1�l1,m1,s1�f2�l2,m2,s2�
dl1dm1ds1dl2dm2ds2.

�A2�

rom Eq. (A1), it follows that I�L1 ,M1 ,S1 ;L2 ,M2 ,S2� may
e rewritten as a difference in differential entropies; thus

I�L1,M1,S1;L2,M2,S2� = h�L1,M1,S1� + h�L2,M2,S2�

− h�L1,M1,S1,L2,M2,S2�. �A3�

Suppose that the postreceptoral transformation T is
mooth and invertible, so that �L1

# ,M1
# ,S1

#�=T�L1 ,M1 ,S1�
nd �L2

# ,M2
# ,S2

#�=T�L2 ,M2 ,S2� with corresponding pdfs f1
#,

2
#, and f12

# . Then

I�L1
#,M1

#,S1
#;L2

#,M2
#,S2

#�

=� f12
# �l1

#,m1
#,s1

#,l2
#,m2

#,s2
#�

� log
f12
# �l1

#,m1
#,s1

#,l2
#,m2

#,s2
#�

f1
#�l1

#,m1
#,s1

#�f2
#�l2

#,m2
#,s2

#�
dl1

#dm1
#ds1

#dl2
#dm2

#ds2
#.

�A4�



L
=
s
f
E

T
s

A
I
W
a
(

A

S
f

a
s

A
E
T
a
(
m
b
t
G

n
L
=
t
c

a
t
i
a
s
N

l
c
t
s
e

m
a
=
�

m
a
w

s
o
i
N
I
i
l
m
a
u
d
s
e
w

A
T
c
E

F
T
o
m
m
t
t
l
s
I
z
S
f

Foster et al. Vol. 26, No. 11 /November 2009 /J. Opt. Soc. Am. A B23
et J be the Jacobian of T. Then f1
#�l1

# ,m1
# ,s1

#�
f1�l1 ,m1 ,s1�	J�l1 ,m1 ,s1�	−1, where |·| represents the ab-
olute value of the determinant, and analogously for

2
#�l2

# ,m2
# ,s2

#� and f12
# �l1

# ,m1
# ,s1

# , l2
# ,m2

# ,s2
#�. Substituting into

q. (A4) gives [8]

I�L1
#,M1

#,S1
#;L2

#,M2
#,S2

#� = I�L1,M1,S1;L2,M2,S2�.

hat is, the information available postreceptorally is the
ame as that at the receptors.

PPENDIX B: DECOMPOSITION OF
NFORMATION
ith the information available ILMS defined by Eq. (3)

nd individual cone contributions IL, IM, IS defined by Eq.
8), the difference ILMS−IL−IM−IS is given by

ILMS − IL − IM − IS = h�L1,M1,S1� + h�L2,M2,S2�

− h�L1,M1,S1,L2,M2,S2� − h�L1�

− h�L2� + h�L1,L2� − h�M1� − h�M2�

+ h�M1,M2� − h�S1� − h�S2� + h�S1,S2�.

fter rearrangement,

ILMS = IL + IM + IS − �h�L1� + h�M1� + h�S1� − h�L1,M1,S1��

− �h�L2� + h�M2� + h�S2� − h�L2,M2,S2�� + �h�L1,L2�

+ h�M1,M2� + h�S1,S2� − h�L1,M1,S1,L2,M2,S2��.

ince h�L1 ,M1 ,S1 ,L2 ,M2 ,S2�=h�L1 ,L2 ,M1 ,M2 ,S1 ,S2�, it
ollows from Eqs. (6) and (7) that

ILMS = IL + IM + IS − R1 − R2 + R12,

s in Eq. (9). The corresponding postreceptoral decompo-
ition (10) follows in the same way.

PPENDIX C: VALIDATION OF
STIMATORS
o show the relationship between the information avail-
ble (9) and (10) and the information retrieved (12) and
14), and to verify the offset Kozachenko–Leonenko esti-
ator [22,39] for continuous distributions and the Grass-

erger estimator ([42] Eqs. (23) and (27)) for discrete dis-
ributions, these estimators were applied to trichromatic
aussian images, which have a known entropy.
The Gaussian images were generated from trivariate

ormal distributions of independent continuous variables
, M, S, with correlation coefficients ��L1 ,L2�=��M1 ,M2�
��S1 ,S2�=�. Then information available and informa-

ion retrieved coincide [24] and can be calculated analyti-
ally from the value of � [8]; thus

Itrue = − 3
2 log�1 − �2�.

Figure 6 shows the mean estimates of the information
vailable ILMS from the offset Kozachenko–Leonenko es-
imator and information retrieved by trichromatic match-
ng IK�N� from the Grassberger estimator ([42] Eqs. (23)
nd (27)) as a function of the logarithm of the size N of the
ample. Means were taken over 100 samples each of size
, with N ranging from 23 to 218. The value of the corre-
ation coefficient � was fixed at 0.999, chosen because it
orresponds to a value of Itrue=13.5 bits, which is similar
o values estimated for information retrieved for natural-
cene data (see Subsection 4.B). Other values are consid-
red in [41].

It is clear that the offset Kozachenko–Leonenko esti-
ator of ILMS gives accurate estimates of the information

vailable Itrue with relatively small sample sizes (e.g., N
28), much smaller than the maximum of N=1344
1024=220.39 available.
By contrast, the original Kozachenko–Leonenko esti-
ator (not shown here) underestimated the information

vailable and provided estimates that converged only
ith the largest sample size tested �N=218�.
The information retrieved IK�N� from each discrete

ample N is necessarily bounded by the discrete entropy
f the sample, i.e., log N (Fig. 6, dashed line). As explained
n Subsection 2.F, IK�N� cannot not grow indefinitely with
. When N is small, the risk of error is small, so that

K�N� is close to log N; but as N increases, the risk of error
ncreases, with the result that IK�N� increases less and
ess rapidly. For Gaussian images and trichromatic

atching, the limit of IK�N� should equal the information
vailable. For N=218, the Grassberger estimate of IK�N�
nderestimated Itrue by 4%. For other values of �, the un-
erestimation of information retrieved may be larger or
maller than 4%, but overestimation by the Grassberger
stimate of IK�N� never occurred, although it cannot al-
ays be ruled out.
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