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Abstract-A traditional approach to the problem of human object recognition is to assume that the 
visual system represents an object in terms of invariant quantities. This study considers a generalization 
of this approach to the problem of visually recognizing differences in shape, specifically between contour 
markings on a planar surface, as the position of the surface varies in space. For a given 'shape cue', 
perceived differences in contour may be quantified by threshold values-Weber fractions-at a 
particular criterion level of performance. A necessary theoretical condition for the Weber fraction to be 
constant with the relative viewpoint of the observer is that the cue should be a relative invariant under 
the natural spatial transformations of the image. Some data are reviewed showing how statistically 
efficient some cues are in explaining the observed discriminability of symmetric curved contours at a 
fixed criterion performance level of 75%. A new, fuller analysis is presented showing that the efficiency 
of the most efficient cue satisfying the invariance condition is maintained over a wide range of criterion 
performance levels, from 53% to 92% correct, corresponding to discrimination index values of 0.1 to 
2.0. Over these levels, Weber's law was found empirically to hold almost exactly. 

1. INTRODUCTION 

The problem of object or pattern recognition-at one time known as the problem 
of 'stimulus equivalence'-has been summarized generally by Dodwell (1992) 
thus: 

How can a pattern be recognized as such (e.g. a melody, a face) despite the fact that it can occur 
at different pitches, tempi or timbres in the one case, different sizes, orientations and colours in 
the other? (p. 511 ) 

One long-standing approach to this problem, investigated by Dodwell in a wide 

range of studies of human and animal vision (Dodwell, 1957, 1970, 1992), is to 
consider it in terms of the encoding process (Dodwell, 1992; see also Foster, 
1977). According to this approach, recognition is achieved, despite changes in the 

position and orientation of the object and of the observer, by the visual system's 
forming a representation of the object-or parts of it-in terms of quantities that 
are stable under those changes. These quantities are the invariants of the natural 

spatial transformations involved: translations and rotations with respect to the 
three Cartesian axes. An example of such an invariant quantity is the cross-ratio 
for four points on a line: the ratio of the ratios of the distances between the points 
remains constant as the line is translated and rotated in space (see e.g. Mundy and 

Zisserman, 1992; Reiss, 1993). Psychophysical measurements involving the 
cross-ratio have been reported by Cutting (1986) and Niall (1992). 
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This study considers a generalization of this invariance-based approach to a 

complementary question. Suppose that there is on the surface of an object a 

pattern of contours formed by markings due to sharp changes in surface 

reflectance, and not to self-occlusion or shadow. Can the differences in shape 
between these contours be recognized despite changes in the viewing distance and 
direction of the observer? In practice, judgements about differences in shape may 
be just as important as judgements about identities in shape; as with identification, 
it may be desirable that judgements about differences are, as far as possible, 
invariant with changes in relative viewpoint. In short, the differences between the 

parts of a surface should be perceived to be a property of the object, not of the 

viewpoint of the observer.' An example of where it is essential that contour shape 
differences are attributed to the object rather than to the viewpoint is in the 

interpretation of surface three-dimensional structure from surface contours 

(Knill, 1992). In practice, discrimination may fail to be viewpoint-invariant 
through causes unrelated to the invariances themselves; for example, occlusion of 
the surface (self-occlusion and by other objects), and image scale (the image may 
be so small that it is not resolved or so large that it passes outside the visual field). 
These factors are excluded from this analysis. 

A central question for object discrimination (and for object identification) is 
the nature of the quantity used to make these perceptual judgements; that is, the 

'shape cue'. The following sections consider in turn: (1) how, for a given cue, 
perceptual differences in shape may be quantified in terms of thresholds-Weber 
fractions-obtained at a particular criterion level of discrimination performance; 
(2) how, theoretically, the invariance of the Weber fraction under changes in the 
relative viewpoint of the observer is related to the relative invariance of the cue 
under spatial transformations of the image; (3) how well some cues (relative 
invariant or not) explain the observed discriminability of symmetric curved 
contours for a particular criterion performance level; and (4) how well such an 

explanation by one relative-invariant cue holds for all reasonable criterion 

performance levels. 
This study is concerned only with what is sometimes called geometric 

invariance; it is not concerned with the effects of change in illumination 

(photometric invariance), or with the effects of visual context or occlusion. 
Planar shapes only are considered. Although the theory is-within these 

constraints-general, applications are based on the task of discriminating curved- 
line fragments in the plane. Contour curvature is an important local determinant 
of perceived planar shape (Attneave, 1954; Koenderink and van Doorn, 1982; 
Richards et al., 1986; Link and Zucker, 1988). 

2. QUANTIFYING PERCEPTUAL DIFFERENCES 

Suppose that some physical shape attribute is chosen and that it has values c on 
some continuum. Visual sensitivity to differences in shape may be summarized by 
the size of the smallest detectable difference 0 c = c' - c between values c, c', at 
some criterion level of performance; for example, per cent correct in a forced- 
choice task (shapes with attributable values c, c' are discriminable on p %, say, of 

occasions, and not discriminable on (100 - p) % of occasions). The quantity Arc 
is the increment or difference threshold (Falmagne, 1985; Laming, 1986), and 
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the ratio Oc% is the Weber fraction. Weber's law (Weber, 1834), in its general 
form, asserts that Oc depends linearly on c; that is, the Weber fraction is constant. 

Clearly, Weber's law need not hold for all shape attributes. 
For curved contours, there are many shape attributes that could be used to 

quantify discrimination performance. Eight candidate cues of a mainly geometric 
kind are as follows: Euclidean curvature (or, if the curved contour is not circular, 
an 'equivalent curvature' defined for a circular arc with the same endpoints and 

midpoint as the fragment'); radius of (equivalent) curvature; the angle turned 

through by a tangent moving along the curve; the maximum deviation of the curve 
from linearity ('sag'); the mean deviation from linearity; the area enclosed by the 

curve, the arc-length of the curve; and the quotient of arc-length by chord-length 
(for details, see Foster et al., 1993a; Foster and Wagemans, 1993). Which of these 
cues satisfies the viewpoint-invariance condition introduced in Sect. 1 is con- 
sidered in the next section. The question of empirical acceptability is addressed 
later. 

3. DISCRIMINATION CUES AND VIEWPOINT INVARIANCE 

The requirement that judgements about differences in planar shape should, as far 
as possible, be invariant with changes in viewpoint can be expressed by saying that 
the Weber fraction should be viewpoint invariant. As noted earlier, the Weber 
fraction is specified for a particular criterion level of performance. For such a 

level, the viewpoint-invariance condition implies that the ratio c'/c, where c' = 

c + Ac, should be constant. This requirement-that the ratio of values be 
constant-is equivalent to saying that the cue itself should be a relative invariant 
under the natural spatial transformations of the object, or under the correspond- 
ing natural spatial transformations of the image, which are defined explicitly in 
this section. A relative invariant is the same as an (absolute) invariant except that 
values of the invariant are scaled by a number that depends on the 'size' of the 
transformation (Mundy and Zisserman, 1992). 

The eight aforementioned geometric attributes of curved-line fragments have 
been analysed previously by algebraic methods (Foster and Wagemans, 1993) for 
invariance of an arbitrary ratio c'/c under natural spatial transformations of the 

image. These changes in relative viewpoint may be represented by affine 
transformations of the fronto-parallel image plane (affine transformations map 
parallel lines onto parallel lines), providing that the portion of the object plane 
containing the contours is so far from the eye that the depth of the contours is 

relatively small; that is, perspective effects may be ignored (see Aloimonos, 1990; 

Mundy and Zisserman, 1992; Reiss, 1993). 
Since measurements of curved-line discriminability have traditionally used 

stimuli with one symmetry axis and parallel chords (Foster and Wagemans, 1993; 
see Fig. 1 a), the affine transformations were assumed to be symmetry-preserving; 
in the usual Cartesian coordinates (see Fig. lb), the transformations were 
therefore of the form: 

where the scale factors a, b ? 0. These transformations actually consisted of 
a combination of enlargement (or reduction) in the x- and y-directions (x, y) - 
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Figure 1. (a) Display configuration. Stimulus eccentricities were 1.4 deg visual angle (measured to the 
midpoint of each chord); chord-lengths ranged from 0.2 to 0.8 deg. (b) Geometry of curved-line 
stimulus with chord-length 2l and sag s (in the text, the symbol c is used generally to include sag). The 
turning angle of the curved line is 62-9,. The equivalent-curvature of the curved line is the Euclidean 
curvature of a circular arc with the same endpoints and midpoint; equivalent-curvature is thus 2sl(lz 
+ sz) (the Chord Theorem). Full computational formulae for these and other attributes, namely, arc- 
length, arc-length-divided-by-chord-length, mean-deviation, and area, are given in Foster et al. 
(1993a) and Foster and Wagemans (1993). 

(ax, ay), where a > 0, and a simple elongation in the x-direction alone (x, y) - 
(ax, y), where a b 1, or a simple compression in the y-direction alone (x, y) - 
(x, ay), where 0 <_ a _< 1 (Foster et al., 1993a). 

Informally, if the stimuli are imagined as arising from some suitably aligned 
physical markings on the planar surface of an object, the transformations T would 
thus correspond to a combination of a shift in the object plane away from or 
towards the eye and a rotation of the plane about a vertical axis or about a 
horizontal axis; or to a complementary shift in the position of the observer. 

With an abuse of notation, let T(c) represent the value c of the cue after T has 
been applied to a curved-line fragment. Of the attributes listed in Sect. 2, those 
that did not yield constant ratios T ( c' )lT (c) were equivalent-curvature,3 radius- 

of-equivalent-curvature, turning-angle, arc-length, and arc-length-divided-by- 
chord-length ; the attributes that did were sag, mean-deviation, and area (Foster 
and Wagemans, 1993). 

This property of relative invariance, although motivated by the general 
arguments set out earlier, serves only to classify potential cues for shape 
discrimination into those which theoretically could allow the Weber fraction to be 

preserved and those which could not. The next section considers the relationship 
between this property and how cues might be assessed experimentally as to their 

appropriateness, without reference to Weber's law. 

4. CUE EFFICIENCY AT A SINGLE CRITERION LEVEL 

In the sense that a cue can be treated as a parameter of the stimulus, the problem 
of deciding its acceptability can be approached from the standpoint of statistical 
estimation theory (Fisher, 1922; Stuart and Ord, 1991). The technique (Foster et 
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al., 1993a) is to determine which of a set of candidate cues gives the best 

prediction of measured increment threshold Ac as a function of c; the 'best' 

predictor in the sense of statistical estimation theory being the most efficient one; 
that is, the one yielding the smallest variance in the data about the sample mean at 
each value of c. This notion of efficiency is distinct from the notion of efficiency 
defined with respect to a particular visual detector mechanism (Watt and 

Andrews, 1982). 
Data for increment-threshold functions for contour-curvature discrimination 

were obtained in a series of experiments (Foster et al., 1993a). These 

experiments required the (forced-choice) discrimination of two simultaneously 
presented, 1-s duration, curved-line fragments (forming sections of ellipses), with 

parallel chords, whose curvatures varied from 0 to 0.13 arcmin-' and chord- 

lengths from 12 to 48 arcmin (units of visual angle). The turning angle of the most 
curved curve was 120 deg. Figure la shows the experimental arrangement of the 
curved lines. For each candidate cue, increment threshold Ac was obtained as a 
function of c under combinations of enlargements or reductions and simple 
elongations or compressions of the curved lines, according to Eqn (1). The value 
of Ac at each c was derived from a psychometric function for each attribute and 
each observer. Figure 2 shows example increment-threshold data for sag and the 
fitted function; per cent correct discrimination ('which curved-line fragment was 
the more curved?') is plotted against the stimulus level, specified by the difference 
in sag value between one fragment and the other, with the smaller of the sag values 

being fixed, here at 2.57 arcmin. The smooth curve is a quadratic function of 
stimulus level, transformed by the standardized normal integral, and fitted by a 
maximum-likelihood procedure (GLIM, NAG, 1987). Each set of increment- 
threshold data was fitted individually; a standard shape of psychometric function 
was not assumed, but the general quadratic form with three coefficients gave 
satisfactory fits under all conditions (Foster et al., 1993a). The criterion level of 

Figure 2. An example psychometric function for one subject and one experimental condition (chord- 
length 0.4 deg; one curved line of constant sag 2.57 arcmin). Per cent correct discriminations between 
the two curved lines ('which curved-line fragment was the more curved?') is plotted against stimulus 
level (the difference in sag value between one fragment and the other). The vertical bars are binomial 
estimates of the standard deviations associated with each data point (since the number of trials at each 
level was determined by an adaptive procedure, the sizes of the error bars were not necessarily the 
same at similar per cent correct values). The smooth curve is a quadratic function of stimulus level, 
transformed by the standardized normal integral, and fitted by a maximum-likelihood procedure. The 
criterion level of performance is 75%, and the estimated increment threshold Oc is shown arrowed. 
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performance was set at 75%, midway between chance level (50%) and perfect 
performance (100%). The estimated increment threshold Ac for the data in Fig. 2 

is shown arrowed. 

Figure 3 shows two of the resulting increment-threshold functions (adapted 
from Foster et al., 1993a, Fig. 2) for equivalent-curvature and sag. Estimates of 
Ac (averaged over five observers) are plotted as a function of c; the different 

symbols correspond to different sizes (chord-lengths) of the curved lines, as 
indicated in the legend to the figure. The broken lines are least-squares 
regressions, not including data at zero equivalent-curvature and sag owing to the 

possible influence of a separate discriminatory mechanism (see Foster et al., 
1993a; Kramer and Fahle, 1993), but it is evident that no continuous curve could 
account adequately for the variance in the data for equivalent-curvature.' Recall 
that the variance in the observed increment-threshold values is defined with 

respect to the sample mean at each value of c; for the variance to be minimum it is 
not necessary that the sample mean should vary linearly with c, or, equivalently, 
that Weber's law should hold. 

In fact, none of the potential cues that failed the viewpoint-invariance 
condition, namely, radius-of-equivalent-curvature, turning-angle, arc-length, 
arc-length-divided-by-chord-length, and equivalent-curvature, accounted ad- 

equately for the variance in the data; and, of those that did satisfy the 

viewpoint-invariance condition, namely sag, mean-deviation, and area, the best 

predictor over all conditions was sag (Foster et al., 1993a). 

5. CUE EFFICIENCY AT MULTIPLE CRITERION LEVELS 

The experimental tests of cue efficiency summarized in the preceding section 
were performed at one criterion level of discrimination performance: 75% 
correct. If other levels had been chosen, would the efficiency of the most efficient 
cue have been maintained? 

The resolution of this question is slightly complicated by the imprecision of the 

psychometric function. The stimulus testing levels associated with each function 

Figure 3. Increment-threshold functions for equivalent-curvature and sag. Estimates of increment 
threshold Oc are plotted aginst reference value c for four enlargements of the curved lines, specified 
by their chord-lengths: 0 0.2 deg; 0 0.4 deg; O 0.6 deg; and 0.8 deg. Each data point is the 
weighted mean over five subjects, and the vertical bars show ± I SEM. Broken lines are least-squares 
linear regressions (with the point c = 0 arcmin omitted). Adapted from Foster et al., 1993a, Fig. 2, 
with kind permission from Pergamon Press Ltd, Headington Hill Hall, Oxford OX3 OBW, UK. 
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(Fig. 2) were chosen in the original experiments (Foster et al., 1993a) according 
to a sequential adaptive testing algorithm (PEST, Taylor and Creelman, 1967; 
modified by Hall, 1981) that centred performance on the 75% correct criterion 

level; for other more extreme levels, the form of the fitted curve was theoretically 
less reliable, and consequently the thresholds derived from it. In the analysis of 

the raw data performed here, the uncertainty at each criterion level was quantified 

by a bootstrap estimate (Efron, 1982; Foster and Bischof, 1991) of the standard 
deviation of the corresponding threshold Ac. Weighted mean values of Ac were 
then computed over observers. The criterion levels were chosen with reference to 

values of the discrimination index d' from signal-detection theory (Green and 

Swets, 1966): selected d' values were 0.1, 0.2, 0.5, 1.0, 1.5, and 2.0, correspond- 
ing to values of 53%, 56%, 64%, 76%, 86%, and 92% correct, respectively. 

Figure 4 shows estimates of sag increment threshold Ac plotted as a function 

of sag c at each of these criterion levels. As in Fig. 3, the different symbols 
correspond to different enlargements of the curved lines, and the broken lines are 

least-squares regressions (not including data at zero sag for the reason mentioned 

earlier). Table 1 summarizes the results of a formal analysis of variance with 

repeated measures (Winer, 1971, sections 4.2, 4.6) using weighted values of sag 
increment threshold and without omission of the data at zero sag. The lack of 
linear fit was nowhere statistically significant, although at the most extreme 
criterion level there was an increase in the lack of fit that approached significance 
(p = 0.07 for d' = 2.0). 

Table 1. 
Consistency of curved-line increment-threshold data (Fig. 4) with 
Weber's law at six criterion levels of discrimination performance. 
The F-ratios measure the lack of fit of linear functions of sag c fitted 

' 
to observed estimates of sag increment threshold Ac at each d' 
criterion value. 

6. COMMENT 

The concern of this study has been with the problem of recognizing differences in 

planar shape as the relative viewpoint of the observer alters. Given a contour- 

curvature attribute with values c on some continuum, how do threshold 

differences Ac in c vary with c under natural image transformations, specifically 
under affine transformations preserving symmetry? One of the attributes 

considered, namely sag, has four important properties: (1) For curved lines with 

parallel chords, it is a relative invariant with respect to affine transformations, a 

theoretical condition for preserving the Weber fraction. (2) At the criterion level 
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Figure 4. Sag increment-threshold functions for six criterion levels of discrimination performance 
defined by discrimination-index values d' of 0.1, 0.2, 0.5, 1.0, 1.5, and 2.0, corresponding to values of 
53%, 56%, 64%, 76%, 86%, and 92% correct, respectively. As in Fig. 3, the different symbols 
correspond to different enlargements of the curved lines, specified by their chord-lengths: 0 0.2 deg; 
D 0.4 deg; O 0.6 deg; and 6. 0.8 deg. Each data point is the weighted mean over five subjects, and the 
vertical bars show ± 1 SEM. Broken lines are least-squares linear regressions (with the point c = 0 
arcmin omitted). 

of performance of 75% correct, it was experimentally the most efficient cue of 

eight tested in increment-threshold measurements (Foster et al., 1993a; Foster 
and Wagemans, 1993). (3) A linear function of sag was sufficient to account for 
the variance in the increment-threshold data; that is, experimentally, Weber's law 
held almost exactly. (4) Efficiency and Weber's law were maintained despite 
changes in the criterion level of performance from 53% to 92% correct (d' = 0.1 I 
to 2.0). 

In having these desirable theoretical and experimental properties for local 
contour-curvature description, sag need not of course be unique, and other 
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equally efficient cues, including differential and semi-differential cues, might be 
contrived (Foster et al., 1993a,b). Sag also has some deficiencies, most notably the 
need for the contours to be finite (so endpoints are defined) and parallel (sag is 

only a relative invariant so long as the directions in which it is measured are 

parallel; Foster and Wagemans, 1993). The problem with infinite or extended 
contours is not insurmountable, for as has been previously noted (Foster et al., 
1993a) sag might be defined with respect to points of inflexion in the curve; such 

points, in addition to being affine-invariant features of the contour, have been 
shown to be salient in a perceptual contour-segmentation task (Hanoulle et al., 
1993); other invariant features for contour-segmentation have also been 

proposed (Watt, 1986). As to the problem of non-parallel contours, it is not 
known in detail how discriminability is impaired when curved lines have different 
orientations (Foster and Wagemans, 1993). 

The fact that the statistical efficiency of sag was high over a range of criterion 
levels has other implications. In the aforementioned theoretical analysis of the 
relative invariance of some classical cues for contour-curvature discrimination 

(Foster and Wagemans, 1993), it was assumed that the viewpoint-invariance of an 

arbitrary ratio c'lc of cue values c, c' was equivalent to the invariance of a Weber 
fraction I1c/c, where L1c = c' - c for some criterion level of performance, which, 
in principle, could be set anywhere between 50% and 100% in a two-alternative 
forced-choice task. As noted earlier, only one criterion level, namely 75% 

correct, was used in practice (Foster et al., 1993a), but the results reported here 
show that this equivalence applies over criterion levels ranging from 53% to 92% 
correct. To further extend this range, however, more experimental trials would 
have to be performed at extreme stimulus levels. Even so, this partial equivalence 
suggests that something of the perceived relationships of shapes, which should in 

principle be definable over a broad range of values of the cue, may be usefully 
quantified-and in a largely viewpoint-invariant way-by Weber fractions 

specified for suitable criterion levels of performance. 
This analysis has been essentially operational: no internal coding processes 

have been described that might compute these relative invariants that, in turn, 

produce observed behaviour. Nevertheless, the various mechanisms, operators, 
and systems for extracting invariants considered by Dodwell (1957, 1970, 1992) 

may still be relevant, since invariants and relative invariants differ only by a 

scaling factor. 
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NOTES ' 

1. A more general formulation of this viewpoint-invariance principle in terms of the perceived 
relationships of shapes was proposed in Foster and Wagemans (1993), where some additional 
motivational material drawn from the luminance domain was also included. 



54 

2. For the transformed curves analysed here, the error in treating them as circular was small: 
deviations of each from a best-fitting circular arc did not exceed 3% (Foster et al., 1993a). 

3. Euclidean curvature (and radius of Euclidean curvature) measured at parallel tangents does, 
however, yield constant ratios (Foster et al., 1993b). 

4. Nor indeed for Euclidean curvature measured at parallel tangents (Foster et al., 1993b). 
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