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SUMMARY

Inherited color vision deficiency affects red-green discrimination in about one in
twelve men from European populations. Its effects have been studied mainly in
primitive foraging but also in detecting blushing and breaking camouflage. Yet
there is no obvious relationship between these specific tasks and vision in the
real world. The aim here was to quantify the impact of color vision deficiency
by estimating computationally the information available to observers about
colored surfaces in natural scenes. With representative independent sets of 50
and 100 hyperspectral images, estimated informationwas found to be only a little
less in red-green color vision deficiency than in normal trichromacy. Colorimetric
analyses revealed the importance of large lightness variations within scenes,
small redness-greenness variations, and uneven frequencies of different colored
surfaces. While red-green color vision deficiency poses challenges in some tasks,
it has much less effect on gaining information from natural environments.

INTRODUCTION

Not everyone has the same color vision. Data from European populations suggest about 8% of men have

difficulty with red-green color discriminations and about 0.4% of women are similarly affected.1 These

proportions reflect the genetic origins of most color vision deficiencies. Changes in the cone opsin gene

on the X-chromosome array may result in the absence of the long-wavelength-sensitive (L) or medium-

wavelength-sensitive (M) cone photoreceptor photopigments or variations in their spectral positions,

which, depending on their expression, give rise to the deficiencies of dichromacy or anomalous trichro-

macy.2–5 In dichromacy, a single M pigment and an absent L pigment leads to protanopia and a single L

pigment and an absent M pigment leads to deuteranopia.6 In anomalous trichromacy, two different M pig-

ments and an absent L pigment leads to protanomaly and two different L pigments and an absent M

pigment leads to deuteranomaly.5,6 Absence of the short-wavelength-sensitive (S) pigment, leading to tri-

tanopia, is much rarer and has a different genetic origin.4,5 The various types of deficiency may be charac-

terized behaviorally and clinically.5,7,8 Attempts to compensate for their effects with aids such as color filters

have had limited success.9–11

Curiously, given the prevalence of red-green color vision deficiency, its impact on vision in the real world

has not been quantified in any comprehensive way. As Carvalho et al. noted,12 most research has concen-

trated on a specific task, namely food selection, where, in primitive foraging, normal trichromacy offers an

advantage for detecting red, orange, or yellow fruits among foliage,13–19 or young leaves against a

background of mature leaves,20,21 or flower parts against leafy backgrounds.22 Other tasks have been

considered, for example, detecting blushing or blanching, where normal trichromacy aids social

signaling23,24; object detection, where slowly changing targets are more difficult to detect in dichromacy25;

and breaking camouflage, where dichromacy offers a compensatory advantage with some scenes and

targets,26,27 but not with others,28,29 or has a complex role.30,31

In yet other tasks, red-green color vision deficiency has been found to have less effect than expected on

the discrimination of objects with spectral reflectances drawn from natural scenes,32 once their fre-

quencies of occurrence are accounted for.11,33 It also has little effect on the judgment of the constancy

of surface colors under different lights (illuminant color constancy) with surface spectral reflectances

drawn from the approximately perceptually uniform Munsell Book of Color34–36 or from natural

scenes.35,37–39 It additionally has little or no effect on memory for colored scenes40 or on discriminating

typical illumination changes.41
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The difficulty with assessing these tasks and their differing outcomes is that there is no straightforward way

to decide on their relative importance or on how they relate to vision more generally in natural environ-

ments, and any selective genetic pressure they may, or may not, exert.4,12

The aim of this study was to take a more comprehensive approach to quantifying the impact of color vision

deficiency. It entails estimating computationally the information available about the colored surfaces in

scenes viewed by observers modeled with and without color vision deficiency. Information is understood

in the sense of Shannon, namely as a reduction of uncertainty,42,43 and is usually measured in binary digits

or bits, where one bit corresponds to a gain or loss by a factor of two. As explained later, it can be related to

the effective number of surfaces in a scene that can be distinguished from each other by virtue of their

reflecting properties.44 Importantly, it depends on the composition of the whole scene rather than on a

subset of particular spectra either from the scene or recruited separately.

This approach requires only the spectral properties of the light reflected from each point in a sample of

points from a scene, not the local or larger spatial features they may define, for example, texture, shape,

location, and proximity to other spatial features, all of which entail assumptions about postreceptor pro-

cessing in normal and color deficient vision.45 Some of these issues have been addressed elsewhere, for

example, in considering the organization of the cone mosaic,46–48 the nature of postreceptor coding,49–51

and how it might be modified in dichromacy.52

Scene data were taken from two independent sets of 50 and 100 hyperspectral radiance images of repre-

sentative natural scenes.53,54 They were considered natural in the sense of being part of everyday outdoor

environments, with a variety of undeveloped and developed land cover,55,56 by contrast with laboratory

and virtual constructs. Figure 1 shows images of one of the sets.

To provide a reference level of performance, estimates of the information available with and without color

vision deficiency were obtained from subsets of spectra that were more evenly distributed, that is,

physically more uniform, than the spectra in individual scenes, and when pooled, coveredmuch larger color

gamuts. Since physical uniformity is not the same as perceptual uniformity, estimates were also obtained

from the Munsell Book of Color and the Swedish Natural Color System,59 both of which are approximately

perceptually uniform.

It was found that estimated information losses with natural scenes were much less than the information

available, an outcome attributed to the large lightness variation within scenes, small chromaticity variation,

limited color gamut, and uneven frequencies of different colored surfaces.

Figure 1. Color images of 50 natural scenes from one of the hyperspectral radiance image sets used here and in previously published works53,57

Each color image is rendered as an sRGB image58 with adjusted tonal range.
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RESULTS

Information losses DI in red-green color vision deficiency are reported first, then comparisons with the

colorimetric properties of natural scene images. The calculation of DI is described in STAR Methods.

Size of information losses

Figure 2 shows mean estimated information losses DI in protanopia, deuteranopia, protanomaly, and

deuteranomaly. The top panel is for means over 50 natural scenes, then over 50 approximately uniform sub-

sets of spectra from those scenes, and then for an approximately uniform union of spectra from all 50

scenes, maximizing the gamut available, as detailed in STAR Methods. The middle panel is the same

but for the set of 100 natural scenes. The bottom panel is for the approximately uniform Munsell and

NCS palettes. Information estimates assumed 2% cone noise. Other noise levels are dealt with later.

In the top panel, with the set of 50 scenes, mean information losses were 0.4–0.6 bits across the four types of

color vision deficiency, equivalent to 6%–11% of the mean information available in normal trichromacy, about

5.9 bits. Losses in the effective number of distinguishable surfaces were proportionally greater, namely 25%–

35%, because this number scales with the exponent of the information (STAR Methods). With the 50 approx-

imately uniform subsets of spectra from the scenes, mean information losses increased from 0.4–0.6 bits to

0.5–0.9 bits, and with the approximately uniform union of spectra from all 50 scenes, to 0.9–1.8 bits.

In the middle panel, with the set of 100 scenes, the pattern was closely similar to that with the set of 50

scenes, but mean losses were less, namely 0.2–0.4 bits, equivalent to 4%–7% of the information available

in normal trichromacy, about 5.4 bits. Losses in the effective number of distinguishable surfaces were

15%–25%. With the 100 approximately uniform subsets of spectra from the scenes, mean losses increased

from 0.2–0.4 bits to 0.4–0.8 bits, and with the approximately uniform union of spectra from all the 100

scenes, to 0.9–1.7 bits.

Figure 2. Losses of information in red-green color vision deficiency

Symbols show the mean estimated losses DI in mutual information43 in protanopia, deuteranopia, protanomaly, and

deuteranomaly. The top panel is for means over 50 natural scenes,53 then over 50 approximately uniform subsets of

spectra from those scenes, and then for an approximately uniform union of spectra from all 50 scenes, maximizing the

gamut available, as detailed in STAR Methods. The middle panel is the same but for the set of 100 natural scenes.54

The bottom panel is for the approximately uniform Munsell60 and NCS59 color palettes. Cone noise was assumed to be

2%. The bottom scale is linear in bits and the same in each panel; the upper scale is nonlinear and indicates the

corresponding percentage reduction in the effective number of distinguishable surfaces. Horizontal bars mark 95%

confidence intervals (CIs).
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In the bottom panel, with the Munsell and NCS palettes, the ranges of mean losses overlapped the ranges

with the approximately uniform unions of spectra. The differences between the Munsell and NCS palettes

seem likely to reflect their different chromatic structures.61–63

The presence of vegetation in scenes had a small effect. When the set of 50 scenes was divided into those

that were either mainly vegetated or mainly non-vegetated,64 mean losses were about 0.1 bits larger with

mainly vegetated scenes than with mainly non-vegetated scenes.

Corresponding estimates of mean information losses with smaller and larger levels of cone noise are avail-

able in Figures S1 and S2. The pattern of losses was largely preserved, that is, the smallest mean losses

occurring with individual scenes and the greatest mean losses with approximately uniform unions of scenes

and with color palettes. Common to all scenes, spectra, and palettes, information losses were least in

deuteranomaly, greatest in protanopia, and intermediate in deuteranopia and protanomaly.

Color variation

Althoughmeasures of information and variation capture different properties of distributions,65,66 it is useful

to quantify the variation in the conventional color characteristics of scenes67 to aid interpretation. Figure 3

shows mean color variance in scenes partitioned across the colorimetric correlates of lightness J0, redness-
greenness a

0
M, and yellowness-blueness b

0
M in the approximately uniform color space CAM02-UCS.68 The

organization of the panels is the same as in Figure 2.

Consistent with previous analyses of colored surfaces in natural scenes,49,69 lightness variation dominated.

Averaged over the set of 50 scenes, it accounted for 77% (CI 73%–80%) of the total variance, with the re-

maining 23% (CI 20%–27%) of chromatic variance consisting of 15% due to yellowness-blueness and 8%

due to redness-greenness (percentages have been rounded). With approximately uniform subsets of scene

spectra, chromatic variance increased to 27% and with an approximately uniform union of spectra from all

50 scenes to 36%.

Results were similar with the set of 100 natural scenes but with a larger mean lightness variance of 84% (CI

82%–87%) and a smaller chromatic variance of 16% (CI 13%–18%), which presumably contributed to the

smaller information losses in Figure 2. The presence of sky in many of the images seems not to be a factor,

for when the upper halves of the scenes were removed, the maximum mean information losses were less

than 0.03 bits. With approximately uniform subsets of scene spectra, chromatic variance increased to

18% and with an approximately uniform union of spectra from all 100 scenes to 31%.

Figure 3. Color variance in scenes, subsets of spectra, and color palettes accounted for by colorimetric properties

Symbols show the mean proportions of total color variance due to lightness J0, redness-greenness a
0
M, and yellowness-

blueness b
0
M in the approximately uniform color space CAM02-UCS.68 The organization of the panels is the same as in

Figure 2. Horizontal bars mark 95% confidence intervals.
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With the approximately uniform Munsell and NCS palettes, chromatic variance was 45% and 44%,

respectively.

Do these trends match those for losses of information in Figure 2? There is ordinal consistency in that with

the larger chromatic variance in subsets of spectra and still larger with color palettes, the sizes of the mean

information losses are correspondingly larger. On the other hand, the chromatic variance in scenes is small

(and redness-greenness variance even smaller), which raises the general question of its relevance to

information losses.

Test of chromatic contribution

One way to assess the contribution of chromatic variation is to remove its effects. To this end, information

losses in dichromacy were compared with those in monochromacy, where with just one cone class, no chro-

matic information was available.

Figure 4 shows mean estimated information losses DI for protanopia and deuteranopia, taken from

Figure 2, and for M-cone monochromacy and L-cone monochromacy, each with 2% cone noise. Results

are shown for the set of 50 scenes and the set of 100 scenes.

The losses with a single cone class were 3.0–3.9 times more than with two cone classes, confirming the

importance of chromatic information in individual scenes. This result, though, is not inconsistent with

the relatively small chromatic variance in Figure 3, since the mean losses of 0.2–0.6 bits shown in Figure 2

remained much smaller than the mean available information of 5.4–5.9 bits in normal trichromacy,

mentioned earlier.

Prediction by redness-greenness variance

A more specific parametric test of the contribution of chromatic variation is whether information losses in-

crease as the redness-greenness variance in individual scenes increases. The outcome is not foregone since

there is no consistent relationship between information and variance65,66 and both are affected by differ-

ences in frequency distributions,43,70 in this case of the colored surfaces in scenes.

Figure 5 shows for the set of 50 scenes the estimated information losses DI with 2% cone noise plotted

against the proportions of total variance in each scene due to redness-greenness a
0
M, linearized with the

logistic (logit) transformation.71 The straight lines are linear regressions. The gradients are all positive

but as with the mean losses in Figure 2, they decline progressively, that is, for protanopia 0.22 (CI 0.11–

0.31), deuteranopia 0.15 (CI 0.07–0.22), protanomaly 0.14 (CI 0.08–0.20), and deuteranomaly 0.08 (CI

0.04–0.12). None of the confidence intervals contained zero. Similarly with the set of 100 scenes (Figure S3).

Notwithstanding the reliability of the trends, the proportions of variance R2 accounted for by the regres-

sions are modest. From protanopia to deuteranomaly, values varied from 38% to 21%, with the set of 50

scenes, and from 43% to 38% with the set of 100 scenes. The regressions on lightness J0 and on yellow-

ness-blueness b
0
M (not shown here) were smaller still, not more than 13% and 4%, respectively, for both

sets of scenes.

Figure 4. Losses of information in dichromacy and monochromacy

Symbols show the mean estimated losses DI in mutual information43 in protanopia and deuteranopia taken from Figure 2

and in M- and L-cone monochromacy. Other details as for Figure 2.
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Prediction by chromatic axis

A different test of the effects of chromatic variation is whether information losses vary predictably with the

direction of most chromatic variation in each scene, and in particular, whether the losses are maximum

when the direction coincides with the confusion axis in protanopia and in deuteranopia.72,73 As before,

the distinction between information and variation65,66 should be kept in mind.

Figure 6 shows for the set of 50 scenes the estimated information losses DI with 2% cone noise plotted

against the directions f of the major chromatic axis of variation in each scene. The solid curves are linear

circular regressions,74,75 and the vertical dashed lines indicate the directions of the estimated dichromatic

confusion axes and the dotted lines the directions orthogonal to those axes (STAR Methods).

The maxima and minima of the circular regressions fall close to the expected directions, though for both

protanopia and protanomaly, there are reliable differences of 16� (CI 8�–22�) and 18� (CI 7�–25�), respectively.
From protanopia to deuteranomaly, values of R2 varied from 46% in protanopia to 19% in deuteranomaly.

It is possible that the estimated directions of maximum information loss were biased by the clustering of

the major chromatic axes around 90�, the yellowness-blueness axis b
0
M. A control is provided by results

with the set of 100 scenes where the major chromatic axes were clustered more around 70� (Figure S4).

The estimated directions of maximum loss were little affected.

DISCUSSION

A focus on specific visual tasks can lead to conflicting interpretations of the impact of color vision deficiency

in the real world, ranging from being disadvantageous to broadly neutral or even advantageous. All tasks,

however, are contingent on the information available. The present analysis suggests that this information is

only a little less in red-green color vision deficiency than in normal trichromacy, by between 4% and 11%,

depending on cone noise and the type of color vision deficiency. There are multiple contributory factors,

some of which are explored in the following.

Degree of color vision deficiency

Across the four types of red-green color vision deficiency, estimated information losses with the 50 natural

scenes ranged from about 0.4 to 0.6 bits out of about 5.9 bits available in normal trichromacy. Estimated

Figure 5. Losses of information in red-green color vision deficiency as a function of redness-greenness variation in

50 natural scenes

Symbols show the estimated losses DI in mutual information in protanopia, deuteranopia, protanomaly, and

deuteranomaly plotted against the logit of the proportions of total variance due to redness-greenness var
�
a

0
M

�
in the

approximately uniform color space CAM02-UCS.68 Cone noise was assumed to be 2%. The left vertical scale is linear in

bits and the same in each panel; the rightmost vertical scale is nonlinear and indicates the corresponding percentage

reduction in the effective number of distinguishable surfaces. The straight lines are linear regressions. The thumbnail

images show three scenes with the largest estimated information losses.
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losses with the 100 natural scenes were still smaller, from about 0.2 to 0.4 bits out of about 5.4 bits available.

The differences between the two sets of scenes seem not to be due to the presence of sky in the set of 100

scenes but to their smaller chromatic variation.

The types of color vision deficiency had predictable effects. Losses were least in deuteranomaly with the

largest gap between normal and hybrid L pigment peaks at 559 nm and 549 nm, and they were greatest

in protanopia with a normal M pigment peak at 530 nm.5 Losses were intermediate and similar in deuter-

anopia, with a normal L pigment peak at 559 nm, and in protanomaly with normal and hybrid M pigment

peaks at 530 and 536 nm. The S pigment, with peak at 426 nm, was assumed to be unaltered. These values

were chosen to represent the larger discrete differences in pigment peaks,5,77 which also depend on the

frequency, type, and expression of opsin gene arrangements78 as well as on variations in the density of

the lens pigment and macular pigment at the fovea, and in the optical density of the cone photopig-

ment.79,80 The finding that protanopic losses were always greater than deuteranopic losses confirms the

advantage afforded by the approximately 30-nm shift in peak sensitivity from the normal M pigment to

the normal L pigment.81

Role of color gamut and frequency

Early conjectures about the small range of chromaticities in outdoor scenes were based on data from visual

spot matching82 and photographic colorimetry,83 later confirmed by more comprehensive hyperspectral

scene imaging.69,84–86 Yet as Figure 2 showed, it is not just the size of the gamuts of these scenes but

the frequencies of occurrence of colors within those gamuts that govern the information available. Recall

that as the frequencies of spectra were made more uniform within scenes, the estimated information avail-

able increased and so did the information losses in color vision deficiency, by 1.4–2.0 times. When gamuts

were maximized by taking the union of the spectra in scenes and then made more uniform still, the infor-

mation available increased further and so did the information losses, by 2.4–4.2 times (Figure 2). With the

approximately uniform color palettes of the Munsell and NCS sets, estimated information losses were also

larger than with individual scenes, by 2.1–5.1 times. Whether defined physically or perceptually, approxi-

mately uniform sets of spectra maximizing the gamut available appear to provide an upper bound on in-

formation losses.

Chromatic variation vs. lightness variation

One reason for the smaller chromatic variation within scenes and the larger lightness variation, amounting

to 80% on average, may be the way natural light is distributed within the environment.49,87–90 Nearby ob-

jects and overhead foliage91,92 can each interrupt the direct beam to produce cast shadows where the

reduction in radiant intensity exceeds the change in spectral composition. Another reason may be the

Figure 6. Losses of information in red-green color vision deficiency as a function of the direction of the major axis

of chromatic variation in a set of 50 natural scenes

Symbols show the estimated losses DI in mutual information in protanopia, deuteranopia, protanomaly, and

deuteranomaly plotted against the directions 4 of themajor chromatic axes (STARMethods) in the approximately uniform

color space CAM02-UCS,68 with f = 0� (identical with f = 180�) corresponding to the redness-greenness axis a
0
M. Cone

noise was assumed to be 2%. The left vertical scale is linear in bits and the same in each panel; the rightmost vertical scale

is nonlinear and indicates the corresponding percentage reduction in the effective number of distinguishable surfaces.

The continuous curves are linear circular regressions.74 The vertical dashed lines indicate the directions of the dichromatic

confusion axes and the dotted lines the orthogonal directions.76 The circular mean directions74 of the major chromatic

axes are marked by a ‘‘v’’ on the horizontal axis.
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nature of local surface geometry.87 Constant surface orientation usually persists over shorter distances than

material identity so that changes in reflected intensity exceed those in spectral composition, given that nat-

ural surfaces tend to be neither Lambertian nor specular87 (a potential counter to this explanation is the

observation that natural scenes may contain large-amplitude chrominance variations at high spatial

frequencies85).

As indicated earlier, though, this does not mean that information losses in color vision deficiency are small

simply because there is little chromatic information to lose. When the chromatic component was effectively

removed, leaving only lightness information, estimated losses increased by three to four times. The limita-

tions of lightness information were previously noted in an experiment33 where dichromatic observers

discriminated real three-dimensional objects whose spectral reflectances had the same frequencies of

occurrence as in some of the scenes in this analysis.

The variation in redness-greenness in scenes also had its predictable effects on estimated information los-

ses, which increased both as the proportion of the variance in scenes increased and as the direction of the

major chromatic axis approached the dichromatic confusion axes. Nevertheless, as a predictor, chromatic

variation in either magnitude or direction accounted for less than half of the estimated information losses.

Outliers

Although information losses may be small when averaged over natural scenes, it is of course possible to

find individual scenes where losses are much greater. Three instances from the set of 50 scenes are shown

by the thumbnail images in Figure 5. Two of these scenes had the greatest proportions of redness-green-

ness variance and were among themore colorful images. Likewise for the set of 100 scenes (Figure S3). Such

scenes may not only be disadvantageous for color deficient vision but lead to failures of color constancy in

normal trichromacy.57,93

Other information estimates

There have been few other studies of the information available from natural scenes at the level of cones.

The most relevant is an analysis by Lewis and Zhaoping81 in which information was used to derive optimum

spectral locations of L, M, and S cone pigments. Direct comparison with the present findings is difficult

since scene spectra were represented81 by principal components with weights drawn from truncated

Gaussian distributions (spectra from individual objects and fruits were similarly represented). That said,

data from their Figures 6 and 7 suggest somewhat smaller losses in dichromatic vision, namely about 0.2

or 0.3 bits in deuteranopia and 0.1 or 0.3 bits in protanopia, depending on the noise regime. Estimates

with approximately uniform frequency distributions were not available.

Higher-level informational issues have also been examined, for example, the estimated information pre-

served from scenes under illuminant changes94,95; the coding efficiency of different color spaces96; the

effects of fluctuating environmental illumination97; and the information extracted at different levels of

the visual pathway.98

One or many tasks?

If, as argued here, red-green color deficient vision is little disadvantaged in natural environments, it may be

construed as evidence of a larger relaxation of the pressure to maintain trichromacy in modern human

societies.28,99 But this is not to say that scene information does not bear on specific tasks requiring color

vision, implicitly, or explicitly.100 Consider the exemplary task of selecting fruit from foliage in the wild. Mak-

ing that selection involves multiple activities.18 Together with initially searching a complex optical environ-

ment,87,101 an individual navigating toward an area of interest under direct and diffuse illumination89,97,102

needs to continuously accommodate changes in the intensity and spectrum of light from reflecting sur-

faces90 as relative orientations change87 and specularities appear and disappear, all of which affect the in-

formation available, and eventual success in the task.

Limitations of the study

There are two general limitations to this study, in addition to those already mentioned. First, the magni-

tudes of the estimated information losses in color deficient vision of 4%–11% depend on the practical

minimum level of 2% noise assumed in cones.103 For levels of noise below and above 2%, losses were,
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respectively, larger and smaller (Figures S1 and S2). The advantage of natural scenes was, however,

retained.

Second, the information estimates remain theoretical and concern solely the information from colored

surfaces in scenes. No account was taken of how observers might use that information to guide fixations

or interrogate scenes. Encouragingly, the estimate for dichromats of effectively about one-third fewer distin-

guishable surfaces (average data from Figure 2, top panel) is similar to a reduction in dichromatic observers’

experimental discrimination of object spectral reflectances with natural frequencies of occurrence.33

Conclusion

Despite difficulties with some discrimination tasks, individuals with red-green color vision deficiency lose little

information from natural environments. But there is no single determining factor. Rather, it is the large variation

of lightness within scenes, the small variation in chromaticity, especially in redness-greenness, the limited color

gamut, and the uneven frequencies of different colored surfaces that all lessen the impact of color vision

deficiency.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Requests for resources or information should be directed to the lead contact, David H. Foster (d.h.foster@

manchester.ac.uk)

Materials availability

This study did not generate new materials.

Data and code availability

d Data generated by this study are available from the lead contact upon request.

d Original code has been deposited at Zenodo and is publicly available as of the date of publication. Other

data and code listed in the key resources table are publicly available.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Model

Simulations were based on a model of human cone photoreceptor activity in which light reflected from

each point of a scene gives rise to excitations of L, M, and S cones, with normal, hybrid, or absent photo-

pigments, which in turn provide information about the contents of the scene. In brief, let Lðu; v; lÞ be the

reflected radiance, indexed by spatial coordinates u, v and wavelength l, and let SLðlÞ;SMðlÞ; SSðlÞ be,
respectively, the long-, medium-, and short-wavelength-sensitive cone spectral sensitivities, measured at

the cornea, that is, incorporating preceptor absorption.105,108 Then at each point ðu; vÞ in the scene, the

corresponding cone excitations qL;qM;qS are given by

qL =

Z
LðlÞ SLðlÞ dl;

qM =

Z
LðlÞ SMðlÞ dl;

qS =

Z
LðlÞ SSðlÞ dl;

where integration is over the visible range.109 How scene information was calculated from these cone ex-

citations with normal, hybrid, or absent photopigments is described later. Simulations were implemented

in the MATLAB computing environment (Version R2022a, The MathWorks, Inc., Natick, MA).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

50 hyperspectral radiance images Foster et al. (2022)57 https://doi.org/10.48420/14877285

100 hyperspectral radiance images Arad and Ben-Shahar (2016)54 https://icvl.cs.bgu.ac.il/hyperspectral/

Spectral reflectances of the matt Munsell set Parkkinen et al. (1989)104 https://sites.uef.fi/spectral/

munsell-colors-matt-spectrofotometer-measured/

Human cone pigment spectral sensitivities Stockman and Sharpe (2000)105 http://cvrl.ioo.ucl.ac.uk/

Cone pigment shift routine Foster, D.H. (2010)106 https://doi.org/10.5281/zenodo.8121909

Offset version of the Kozachenko-Leonenko

estimator of mutual information

Marı́n-Franch et al. (2022)107 https://github.com/imarinfr/klo
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METHOD DETAILS

Some of the detail in this and following sections is reproduced from previous work.10,57,97

Scene spectral data

One set of scene images consisted of 50 hyperspectral radiance images of outdoor scenes drawn from the

main land-cover classes. Of the 50 scenes, 30 were classified55,56 as predominantly vegetated, containing

woodland, shrubland, herbaceous vegetation (e.g., grasses, ferns, flowers), and cultivated land (fields), and

20 were classified as predominantly nonvegetated, containing barren land (e.g., rock or stone), urban

development (residential and commercial buildings), as well as farm outbuildings and painted or treated

surfaces. Details of image acquisition, calibration, and processing as radiance images are described

elsewhere.64,109 Each radiance image had dimensions �1344 3 1024 pixels and a spectral range 400–

720 nm sampled at 10-nm intervals, giving 33 values at each pixel. The angular subtense of each scene

at the hyperspectral camera was approximately 6.9� 3 5.3�. To reduce pixel-pixel correlations and non-im-

aging noise,57 images were downsampled by spatial averaging over 2 3 2 pixels. Figure 1 shows sRGB58

rendered color images of the scenes. Almost all the scenes contained color, quantified by the ratio of

chroma to lightness.61 The median ratio was 0.25 and only three scenes had ratios less than or equal to

0.05. None of the images contained sky.

The other set of images consisted of 100 hyperspectral radiance images of outdoor scenes, classified as

urban (residential and commercial), suburban, rural, and plant life. Details of image acquisition are

described elsewhere.54 Each image had dimensions �1392 3 1300 pixels and a spectral range 400–

1000 nm sampled initially at �1.25 nm intervals and then downsampled to 400–700 nm at 10 nm intervals,

giving 31 values at each pixel. For this analysis, a correction was made for the estimated level of dark noise

in the images, after which they were downsampled by spatial averaging over 2 3 2 pixels. All the scenes

contained color, and the median ratio of chroma to lightness was 0.25 with no scenes having ratios less

than 0.10. About 80 of the 100 images contained sky.

For comparison, sets of physically more uniformly distributed spectra in the (bounded) space of radiance

spectra were generated in two ways. First, approximately uniform subsets of spectra were obtained from

each of the 50 images in the following way (notation adapted from an earlier account109). Let lijðlÞ denote
the spectral radiance at wavelength l and spatial position ðu; vÞi , indexed by i in image j and let fligj denote
the set of all such spectra from image j, where i depends on j. Assume that the wavelength range is the same

for each i, j. The required subset fliðkÞgj of fligj, indexed by k, was then obtained by thinning,110 that is, by

removing spectra lr from fligj within a distance d of other spectra ls as d was progressively increased up to a

limit for which stable information estimates could be obtained.111 The distance d between two spectra was

defined by the sup metric, dðlr ; lsÞ = sup
l

ðjlrðlÞ � lsðlÞj Þ. The procedure was repeated for each image j.

Second, a single, approximately uniform subset of spectra maximizing the gamut available was obtained

from the thinned sets fliðkÞgj by taking their union over all j to form the set fliðkÞ;jg, and then applying thinning

once more. A similar procedure was followed with the set of 100 images.

Approximately uniform color palettes

Two large gamut, approximately perceptually uniform sets of reflectance spectra were taken from the set of

matt Munsell chips60 and the set of Natural Color System (NCS) samples.59 Both palettes span a wide range

of chromaticities and lightnesses,61,62 and subsets of the Munsell palette have been used in practical tests

of color discrimination ability,8 most notably in the Farnsworth-Munsell 100-Hue Test.112 Despite the arti-

ficial construction of theMunsell set, its dimensionality is similar to that of natural reflectance spectra.113–115

Even for a normal trichromatic observer, however, the approximate uniformity of each of the two color

palettes holds only imperfectly and mainly locally.116–118 The designs of the two systems are fundamentally

different,61,62 and systematic perceptual differences have been reported between the two,63 and between

their gamuts and the gamuts of natural reflectance spectra.119

For this analysis, the spectral reflectances of the Munsell set were obtained from measurements by Parkki-

nen et al.,104 and the spectral reflectances of the NCS palette were recorded in-house with a Konica Minolta

CM-2600d spectrophotometer.119 Radiant spectra from the surfaces were generated by taking the product
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of each reflectance spectrum and a 6500 K daylight illuminant spectrum.68 The set of Munsell radiance

spectra was treated as a single scene, as was the set of NCS radiance spectra.

Scene color attributes

To characterize the color variation in scenes, spectra, and palettes, each was mapped into the approxi-

mately uniform color space CAM02-UCS,68 which provides colorimetric correlates of lightness J0,

redness-greenness a
0
M, and yellowness-blueness, b

0
M, analogous to the traditional L*, a*, b* of the less uni-

form color space CIELAB.68 Summary measures of the resulting distributions of points in CAM02-UCS

included the mean ratio of chroma to lightness, i.e.,
h�
a

0
M

�2
+
�
b

0
M

�2 i1=2
=J0; the proportions of total variance

accounted for by J0, a
0
M, and b

0
M, e.g., for lightness, varðJ0Þ=

�
varðJ0Þ+ var

�
a

0
M

�
+ var

�
b

0
M

� �
; and themajor chro-

matic axis of the distribution, that is, the direction of most variance in the chromatic plane determined by a

principal component analysis of
�
a

0
M;b

0
M

�
values. In regressions on the proportions of variance, the latter

were linearized with the logistic (logit) transformation.71

For clarity, these colorimetric quantities and the color space CAM02-UCS were used solely for the conven-

tional descriptions of scenes, subsets of spectra, and color palettes and were not part of the calculations of

the information estimates for normal trichromatic or color deficient vision.

Confusion loci

Confusion loci describe the sets of colors in the chromatic plane that a dichromatic observer can match by

luminance adjustments only.72,120 In the CAM02-UCS
�
a

0
M;b

0
M

�
plane, these loci generally form curves, and

their axial directions74 at the origin were estimated numerically by mapping the tangent vector at the origin

in the CIE 1931 (x, y)-chromaticity diagram.72,120 The angles, measured anticlockwise from the redness-

greenness axis a
0
M, corresponding to 0�, were approximately 12�, 178�, and 114� for protanopia, deuteran-

opia, and tritanopia, respectively. The directions orthogonal to these confusion axes, ideally optimal for

discrimination,76 were approximately 102�, 88�, and 24�, respectively.

Cone spectral sensitivities

Radiance spectra were converted109 into L, M, and S cone excitations based on the Stockman and Sharpe 2�

cone spectral sensitivities, lens, and macular pigment data.108,105 Spectrally shifted absorption spectra

were derived from a quadratic loess fit121 to the normal L, M, and S absorption spectra on a scale of radi-

ance versus log wavelength, with optimal loess bandwidth determined by cross-validation.106 The normal

L, M, and S pigments were assumed to have maximum sensitivities at approximately 559, 530, and 426 nm,

respectively.5,105,122 In protanomaly, the normal and hybrid medium-to-long-wavelength cone pigments

were assumed to have maximum sensitivities at approximately 530 and 536 nm, respectively, and in deuter-

anomaly, at 559 and 549 nm.5 The sizes of the hybrid shifts were intended to illustrate their range, not

necessarily their prevalence. Optical density was taken to be constant.79,123

Cone noise

Cone signal processing was assumed to be limited by phototransduction noise,47,124 which varies linearly

with background level over a wide range,125 though the extent of the relevant background may be difficult

to specify.126 The noise distribution was modeled as a Gaussian process whose standard deviation (SD) at

each point was specified relative to the cone excitation locally at that point. Previous simulations10 have

found that this process produced similar informational dependencies as a Gaussian process with SD

defined relative to the global mean and a Poisson process with an adjusted global mean. The choice of

coefficient of proportionality, the Weber fraction, was guided by Stiles’ psychophysical increment

threshold measurements,103 which yieldedWeber fractions of 0.018, 0.019, and 0.087 for L, M, and S cones,

respectively. For brevity, representative values of the relative SD are reported just for L cones, with values

for M and S cones scaled appropriately.10 Results are presented for a relative SD of 0.02, taken as a practical

minimum, but other values of 0.01 and 0.05 were also tested.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutual information estimates

The information available from scenes, subsets of spectra, and color palettes was estimated with sample

points drawn randomly and uniformly from the source data.109 The spectral radiances and the
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corresponding L, M, and S cone excitations, together with cone noise, were therefore treated as continuous

random variables,44 respectively X and Y say, where X is 33-dimensional or 31-dimensional, depending on

the hyperspectral image set, and Y is 3-dimensional or 2-dimensional, depending on the color vision defi-

ciency. The amount of information that Y conveys aboutX is given by themutual information, written IðX;YÞ,
or I for short, and is defined in terms of Shannon differential entropies43 (other definitions exist42).

Mutual information was estimated numerically with an offset version111,107 of the Kozachenko-Leonenko

kth-nearest-neighbor estimator,127,128 which converges relatively rapidly and accurately with increasing

sample size.111,107 The number of sample points taken from each image in the set of 50 and set of 100 im-

ages was 104 and the maximum available were taken from the color palettes, namely�103. Resampling was

used to test the stability of the estimates of IðX;YÞ. As in previous analyses,109 these estimates refer to the

underlying continuous spectral radiance distributions, not the discrete hyperspectral images that repre-

sent them.

Mutual information is related by the inverse logarithm to the approximate number N of distinguishable

surfaces or parts of surfaces in a scene, subset of spectra, or color palette, taking into account their different

frequencies of occurrence.44,86 With IðX;YÞmeasured in bits, the inverse logarithm is to the base 2, so that

N = 2I(X; Y), sometimes referred to as the effective alphabet size,43,129 which, in the present context, is the

effective number of distinguishable surfaces. Percentage reductions inN are expressed with respect to the

number for a normal trichromatic observer.

Notice that IðX;YÞ represents the information available at the level of cone receptors, not necessarily at

successive postreceptor stages.51 Nonetheless, in the light of the data-processing inequality,43 the infor-

mation that Y contains about X must either remain the same or decrease postreceptorally, since no post-

receptor manipulation can increase it.

For each scene, subset of spectra, or palette, the loss of information was measured by the difference DI

between the mutual information I available in normal trichromacy and the mutual information I0 in color

vision deficiency, that is, DI = I � I0.

Statistical analysis

Comparisons of means of data and of differences between means were based on 95% confidence intervals

(CIs). Intervals were estimated with Efron’s percentile bootstrap130 method, which was used in nonpara-

metric mode, thereby avoiding parametric assumptions about the form of the underlying population. It

was implemented with the MATLAB function bootci, with 1000 bootstrap replications. Means and differ-

ences betweenmeans with estimated CIs are shown in Figures 2, 3, and 4 and in Figures S1 and S2, all using

the same bootstrap procedure.

Linear regressions were implemented with the MATLAB function regress. Comparisons of estimated gra-

dients were based on 95% CIs. Values are reported in the results section dealing with prediction by

redness-greenness variance.

Linear circular regressions74,75 of data y on circular variables x, expressed in degrees, were implemented

with the MATLAB model mdl = fitlm([cos(x*pi/180), sin(x*pi/180)], y). Axial data defined over 180�, such
as chromatic axes, were converted to vectorial data defined over 360� by doubling and then reducing

modulo 360�. After analysis, they were then transformed back to axial data.74,75 Comparisons of estimated

directions were based on 95% CIs. Values are reported in the results section dealing with prediction by

chromatic axis.
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