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Visual Apparent Motion and the 
Calculus of Variations 

David H. Foster 

Abstract. The rapid sequential presentation of two distinct objects in the 
human visual field induces, under suitable conditions, the illusion of a 
single object undergoing a smooth continuous transformation from the 
first to the second form. It is suggested that in generating this illusion the 
visual system operates according to variational principles and chooses 
those impleting motions which, in some suitable space, have minimum 
energy. Implications of this hypothesis are discussed in relation both to 
experimental data on apparent motion and to the general problem of visual 
pattern recognition. 

1. Introduction 

An illusion of movement occurs when two suitably shaped and suitably 
timed, spatially resolvable flashes of light are presented in sequence to the eye 
(Exner, 1875; Wertheimer, 19 12). When this apparent motion is visually indis- 
tinguishable from the perception of areal object undergoing movement, theillu- 
sion is called optimal motion or beta motion (Wertheimer, 1912; Kenkel, 1913; 
Kolers, 1972). A common demonstration of beta motion is given by cinema- 
tography and certain flashing neon displays. The illusion has particular impor- 
tance in that it evidences an active figure-construction process by the visual 
system; for, as Kolers (1972, p. 18) has emphasized, the phenomenon does not 
involve a simple perceptual replication of one of the stimulus figures across the 
intervening space, but the generation of an illusory object that smoothly and 
continuously changes in both position and f o m  to fit with the disparate stimuli. 

Two of the classical theories of apparent movement are the excitation theory 
of Wertheimer (1912) and Kohler (1923), and the figural theory of Linke and 
Hillebrand (see Neff, 1936). In the excitation theory, the separate stimulation 
of regions of the retina is assumed to give rise to a spread of activity in the neural 
substrate which coincides with that occurring in real motion (Motokawa, 1970, 



Chapter 10); in the figural theory, it is supposed that motion is inferred by the 
system because of the disparity in the locations and form of the two stimuli 
which are perceived as being different representations of the same object. 
Neither theory adequately fits all the experimental data (Kolers, 1972, Chapter 
11). In particular, the excitation theory is incompatible with the 'motion-in- 
depth' effects obtainable with some stimulus pairs (Neuhaus, 1930; Kolers and 
Pomerantz, 1971), and in its vector form due to Brown and Voth (1937), the 
excitation theory gives false predictions for thedirection ofmotion which can be 
induced between certain single and multiple stimuli (Kolers, 1972, Chapter 4); 
on the other hand, the figural theory fails to explain why motionismorelikelyto 
be seen between patterns which are close together and 'different' than between 
patterns which are further apart and the same (Kolers and Pomerantz, 1971; 
Navon, 1976). 

A composite model which accounts for several apparent movement pheno- 
mena, including the case of motion seen between 'different' patterns, has been 
described by Kolers(1972, Chapter 7). Themodel has two separate channels, one 
for motion and space generation and one for pattern generation, linked to each 
other by a correlator unit. Navon (1976) has suggested an alternative unified 
scheme, which involves a difference in processing time for shape and location 
determination. These models are, however, essentially organizational, and not 
of the form that enables, for example, the pathof the motion between two given 
patterns to be predicted. 

It is suggested in the present study that the distinction between object posi- 
tion and form that occurs in the above theories is, at least technically, unneces- 
sary, and there are, as will be seen, advantages in treating the two variables on 
the same basis. Thus given an object A say, and some transformed version 
z(A) of A, if the transformation z = z, comes from the group of translations of 
the plane, then the disparity may be viewed as one in location (Figure l(a)), 
whereas if z = 7, comes from the group of linear transformations of the plane, 
then the disparity may be viewed as one in shape (Figure l(b)). But, ifboththe 
groups are embedded in a larger group, say the group of affine motions of the 
plane, then as mappings preserving linear structure, z, and zz have exactly the 
same status. The question of the disparity in A and z(A) in Figure l(a) and (b) 
may then be decided in terms of some suitable distance measure on the affine 
group. Specifying the distances of the transformations z, and z2 from theiden- 

Figure 1. Stimulus pairs A, z(A) for (a) z = z, a 
rigid motion and (b) z = z, a linear transformation 

( a )  ( b )  

Figure 2. Two possible motions connecting objects A and z(A) 

tity transformation does not, in fact, fix the motion completely. For example, in 
Figure 2 a bar-shaped object A and transformz(A) are shown with hypothetical 
beta motions following in (a) a shallow curve and in (b) a sharp curve. Which, 
if either of the motions is actually selected by the visual system ought, in accor- 
dance with Maupertuis, to correspond to the 'shortest' or 'least-energetic' of 
the possible paths in perceptual space. In general, the problem of finding those 
curves for which some appropriate energy function achieves a minimum value 
among all curves having the same end-points is dealt with by the calculus of 
variations (see, for example, Gelfand and Fomin, 1963; Milnor, 1963). In the 
present case, these curves are in the manifold formed by all the local transfor- 
mations which can be applied to A. Depending on the model chosen, there is a 
naturally associated energy function, which, for a given transformationz, gives 
rise to at least one energy-minimizing time-parameterized family of transfor- 
mations, connecting the identity to z. This family of transformations is usually 
unique. 

In what follows, two schemes for apparent motion are described. The first is 
oriented towards the excitation theory and the second towards the figural 
theory. Both make use of variational principles and both can be adjusted to fit 
most.of the experimental data on the existence or otherwise of motion between 
various objects. It is in their predictions of the shape of the motion, however, 
that the models are found to differ. These predictions are compared with the 
corresponding data, and their significance discussed in relation to the general 
problem of visual pattern recognition. 

2. Notation and Definitions 
For simplicity we deal with the monocular situation, though there is little 

difficulty in extending the discussion to the binocular case. Let R denote the 
real line. Consider a fixed 2-dimensional plane RZ, perpendicular to the visual 
axis, and let R2 be endowed with a fixed mapping Cof RZ into R, the background 
field, which assigns to each point in R2, unless otherwise indicated, some speci- 
fied luminance C(x) 2 0 (white-light stimuli, say). A visual object orpatternA on 
R2 is (at least) a mapping of a non-empty subset U, of RZ into R such that 
A(x) L 0 is the luminance of the object at the point x E U,. Neitherbackground 
C nor objects A need be continuous functions and the domain U, ofA, which can 



coincide with R2, need not be an open set. Dependingupon the occasion, we may 
assign to an object a certain mathematical structure, for example, the metric 
structure arising from the standard metric structure on R2, or the topological 
structure arising from the standard topological structure on RZ. Note that there 
is no loss in generality in using RZ as background, instead of some fixed sphere 
centred at the eye, since we shall be concerned only with local properties of the 
visual field. 

Let U be a subset of R2. The action of an injective mappingz : U +RZ, taking U 
into RZ, oa an object A with domain UA = U is defined by: 

(z(A))(p) = A(z-'(p)) for all p E z(U). 

The transformed object associates with each point p in its domain the lurni- 
nance at its preimage z-'(p). The mapping T and its inverse z-':z(U) -+ U 
will frequently be assumed differentiable (i.e. z is a difeomorphism into RZ). The 
class of a function, vector field, etc. and its domain of definition will always be 
understood to be such that everything is well-defined. 

We now formulate the definition of beta motion in terms of the above quanti- 
ties. It is convenient, though not strictly necessary, to consider beta motion as 
if it actually occurs on the plane RZ. Provided all sets and mappings defined on 
R2 are understood to be specified only to within visual indistinguishability (Zee- 
man, 1962; Zadeh, 1965), the subjective illusory motion may certainly be re- 
placed by an equivalent objective real motion. Accordingly, if Fdenotes the set 
of all objects on R2, then given the sequential presentation to the visual system 
of some object A and transform z(A) of A,  beta motion between A andz(A) is the 
generation by the visual system of a smooth time-parametrized curve o in F 
joining these two objects. It is a smooth curve in the sense that we consider it 
arising from the action of a (differentiable) 1-parameter family of transforma- 
tions +: [O, 11 x UA -+ R2, satisfying +(O, p) = p and +,(p) = z(p) for allp E UA. 
The mapping p -+ +,(p) = +(t, p) is a diffeomorphism of UA onto +,(UA). We use 
y to denote the mapping t -+ +,of [0, 11 into the space of all diffeomorphisms of 
UA into R2. The curve w in F (see Figure 3) may thus be written 

symbol z will always be reserved for the corresponding transformation. Note 
that the above definition automatically includes the 'plastic deformation' 
motion described by Kolers and Pomerantz (1971). By hypothesis, the curve 
w or y is chosen such that for some Lagrangian L, the adion S(y) of y,  defined 
by 

(1) 

where y1(t) is the tangent vector to the curve y at the point y(t), is minimized 
w i t h  the class of all paths joining y(0) to y(1). The integral S(y) is sometimes 
called the energy (Milnor, 1963). 

3. A Figural Theory with Scalar Potential 

As was pointed out in the introduction, the excitation theory of apparent 
motion due to Wertheimer and Kohler and its subsequent modifications have 
been shown to be inconsistent with certain experimental results. For example, 
the vector model has been shown by Kolers (1972, Chapter 5) to be false in that 
with the display of Figure 4(a), a vector addition of forces induced by the 
stimuli in perceptual space gives the motion of Figure 4(b), whereas it is the split 
motion of Figure 4(c) that is actually observed. 

Nevertheless, with the introduction of a figural component into the exci- 
tation scheme, it is possible to account for many of the otherwise anomalous 
findings by Kolers (1972) and Navon (1976) concerning motion between 
multiple stimuli, and also for the data obtain3d by Foster (1975b) concern- 
ing the form of the path shapes. The scheme is as follows. 

Suppose that there is in perceptual space an interaction between initial object 
A and final object z(A) in such a way that a vector field F: RZ + R2 is created in 
the vicinity of the two objects, and that this vector field arises in the same way as 
in electrostatics, that is, 

Usually A is referred to as the initial object and z(A) as t h e m 1  object. The 

Figure 3. Action of a 1-parameter family 
of local transformations +, taking object 

A into transform z ( A )  

Figure 4. (a) Patterns used in test of vector model (Kolers, 
1972, Chapter 5),  (b) predicted motion, (c) experimentally 

observed motion 



Figure 5. (a) Vector field F at r due to stimulus elements at 
p and q. (b) Field F due to two bar-shaped objects 

wherep E U,, q E z(U,) (see Figure 5(a)) and ds is the usual surface measure 
on RZ. In the case that A is bar-shaped and z is drawn from the group E(2) of 
rigid motions of the plane, F has the form shown in Figure 5(b). 

Associated with the vector field F there is a scalar potential function Vfor 
which F = -grad V. We suppose in accordance with the figural theory that the 
visual system introduces an illusory object in motion to reconcile the separate 
occurrence of A and z(A). We further suppose that this illusory object is con- 
strained to transform in such a way that it minimizes the action integral (1) for 
the Langrangian L of the form T - V, where Tis the 'kinetic energy' assigned by 
the visual system to the object. It is the imposition of a figure-rationalizing con- 
straint on the natural motion determined by the vector field that makes possible 
the satisfactory description of, for example, the split motion referred to earlier. 
The term T is obtained in the following way (Marsden et al. 1972). Let D denote 
the space of all diffeomorphisms of the domain U, of A into RZ. Let p E D and 
let tangent vectors X, Y E TpD, the tangent space to D at p. For each point p 
in U,, X(p) and Y ( p )  are in the tangent space to RZ at p(p). An inner product 
(,)p on T,D may be defined thus: 

(X? Y), = J ",<x(P), Y(P)) ds(p), 

where (,> is the usual inner product on R2. For a smooth curve y: [0, 11 + D, T 
is then defined at time t by 

For the particular case of the bar-shaped objects of Figure 5(b), D may be 
replaced by E(2), and the predicted action-minimizing motion (y (t)) (A),  t E 
[O, 11, is then found to be approximately circular. This motion is similar to, 
though not precisely the same as, the observed motion (Foster, 1975b) shown in 
Figure 6(a). 

Figure 6. (a) Approximate motion between two bar-shaped 
objects predicted by scalar potential model. (b) Motion pre- 

dicted by model with scalar potential component removed 

The existence of the vector field is an essential requirement for the path 
to be curved. If the field is omitted, and the action-minimizing curves y 
determined for L = T, the resulting motion is found (Foster, 1975b) to cor- 
respond to that of a free body, as in Figure 6(b). 

The situation when the final object B is not the result of application to the 
object A of z E E(2), but of z E E(3), the group of rigid motions of R3, neces- 
sarily requires some motion out of the plane RZ. Figure 7 shows the vector field 
for a pair of bar-shaped objects. (The field is similar to that in Figure 5(b).) If the 
action-minimizing curve y is to remain within E(3) for the configuration of 
Figure 7, the departure of (y(t)) (A) from the plane must be minimal. In particu- 
lar, the motion cannot take the form shown in Figure 8, i.e. a full semicircular 
rotation in depth. A semicircular motion is, however, obtained experimentally. 
Thus although motion in R3 is not incompatible with the scalar potential model 
described here, the paths are not always of the right form. 

A significant property of all the observed motions is that they appear to 
arise as the actions of segments of 1-parameter groups that is y(s) y(t) = y(s + t) 
for s, t, s + t E [0, 11. In the next section we simplify the model by dropping the 
scalar potential and changing the kinetic energy term in such a way that the 
local 1-parameter groups are precisely the paths which locally minimize action. 

Figure 7. Vector fields for a 
pair of bar-shaped objects 



Figure 8. 'Motion-in-depth' between 
two bar-shaped objects. Top of 
illusory object appears to move 
through full semicircle, bottom 

remains fixed 

4. A Pure Figural Theory 

Consider again an arbitrary initial object A and final object B, and suppose 
that B = z(A) for some local diffeomorphism of A such that z may be embedded 
in a flow, that is, that z = +, for some local 1-parameter group of local trans- 
formations $: [o, 11 x U +  R2; in fact such that z = $, . (Although the collection 
of such embeddable z may not be dense in the C' manifold of all diffeomor- 
phisms having the domain U, this is unlikely to be an important restriction in 
practice.) 

We may then associate with z a vector field X4, namely the vector field on R2 
Induced by the local 1-parameter group $, thus: 

XTp) = y = (yi(t)) (u), 

where p = $,(u) (see Figure 9). 
Since every vector field gives rise to a flow, attention may be concentrated on 

the set of vector fields. So that motions in depth may be included, we shall, in 
fact, consider the set X of all vector fields defined on some suitably large 
(compact) subset M of R3 containing the region of visual interest. The space Xis 
then a Hilbert space with inner product 

The natural Lagrangian is then given by 

L (X, Z(X)) = @(XI, Z(X)), 

where Z(X) is the value of the vector field Zon %at the point X E 3. Then paths 
c: [0, 11 -t X that minimize the action between fixed end-points c(0) = 0 and 

Figure 9. Action of local 1- 
parameter group of local trans- 

formations +, 

are precisely the rays in X emanating from the origin, i.e., the curves c for 
which 

c(t) = tx, t E [0, 11. 

We now return to consideration of the original collection of embeddabledif- 
feomorphisms. The curve tX, t E [0, 11, defines a 1-parameter family of em- 
beddable transformations @,, t E [0, 11 by 

@ I  = $fX, 

where $fX is the local diffeomorphism defined by the flow of tX at time 1. But, 

i.e. the local diffeomorphism defined by the flow of X at time t. Note that $: is 
the identity. The curve tX, t E [0, 11, thus corresponds to alocal 1-parameter 
group connecting the identity to the diffeomorphism $: 

Thus, as with the scheme of the preceding section, if the visual system 
resolves the disparity between patterns A and z(A) by generating beta motion, 
and if it chooses those motions which minimize the above action integral, then 
it will effect a local 1-parameter group of local transformations. In the case that 
the metric structure is preserved throughout the motion, this model then pre- 
dicts, correctly, the motions illustrated in Figures 6(a) and 8. 

For beta motion in which the final object B = z(A) is not arigid transform of 
the initial object A ,  but for which z is embeddable in a flow, the predicted 
action-minimizing motion is still of the form of a local 1-parameter group. 
Thus, in Figure 10, the curve should, and, experimentaliy, is observed to, go 
smoothly into the straight line. Other examples are easy to construct. 

In the remainder of this study we shall be concerned solely with this pure 
figural model. 

I 

Figure 10. Motion between two 
objects A, z ( A ) ,  when z is not a rigid 

transformation 

\ 



5. Rigid Motion vs. Plastic Deformation 

There is an inbuilt ill-definedness in the model which is a consequence of 
specifying not the pair of objects A, B inducing the beta motion, but their rela- 
tionship z:A -+ z(A) = B. The ambiguity arises in that in general there exists 
more than one diffeomorphism z for which as subsets of the plane z(A) = B. 
Suppose z, and z, are two such transformations, i.e. z, (A) = z,(A) = B, with 
corresponding action-minimizing curves y, and y,. Which of the motions is 
actually effected depends on the nature of the transformations z, and z, and on 
the relative actions or lengths of their associated paths y, and y,. When z, and 
z, preserve the same structures (for example, the metric structure), then the 
motion should certainly correspond to the yi which has the smaller action. 
When z, and z, do not preserve the same structures, the outcome may depend 
on the precise form of the object A, and not just on the transformation z. Kolers 
and Pomerantz (1971) have described two kinds of motion obtainable withthe 
type of objects shown in Figure 11. Subjects reported seeing either a rigid 
'motion-in-depth' or a 'plastic deformation', with the latter more probable at 
shorter interstimulus intervals. The 'motion-in-depth' presumably arises from 
the identification z:A + z(A) = B, with z E E(3), and the 'plastic deformation' 
from the identification z:A -+ z(A) = B, with z E A(2), the group of affine 
motions of the plane. The action integral associted with the 'plastic deforma- 
tion' is smaller than that associated with the 'motion-in-depth'. 

6. Motion Between Dissimilar Patterns 

The analysis up to now has been concerned with beta motion between objects 
A and B for which B = z(A), where z is alocal transformation embeddable in a 
differentiable flow, i.e. B is at least a smooth transform of A. But good beta 
motion is in fact obtainable between objects A and z(A) where z is only a 
homeomorphism, that is, z preserves the connectivity of curves in A but not 
necessarily their smoothness. Figure 12(a) shows such apair, where for suitable 
timings, the circle expands smoothly into the square (Kolers and Pomerantz, 
1971). 

By applying the analysis described at the end of Sec. 4 piece-by-piece, i.e., 

Figure 11. Patterns which yield either arigid 
'motion-in-depth' or a 'plastic deformation' 
(Kolers and Pomerantz, 1971; Kolers, 1972, 

Chapt. 6) 

Figure 12. (a) Objects A and B for which 
B is not a differentiable transform of A. 

(b) Computed motion 

taking 1-parameter families like those of Figure 10 and suitably 'glueing' them 
together, we get the continuous (but not differentiable) flow shown in Figure 
12(b). Note that aithough the mappings $, are only homeomorphisms, the 
actual motion t + $,(p) remains differentiable, i.e. smooth. 

An alternative to this 'glueing' together of piecewise-smooth flows is the 
'replacement' of the homeomorphism z by an embeddable diffeomorphism z' 
and the effecting of a single smooth flow in the usual way. Provided z' is close 
to 7,  SO, in terms of indistinguishability, I z(x) - zl(x) I < E ,  for all x in U,, where 
E is a measure of visual acuity, this substitution should be acceptable. When, 
however, there is no embeddable diffeomorphism close to the mapping z relat- 
ing A to B, then two possibilities arise: first, beta motion does not occur; second, 
beta motion does occur, but between A and the transformzl(A) whichis closest 
to B and for which z' is embeddable. The second possibility is actually seen 
(Kolers, 1972, Chapter 4) in that subjects, when presented with patterns in the 
form of, for example, a hollow arrow and square, sometimes report 'a percep- 
tion of plastic deformation in the course of the movement and sudden replace- 
ment at the terminus' (Kolers and Pomerantz, 197 1). 

What is meant by one pattern B being close to another pattern A has not been 
made precise for the general case. One measure might be 

d(A, B) = sup inf ) p  - ql, 
q E B  P E A  

which simply records the greatest departure from overlap. This leads us to con- 
sider the following situation. Suppose patterns A and B are such that there 
exists 

(1) an embeddable diffeomorphism z such that z(A) = B and such that the 
magnitude I j  X 11 = (X, X)t of the associated vector field X($f = z) is large; 

(2) an embeddable diffeomorphism z' such that d(B, zl(A)) is small and such 
that the magnitude 11 X' 11 = (XI, ~ ' ) f  of the associated vector field X'($F = zl)is 
small. 

In terms of actions, or distances, a motion from A to +(A) with subsequent 
replacement by B should then be the preferred solution. An example of such 
preferred motion has been described by Navon (1976). The patterns were letters 
formed into circles as shown in Figure 13. 



( i  ( i i )  ( i i i )  ( i d  ( v )  (VI) 

Figure 13. Irrelevance of 'figural identity' on motion. When arrays are presented in 
cyclic order, anticlockwise circular motion is only occasionally observed. The ele- 

ments a, b, c, d, e, f can be either familiar or unfamiliar symbols (Navon, 1976) 

The arrays were presented to the eye in cyclic order (i), (ii), . . . , (vi), (i), 
(ii), . . . . Of the two most likely apparent motion effects, namely (a) the elements 
revolving in an anticlockwise direction, and (b) the elements changing shape 
but staying in the same location, the 'stationary' interpretation was the most 
frequently observed. 

7. Relationship of Apparent Movement to Form Perception 

The principal objection to a figural theory of apparent movement is that 
motion is frequently obtainable between patterns which are not in the common 
sense the 'same', for example, circles and squares, and letters of the alphabet. 
Nevertheless, the observations by Sigman and Rock (1974) and by Corbin 
(1942), Rock and Ebenholtz (1962), and Attneave and Block (1973) indicate 
that there is necessarily some kind of intelligent rationalization involved in the 
production of apparent movement, and it is the perceived relationship of the 
stimuli, not the retinal distribution of their luminances, which is of importance. 

Part of the problem centres on what is meant by the 'sameness' of patterns 
(Kolers, 1972, Chapter 4). Strictly, two objects A and B can only be the same if 
they define the same subsets of RZ, i.e., A = B. An equivalence - of the form 
'A - B if B = u(A) for some transformation u belonging to the group of rigid 
motions E(2)' may be argued to be no different in form from an equivalence - 
of the form 'A - B ifB = a(A) for some transformation a belonging to the group 
of homeomorphisms of the plane'. The first equivalence defines 'sameness' 
with respect to metric structure and the second with respect to topological 
structure. It is certainly possible, for some structures S and transformations u 
to decide visually whether objects A and B can beassociatedasu: A + u(A) = B, 
for u preserving S, although not all transformations preserving S may be thus 
distinguished. For example, when S is the usual topological structure on RZ, 
one can recognize the difference in connectivity between an intact and broken 
circle, but not between the maze-like patterns cited by Julesz (1975). 

The above considerations may be shown (Foster, 1975a) to lead to the notion 
that there is an underlying structure So associated with the visual perception 
and identification of objects, and a set r$ of transformations uo which preserve 
So and which can be visually effected. Visual recognition with respect to some 
arbitrarily fixed structure S may t,hen be interpreted as being determined by 
what transformations preserving S also belong to r;,. 

The figural resolution that is achieved in proper beta motion (when B = z(A ), 
7 = +,, see Sec. 6) and the incomplete figural resolution that occurs in 'motion- 
with-replacement' (when B # +, (A)) are then both manifestations of this under- 
lying identification, in which A is recognized as B with respect to So and motion 
is induced to resolve the separate occurrences. Althoughin the case of apparent 
movement this underlying structure is weak (i.e., there exist many bijective 
mappings preserving it), it is not trivial (i.e., not all bijective mappings preserve 
it). Thus, Kolers (1972, Chapter 7) reports that the patterns of the form shown in 
Figure 14 usually give rise to a flicker effect when alternately presented, and 
'motion-with-replacement' is only occasionally obtained. Navon(1976) hasalso 
shown that although the letters of Figure 13 are equivalent to one another 
(Sec. 6), this equivalence does not extend to a larger diamond-shaped figure, 
for when the latter is substituted for one of the letters in the array, circular 
motion is seen. 

8. Conclusion 

Of the two models for apparent movement that have been described here, it 
is the pure figural one that accounts best for the available experimental data. In 
this model each transformation z is associated with a vector field Xfor which the 
flow +;Y, t E [o, 11, is such that + f  = z. The curve y describing the motion 
between an object A and transform z(A) is then associated with the evolution of 
the time-varying vector field tX. It is significant that the motion defined by y 
corresponds with the flow generated in the ordinary way by a time-invariant 
vector field, namely X. This does not mean, however, that the assumption of 
variational principles could have been replaced by the assumption of the con- 
stancy of vector fields or the stationarity of flow, since there would then be 
no natural way to compare stationary flows that intersect or to relate the length 
of flows to the distance between patterns. 

Although much use has been made here of the connection between vector 
fields and families of transformations, it should be emphasized that there are 
certain technical difficulties in expressing the approach within a Lie algebra- 
Lie group framework (Hoffman, 1966,1968,1970, 1978). The group of diffeo- 
morphisms of a manifold does not generally admit an ordinary Lie group 

Figure 14. Disblays that usually give rise to 
flicker instead of motion (Kolers, 1972, Chapt. 

7) 



Structure and the exponential mapping may not cover a neighbourhood of the 
identity (see, for example, Ebin and Marsden, 1970). 

In the pure figural model described in this study, there is no explicit mention 
of the time-dependence of apparent movement on interstimulus interval. For 
the model with scalar potential, time-dependence enters naturally inthesetting- 
up of the vector field. For the pure figural model there are two possibilities. If 
the motion were generated at a constant rate, then clearly, the interstimulus 
interval would have to be chosen so that it is compatible with the impletion. 
Although consistent with the data of the 'motion-in-depth' vs. 'plastic deforma- 
tion' experiments, Kolers (1972, Chapter 3) has shown that in other cases the 
'velocity' of the flow increases linearly with pattern separation. An alternative 
explanation has been suggested by Sigman and Rock (1974). They argue that a 
motion rationalization scheme would not be expected to operate when the 
objects appeared simultaneously or when the delay between the two was so 
great that some stimulation in the intervening region would be expected to be 
detected in the real motion situation (Kaufman, et al., 1971). The dynamics 
are thus a consequence of the cognitive process. 

If, as has been advocated here, apparent movement is intimately related to 
pattern perception, then, at least in the case of proper beta motion, the analysis 
of the forms of the paths effected may provide a method for the investigation of 
the mechanisms subserving visual recognition (Foster, 1972, 1973). It has been 
proposed (Kahneman, 1967) that apparent movement is connected with meta- 
contrast, a shape-sensitive visual masking phenomenon (Alpern, 1952; Kolers, 
1968; Kahneman, 1968). Although both phenomena can involve interactions 
between different photoreceptor systems (Foster and Idris, 1974; Foster, 1976) 
evidence relating to the space and time dependence of each (Kolers, 1972, 
Chapter 8) indicates that this is unlikely. 
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