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A b s t r a c t  

The theory is developed of a method for the investigation of 
those transformations which have the property that for a given 
object their action leaves visual recognition of the object invariant. 

The technique rests on a visual apparent movement effect known 
as phi-motion. Two assertions are arrived at. The first is that the 
existence of phi-motion between an object and transform implies 
the capacity of the visual system to effect a certain 1-parameter 
family of local transformations, and, in particular, implies the 
invariant recognition of the given object under the given transfor- 
mation. The second is that it is possible to determine whether the 
observed 1-parameter family is part of a local 1-parameter group. 
A systematic investigatory program is built up on the basis of these 
two assertions. Application of this program is claimed to yield data 
upon the construction of the set of transformations "carried" by the 
visual system, and the nature of those paths in this set which are 
preferred by the system for execution. 

I n t r o d u c t i o n  

There is a well known problem associated with 
Visual Perception: How is it that one can recognize 
an object, visually, even when it has undergone 
transformations like rotations, translations, dilations, 
etc.? Pitts and McCulloch in their classic paper 
"How We Know Universals" (Pitts and McCulloch, 
1947) discuss this phenomenon, and put forward two 
possible neural schemes which could effect such in- 
variant recognition of an object. A review of this study 
is given in Arbib (1971). 

The concern of the work to be reported below is 
not so much with the general and very difficult problem 
of constructing neural mechanisms for invariant recog- 
nition, as with the initial proble m of establishing 
precisely which transformations have this invariance 
property. A priori, we can certainly make the (almost 
trivial) assertion that recognition of an object is not 
invariant under all transformations (even under those 
which serve to keep the image of the object on the 
retina). Consider 

i) the group of dilations acting (locally) on the 
retina. One can demagnify a given retinal image to 

an arbitrary extent, and, in particular, take it below 
the limit of visual resolution. 

ii) the group of translations acting (locally) on the 
retina. One can move two visually distinguishable 
images from one retinal location with a certain 
associated spatial frequency response function to 
another retinal location with a much poorer spatial 
frequency response function, and thereby render the 
two visually indistinguishable. 

In view of these comments, it might appear 
appropriate that we commence the present study by 
introducing Zeeman's tolerance relation upon the 
retina (Zeeman, 1962). A formal handling of visual 
indistinguishability in the present context, however, 
leads to some complication in presentation, and 
therefore in order to proceed as quickly as possible, 
we forego any such attempt at a complete treatment. 

In what follows, we put forward the theory of a 
simple investigatory procedure, by which, it is claimed, 
one can pick out certain of the transformations under 
which the recognition of a given object is invariant. 
Further, in connection with the general problem of 
building neural mechanisms, it is suggested that the 
proposed method can provide data upon the compo- 
sition of the set of transformations "carried" by the 
system, and, in particular, can reveal when a 1-para- 
meter family of transformations executed by the 
system is, locally, a 1-parameter group. 

The paper immediately after this (Foster, 1972b) 
describes, in detail, an experiment which applies this 
investigatory procedure to the special case of the 
group of rotations SO(2) acting on a Landolt ring. 

Theory 

We first introduce some notation and some de- 
finitions. 

Let us consider the retina V as a hemisphere in 
R 3 (R is the set of real numbers) and let U be a (non- 
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empty) open subset of V (for example, U might be 
the fovea). We shall assume U to be fixed unless 
otherwise indicated. A visual stimulus or object A on V 
is defined as a mapping (not necessarily continuous) 
of V into R such that for peV, A(p) (A(p)>O) gives 
the illumination on the retina at the point p. The set 
of all objects on V (resp. U) will be denoted by F(V) 
(resp. F(U)). For  a given object A, N(A) will stand for 
the set of points in V for which A(p)+ O. [We will 
adopt the convention of writing "peA" to indicate that 
the point p is to be considered in conjunction with its 
illumination value A(p).] 

The group of bijective mappings of V onto V will 
be denoted by Bij(V), and the groupoid of injective 
mappings of U into V by Inj(U, V). [Inj(U, V) is a 
groupoid in that where the compositions of mappings 
are defined, they follow the group laws.] Given a 
mapping zeInj(U, V), the simplest (non-trivial) way 
of defining its action on elements of F(U) is to put 

(z(A))(q)=A(z-~(q)) for A~F(U) and q~z(U) (1) 

which assigns to each point q of the transformed object 
the illumination at its preimage. 

We have not stipulated that the mappings 
reInj(U, 1/) need be differentiable or even continuous. 
The introduction of such a restriction, however, does 
not lead to a very great loss in generality, since, for 
most mappings of interest (as far as vision is concerned), 
it should always be possible to find some subset of 
U upon which z is suitably smooth. Indeed, one might 
go further, and assert that for any mapping z: U-~ V it 
is always possible to find an arbitrarily differentiable 
mapping z': U -~ V visually indistinguishable from z on 
all of U. Henceforth, therefore, only those z~Inj(U, V) 
for which z: U ~  V is a (C ~ diffeomorphism will be 
considered. Inj(U, V) (and Bij(V)) will from now on 
be taken to consist solely of such transJbrmations. 

Returning to the question of defining the action 
of z on members of F(U), we might now consider 
putting 

A(p) 
(z(A)) (q) = 

Idet(Dz(p))l (2) 

for AeF(U) and q=z(p)ez(U). 

Dz(p), which is non-singular, is the derivative of ~ at 
the point p. The RHS of (2) makes sense if, considering 
V as part of a sphere S 2 in R 3, we introduce local 
coordinate systems (Uq, qJq) and (Up, q)p) at q and p 
respectively (Uq is an open neighbourhood of q, and 
~0q: Uq---, q~(U~) C R 2 is a homeomorphism; similarly 
for p) such that Uq=~o(Up) for some 0eO(3), and 
(pq(q') = (pp(~O - 1 ( q , ) )  for all q'e Uq. [0(3) is the orthogonal 
group acting on $2.] 

The motivation behind definition (2) arises from 
the following example. For  simplicity of notation, the 
local coordinate systems (Up, q~p) and (Uq, %) (chosen 
so that the above conditions are satisfied) are fixed and 
p'eUp is identified with (pp(pt)=(Xl, Xz)e(tOp(Up) and 
q'e Uq is identified with %(q')= (Yl, Y2)eq~q(Uq) �9 

Suppose the transformation z behaves as a di- 
lation for all points p' in some small disc-like neigh- 
bourhood Np of p(Np C Up, z(Np)C Uq), so that 

(xl, x2)--*(kxl, kX2), (Xl, X2)eNp, k>  l .  

Given an object (or part of an object) AEF(Np) 
(N(A) not empty), let the associated luminous flux be 
considered a conserved quantity. Under the action of 
z, this fixed amount of flux must then be spread over 
the enlarged area of N(z(A)). It follows that the 
illumination (z(A))(q') at each point q'eN(~(A)) is 
therefore reduced by the factor l /k2= 1/det(Dz(p)). 

More generally, for any zeInj(U,V), the area of 
the image z(Np) of the disc-like neighbourhood Np 
is given by 

dy, dy 2 = ~ Ide t (Dz(x l ,  x2))] dx, dx 2 
�9 (Np) Np 

The "dilation ratio" at p is then obtained by taking 
the limit: 

lira 
diam(Np)~0 

p~Np 

dyl dy2 
~(Nz,) 

dxl dx2 
Np 

= Idet(Dz(p))b 

Which, if either, of the definitions (1) or (2) is more 
appropriate depends upon the physical method by 
which the transformation ~ is effected. For  the sake of 
brevity, (1) will be applied throughout the subsequent 
discussion. 

Using the notation set out above, we now give a 
more precisely formulated version of the problem 
discussed in the introduction. 

Problem 1. Given an object A and some transform 
z(A) of A, for what transformations z can the visual 
system recognise z(A) to be the original object A? 

(Such transformations ~ will be referred to as 
invariance transformations.) 

Since our interest is oriented towards the con- 
struction of neural mechanisms for invariant recog- 
nition, we put Problem 1 in a more general form better 
suited to these ends. We will regard the visual recog- 
nition of an object B (as some object A) as an effectu- 
ation, by the visual system, of a certain one-to-one 
correspondence (transformation) between B and A 
(and will refer to the visual system executing, effectin9 
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or performing this transformation, and, in general, of 
its carrying this transformation). 

Problem 2. Given an object A, what is the structure 
of the set of transformations which the visual system 
can perform upon A? 

In the ensuing, a method is developed by which, 
it is proposed, Problem 2 (and therefore Problem 1, 
also) may be answered - at least in part. The approach 
is founded upon a visual apparent motion effect the 
phi-phenomenon (Wertheimer, 1912): 

Suppose the visual system is presented with a 
spot of light, S say, first in retinal location a, and 
second in retinal location b. Then, depending on 
parameters like the size and intensity of S, the lo- 
cations a and b, the presentation times at a and b, 
and the time lag between the presentations, a visual 
sensation of motion can be induced in which the 
spot S appears to move across from a to b. 

If we represent S at location a~ V by the mapping 
S,:V-*R, and at location beV by the mapping 
Sb:V-*R, then the appearance of motion between 
locations a and b is nothing other than the ordered 
production of the objects at(S,), t~[0, tx], where the 
a t are translations defined locally on the retina such 
that ao(S~)= S~ and at, (S~) = S b. The time parametriza- 
tion t-*a, is required to be reasonably smooth 
(differentiable). 

Phi-motion can be generated between other than 
objects and their translates. [Rotations of an object 
are explicitly considered in the paper (Foster, 1972 b) 
which follows this.] We thus want a more generalized 
form of the above statement with S, replaced by 
AeF(U) and at replaced by ztMnj(U, V). We will need 
the notions of a 1-parameter family of local trans- 
formations, a local 1-parameter monoid (and group) 
of local transformations, and the orbit of an object 
under each of these systems. The first three are either 
standard or obvious items, and their definitions are 
given in the Appendix. The last, the orbit of an object, 
is defined below. Note that we regard the orbit as a 
mapping into the set of all objects defined locally 
on V, rather than as a subset of this set. Note also that 
we adopt the convention of writing ~t, te[t~, t2], or 
just ~o t, for the 1-parameter family of local transfor- 
mations ~p:[ta, t2] x U-*V. 

The orbit t2(A) of an object AeF(U) under the 
action of a 1-parameter family of local transformations 
~Pt: U-* V, ts[t~, t2] is defined as the mapping 

f2(A): te[tl, t2] -*lpt(A)~ U {F(U'): U" C V} 

where it is recalled that the action of a transformation 
~v, elnj(U, V) on an object AeF(U) is defined by setting 
(~ot(A)) (p) = A (~o,- ~ (p)). 

With the aid of the above, we now proceed with 
the generalized formulation of the phi-phenomenon 
asked for earlier. 

Phi-Phenomenon (generalized). Suppose the visual 
system is presented first with some object AeF(U) and 
second with some transform z(A)ofA(zelnj(U, V)), 
then, depending upon A, z(A), exposure times, and 
time-lag between exposures, the orbit of A under a 
certain 1-parameter family of local transformations 
~p,: U-* V, te[0, q], is generated. The mapping lp satis- 
fies the conditions: 

~po(p)=p and ~pt,(p)=v(p) for all peA.  

It is emphasized that the family need not be a local 
monoid. 

Obviously, a necessary condition for the existence 
of phi-motion is that the system be capable of per- 
forming transformations such as ~o, and, in particular, 
be capable of performing the transformation ~0t,. We 
can thus assert a partial solution to Problem 1. 

Proposition 1. A transformation zelnj(U, V) is an 
invariance transformation (in the sense of Problem 1) 
for an object A~F(U) if phi-motion can be induced 
between A and z(A). 

Note that we do not (yet) claim that the converse 
of this holds. 

Turning to Problem 2, we immediately have, by 
the same reasoning that gives rise to Proposition 1, 
the following 

Proposition 2. Given an object A~F(U) and some 
transform z(A) (z~Inj(U, V)), the production of phi- 
motion between A and z(A), so that for some family of 
local transformations ~Pt, t~ [0, q], the orbit t2(A) is gen- 
erated, implies that the visual system is capable of per- 
forming a 1-parameter family of local transformations 
q~: U-*V, t~[0 ,q] ,  such that 

~P~(P)-=~Pt(P) for all pea and te[0, t l ] .  (3) 

For an appropriate choice of A and a sufficiently small 
neighbourhood U of N(A), Eq. (3) serves to define 
~Pt, t~[0, q],  to within visual indistinguishability and 
certain reparametrizations t-* ~Pr 

Note. As before, all that should strictly be asserted 
is that the visual system is capable of performing one 
out of a collection of mappings visually indistinguish- 
able from tp on A. In a full treatment, one would have 
tolerances on the sets U, V,[0, q],  and Inj(U, V), and 
this ill-definedness would be naturally incorporated. 
To save further repetition of statements like the for- 
mer, all subsequent assertions about sets, mappings, 
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etc., which relate to a visual process will be taken to 
be defined (in every case) not better than to within 
visual indistinguishability. 

Suppose, now, that, for a given object A e F ( U )  and 
some arbitrarily chosen transformation te lnj (U,  V), 
phi-motion is observed. By applying Proposition 2, 
we deduce that the visual system is capable of perform- 
ing a certain 1-parameter family of local transfor- 
mations ~Pt. With Problem 2 in mind, a natural step 
would be to consider the given family ,p~ in relation 
to the full set Inj(U, V), the latter now with an appro- 
priate differentiable structure defined upon it. In fact, 
the assigning of a differentiable structure to Inj(U, V) 
presents certain difficulties, and a more restricted 
approach must be adopted. So, instead of working 
with the full set Inj(U, V), we limit our interest to 
certain subsets of Inj(U, V), namely, those which 
carry the structure, locally, of a Lie transformation 
group. The definition of a local Lie group of local trans- 
formations. G x U ~ V  is given in the Appendix. We 
make the additional stipulations that the local Lie group 
G is connected (equivalent to being path-connected), 
and the induced mapping z : g ~ G ~ % M n j ( U , V )  is 
injective. It follows from the last condition that any 
two distinct (differentiable) curves in G 

yi:tE[tx,  t2 ]  --*Yi(t)EG, i=  1, 2, 

(which will be assumed to be injections) map into 
two distinct 1-parameter families of local transfor- 
mations defined on U: 

t;,,m, re[t1, t2], i = 1, 2. 

Similarly, any two distinct local 1-parameter subgroups 
in G map into two distinct local 1-parameter groups 
of local transformations defined on U. [For  the defini- 
tions of a local 1-parameter subgroup (and sub- 
monoid), again see Appendix.] 

Let us assume that, for a given object AeF(U) ,  
a suitable local Lie group of local transformations 
G x U ~ V has now been decided upon. We concen- 
trate our attention on the local Lie group G, and ask 
the more restricted question: What subset G' of G in 
G x U--*V can the visual system effect upon A? 
(Compare with Problem 2.) To answer this, our 
procedure is clear. We select an element 9, say, in G, and 
present the given object A and transform ro(A ) 
(% = t(9)) in succession to the visual system. If phi- 
motion is induced between A and to(A ), then, by 
Proposition 2, we know the visual system can execute 
a certain 1-parameter family p,, te[0, t~]. If 'Pt lies in 
l(G) for all t in [0, t~], then, by the preceding, there 
exists in G a path 7:[0, t l ] ~ G ,  unique to within 

extension, such that (toy)(t)=,pt, for all te[0, tl]. 
Hence, G' contains, at least, the identity e (neces- 
sarily), g, and a path ~ joining the two. We next choose 
a different element in G, say 9 ' (9 '~([0,  tl])), and repeat 
the procedure. Continuing in this way, we build up an 
idea of the composition of (the identity component 
of) G'. 

An important piece of information not considered 
in the above discussion is the possibility that the 
selected path 7 is, in each case, part of a (local) 1-para- 
meter subgroup in G. Apart from the general sig- 
nificance that 1-parameter subgroups have in relation 
to the structure of a Lie group, the selection, by the 
visual system, of such a path in preference to any other 
would have particularly important consequences in 
connection with the problem of constructing mecha- 
nisms for invariant recognition. Because of the sub- 
jective nature of the time-scale involved, however, it is 
difficult to obtain, by straightforward inspection, data 
upon the t-dependence of a given family ~Pr Never- 
theless, there is a less direct method, which, although 
failing to give the precise t-parametrization, does 
enable one to say whether ,p, is a local 1-parameter 
monoid of local transformations. It depends upon the 
fact that for a given object A, we observe the orbit under 
p, not of a single point pe U, but of a large number 
of points, i.e., those in all of A. 

Suppose we are given a 1-parameter family of local 
transformations 'Pt, te[0, tl],  acting upon an object A. 
We recall that lpt constitutes a local 1-parameter 
monoid of local transformations defined on A 1 if 
for t, s, t + s t [0 ,  tl],  and p,,ps(p)eA, we have tp,+s(p) 
= ~,(,p~(p)). But this is the same as saying that, given 
any two points p and q in A such that q lies on the 
image of the orbit of p, after q the orbits of q and p 
coincide. By visual inspection of the way the object A 
is drawn along the orbit images of its elements, under 
the action of the family tpt, it should be possible to 
determine whether the required group property is 
exhibited. By way of illustration, let et, O~, t~[0, t~], be 
two 1-parameter families of rigid motions of the 
object A of Fig. 1 (V is identified with a hemisphere 
in R3). For each t in [0, ta], r and r are determined by 
the images of any two distinct points in A. Consider 
the following two situations. 

i) Let the family ~, act upon the object A in the 
manner indicated in Fig. 1 (i), so that the points p and q 
move through orbits a and b respectively. Let s t[0,  t~] 
be such that Q~(p) = q. Define P2 = ~OZs(P), and ql = r 
Then, clearly, Q~ + ~(p) + Q~(~s(p)). 

I Assume N(A) visually indistinguishable from some open 
U ~ N(A). 
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A Ps(A) 

Fig. 1. The actions of the 1-parameter families of rigid motions 
Qz and Q~ upon the object A 

ii) Let the family ~ act upon A as in Fig. 1 (ii), 
so that the point p moves through the orbit a', and q 
moves through the orbit b', a' and b' coinciding after q. 
Let se[0, tx] be such that Q's(P)= q- Define ql = Q~(q), 
and P2 = O~+~(P). But by definition of a', b', we have 
P2 = ql. Hence, Q~+~(p) = Q~(0;(P)). 

The conclusion follows that 0t is not a local 
1-parameter monoid of local transformations, whereas 
0', is. 

We thus have an experimental technique for 
indicating whether an observed family ~Pt corresponds 
(under t) to a path 7 which is a local 1-parameter 
submonoid in G. This method is now incorporated 
into the general investigatory procedure outlined 
earlier. The resulting program is set out in the next 
section. 

Investigatory Program 
Before going ahead with the formulation of the 

proposed investigatory program, we recapitulate its 
aims and methods. 

The intention is to discover something about the 
structure of the set of transformations which the visual 
system is capable of performing upon an object by 
virtue of the invariant recognition of the object under 
these transformations. A piecemeal approach is 
adopted in that rather than consider the whole set 
Inj(U, V) of all possible transformations of a subset U 
of the retina V, we limit ourselves at any one time to a 
selected local Lie group of local transformations 
G x U--* V. For such a group, our interest then centres 
around determining how much of G is capable of 
being effected by the visual system. (This subset of 
G we denote by G'.) 

The basis of the experimental technique is to take 
the generation of phi-motion between the given object 
and some selected transform as evidence that the 
system can execute a certain 1-parameter family of 
local transformations. By inspection of the orbit, one 
attempts to deduce whether the observed family is a 
local 1-parameter monoid of local transformations. 
This data is then related to the structure of G'. 

We now proceed with the presentation of the 
program. Assume that the visual object A~F(U) and 
local Lie group of local transformations G • U ~  V 
have already been selected. 

(1) Choose an element g in G. 
(2) Present the object A and transform zo(A ) in 

succession to the visual system. 
(3) If phi-motion is induced, then check, by the 

method described in the theory, to see if the corre- 
sponding 1-parameter family of local transformations 
tp t, tc[0, tl], is a local 1-parameter monoid of local 
transformations which can be factored through G: 

[0, q ]  * ' ~ ,  Inj(U, V) 

G 
? : [0 ,  q ] ~ G  is a local 1-parameter submonoid in 
G e = e, = g). 

(4) Suppose such a ? exists [it is then determined 
uniquely up to extension by the diagram in (3)]. Form 
the local 1-parameter subgroup 7' : I ~ G ~ ([0, t~] 
C I C R, I maximum) which coincides with ? on [0, tt]. 

(5) Select an element t from I, and present the 
object A and transform z~v)(A ) in succession to the 
visual system. 

(6) If phi-motion is induced, then check, as before, 
to see whether the corresponding family of transfor- 
mations belongs to ?'. 

(7) Repeat steps (5) and (6) until it is judged that a 
sufficiently dense collection of points t in I has been 
arrived at (dense in the sense that more points t 
would be unlikely to give rise to qualitatively new 
information about the system). 

(8) Choose a different element g from G, where 
gem'(I), and recommence the procedure from (2), 
unless, as in (7), a sufficiently dense collection of paths 
in G' has already been achieved. 

For the chosen object and local Lie group of local 
transformations, this program is claimed both to yield 
data upon the composition of the identity component 
of G', and to indicate when a path (in G') executed by 
the visual system coincides locally with a local 1-para- 
meter subgroup in G'. In the paper immediately after 
this (Foster, 1972 b) we describe an experiment which 
shows the program in operation. A Landolt ring is 
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the visual object, and the group of rotations S O  (2), 
acting on the retina and about the centre of the ring, 
is the selected Lie group of local transformations. 

Discussion 

The method of analysis put forward in the two 
preceeding sections does not necessarily give complete 
information on the structure of the set of transfor- 
mations carried by the visual system, since, apart 
from the restriction of the method to connected local 
Lie groups of local transformations, there is the fact 
that Propositions 1 and 2 (in the theory) only go in 
one direction, i.e., phi-motion ~ invariance transfor- 
mations. 

In order to say something about the converses of 
Propositions 1 and 2, it is necessary to speculate upon 
possible systems by which phi-motion (in the general 
form defined in the theory) can be generated. If we 
are prepared to limit the discussion to connected local 
Lie groups G only, then one fairly natural candidate 
is indeed a system which implies the converses to the 
two propositions. 

Consider the following: 
Built into the system, there is the capacity to operate 

upon visual objects with certain local transformations. 
Specifically, to each object A on the retina V there is a 
local Lie group of local transformations G' x U-~ V 
acting upon a (small) neighbourhood U of A. G' is 
not necessarily assumed connected. Under appropriate 
experimental conditions, successive presentation to the 
system of objects A and B, where B is such that there 
exists g~G' for which To(A)= B, causes the system to 
attempt to select a path y: [0, t~] ~ G' from e to g in G'. 
If y exists, the system then operates upon the object A 
with the induced 1-parameter family of local transfor- 
mations z.z,), tE[0, t~], producingthe transforms zr(t)(A ) 
in order as t runs from 0 to G. Schematically, 

Presentation 

of A then B 

Local transformations 

T e : p e A  ---, p e A  

zg : p ~ A  ~ zg(p)~zg(A ) = B 

I Path ~:[0, t~]-- .G'  Orbit of A under the 

connecting e and 9 --~ 1-parameter family 

in G' z~,), t~[0, tl] 

If any of the mappings (arrows) is not defined, then 
phi-motion is not obtained. 

In the above, the phrase "appropriate experimental 
conditions" is used. This is meant to include things 

like optimum exposure times, time-lag, intensity 
levels, etc. Given these, the essential requirement for 
the converse of Proposition 2 (and 1) to hold is that 
G' be path-connected; for the general case, this can 
only be established by independent experimentation. 

Acknowledgment. The author is grateful to Dr. C. J. Isham for 
many useful discussions. 

Appendix 

Let U be a (non-empty) open subset of the retina V, [tl,  t2] a 
closed interval in R, and G a local Lie group [see, for example, 
Cohn (1968)]. 

(1) A 1-parameter family of local transformations defined on U 
is a differentiable mapping ~r of [tl, tz] x U into V such that for 
each te[tl, t2], tpt:p~tp(t,p) is a diffeomorphism of U onto the 
open set ~o,(U) of V. 

(2) A local 1-parameter monoid (resp. group) of local transfor- 
mations defined on U is a differentiable mapping tp of [0, t l]  x U 
(resp. [ - t l ,  t l]  x U)into V which satisfies: 

i) For each te[0, tl] (resp. [ - t l ,  ta]), ~p~:p--,~p(t,p) is a dif- 
feomorphism of U onto ~pt(U). 

ii) If t,s,t+ss[O,q] (resp. [ - q , q ] )  and if p,~p~(p)~U, then 

~0, + ~(p) = ~0,(~s(p)). 
iii) For all pc U, tpo(p) = p. 
(3) A local Lie group of local transformations defined on U is 

a differentiable mapping z:G x U--* V which satisfies: 
i) For each gaG,%:p--*z(g,p) is a diffeomorphism of U onto 

T0(U). 
ii) If 91, g2, gl g26G and if p, To2(p)6 U, then 

(G acts on the left.) 
iii) For  all pc U, re(p) = p (e neutral in G). 

(4) A local 1-parameter submonoid (resp. subgroup) in G is a dif- 
ferentiable mapping y of [0, q ]  (resp. [ - t t ,  tl]) into G such that 
if t, s, t + s ~ [0, h i  (resp. [ -  q, q]), then the product ?(t) ~(s) is 
defined and 

?(t + s) = ~(t) ~(s). 
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