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Abstract. The purpose of this study is to construct a func- 
tional model of the human visual system in its response to 
certain classes of moving stimuli. 

Experimental data are presented describing the inter- 
dependence of the input variables, temporal frequency, spatial 
period, etc., for two constant response states, viz. threshold 
motion response and threshold flicker response. On the basis 
of these data, two basic units are isolated, a vertical (V) unit 
and a horizontal (H) unit. The H-unit is identified with the 
Reichardt multiplier (Reichardt and Varju, 1959), and the 
V-unit with the de Lange filter (de Lange, 1954). 

A definition of the general motion response of the H-units 
is obtained, and this is then reduced to an expression which 
may be applied directly to the observed motion response 
data. By this method, Thorson's simplification of the Reichardt 
scheme (Thorson, 1966) is adopted for the H-unit and 
total and relative (population) weighting factors, associated 
with the H-unit output, are defined. 

In order to reconcile the theoretical square-wave threshold 
motion response with the experimental data, Thorson's 
simplification is modified with the introduction of a low-pass 
filter on the output. The amended scheme is shown to predict a 
(temporal) frequency-dependent phase-sensitivity. This pre- 
diction is tested experimentally, and its validity indicated. 

1. Introduction 

This work is concerned with- the  construction of 
a functional model of the human visual system in its 
response to certain classes of moving stimuli. The 
analysis is based par t ly  on two earlier studies (Foster, 
1969, 1970b), and the intention here is to present a 
unified t rea tment  of the observed data, with special 
emphasis on the description of the system model. 

The first step in this examination of the visual 
system is to establish a more precise definition of 
the system, in terms of input  and output  variables, 
and to determine an appropriate method of analysis. 

1.1. Output  Specification 
and General Method of Analysis 

In  this section we define the output  of the system 
and describe the general method of analysis to be 
employed. 

I t  has been shown (Foster, 1968) tha t  in the visual 
perception of certain configurations of moving 
spatially-periodic stimuli, there exist transitions in 
sensation associated with certain critical values of 
the temporal  frequency, ]. Thus, as ] is increased 
from small values, we have the following: 

i) For  [ < ] l  ([~, the lower critical frequency): 
a sensation of weU-defined directed motion, (providing 
[ is not too small). 

fi) For [z < [ ----< [u (]~, the upper  critical frequency) : 
a sensation of motion without well-defined direction, 
or non-uniform flicker. 

iii) For  [ > ]u: fusion. 

Therefore, we may  distinguish two component 
variables in the system output:  one giving information 
about  the local temporal  fluctuations of the stimulus 

(variable 01, say), and the other giving information 
about  the spatial ordering of these local temporal  
fluctuations (variable 02,  say). For / < [ z ,  both O1 
and 0 2  contribute to the total  response ; for [~ < [ < ]u, 
only 01  contributes; for [ > / u ,  neither 01 nor 0 2  
contributes. 

The direct measurement of output  variables, O1 
and 02,  as functions of some chosen input variable, 
is not a practicable method of analysis in the present 
case, since the output  is inaccessible. An alternative 
approach is the following. 

We set the chosen output  variable equal to some 
arbi trary constant value, and then determine the 
interdependence of the chosen input variables such 
tha t  the condition of output  constancy is maintained. 
In  the present case, the just  detectabili ty of the time- 
varying nature of the stimulus ([ =[u)  m a y  be asso- 
ciated with the magnitude of output  variable O 1 just 
exceeding some fixed threshold level; similarly, the 
just detectability of a well-defined stimulus direction 
([ = [t) may  be associated with the magnitude of the 
output  variable 0 2  just exceeding some other fixed 
threshold level. By working a t  one of these two 
threshold output  states, we thus hold constant either 
01  or 02. This is the method of approach adopted here. 

1.2. Inpu t  Specification 
and General Stimulus Configuration 

To complete the specification of the system (in 
terms of input-output  variables), it is necessary to 
define the form of the input a r ray  and to define the 
range of the stimulus variables. This we now do. 

Two properties tha t  the system should demonstrate  
are the following: 

i) A fixed input (receptor) array. 

ii) A uniform density of associated processing units. 

In  order to approximate these characteristics, we 
adopted the experimental arrangement  described 
below. 

The pr imary stimulus was provided by  a rotat ing 
radial grating. The field of view of this grating was 
restricted to a reveal annulus. Fixation was assumed 
to be sufficiently good to maintain (i) above, providing 
stimulus sensation progressed smoothly to steady- 
state. Sharp departures from steady-state sensation 
could be correlated with the presence of flicks (see 
Ditchburn and Ginsborg, 1953) using other psycho- 
physical cues (see Foster, 1969). [Eye-tremor (Ditch- 
burn and Ginsborg, 1953) was thought  not  to be a 
significant factor, in view of the findings of West 
(1968 ) and Gilbert and Fender (1969 ). ] The uniformity 
of response around the annular field, implying (ii) 
above, was determined by  a separate experiment 
(Foster, 1970a). 
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W i t h  the  s t imulus  conf igura t ion  descr ibed above,  
the  i n p u t  var iab les  considered were the  fol lowing:  
the  t e m p o r a l  f requency  of the  ro t a t ing  grat ing,  the  
area  of the  sec tored  annulus ,  the  spa t i a l  per iod  of the  
gra t ing ,  and  the  waveform of the  grat ing.  The modula-  
t ion  d e p t h  of the  p r i m a r y  s t imulus  was also included 
as a va r i ab le  in one exper iment .  

The  m a t h e m a t i c a l  m e t h o d  chosen for the  re- 
p re sen ta t ion  of the  sys tem is t h a t  of the  Laplace  
t r ans fo rm approach .  I t  was therefore  necessary  to  
es tabl ish  the  l i nea r i ty  and  the  t ime- invar iance  of the  
sys tem.  The  l inea r i ty  of the  sys tem was prescr ibed 
b y  res t r ic t ing  the  i n p u t  s t imul i  to  smal l  excursions 
a b o u t  the  mean  (background)  level (see App .  A). The  
t ime- inva r i anee  of the  sys tem,  equ iva len t  to  the  
cons t ancy  of the  sub jec t ' s  observa t ions  over  some 
per iod  of t ime,  is discussed in  Sec. 3. 

Measurements  were t a k e n  on ly  when the  s t imulus  
sensa t ion  reached  s t eady- s t a t e .  

1.3. General  Objec t ives  

I n  the  previous  two sections,  we specified the  sys tem 
in t e rms  of i ts  i n p u t  a n d  o u t p u t  var iables ,  and  out l ined  
the  m e t h o d  of analys is  to  be employed .  

I n  the  fol lowing sections,  the  expe r imen ta l  m e t h o d  
is descr ibed  in  g rea te r  deta i l ,  a n d  d a t a  are  presented  
for each of the  two cons t an t  o u t p u t  s tates .  These 
resul ts  a re  sub jec ted  to  sys temat ic  analysis ,  and  a 
mode l  of t he  sys t em cons t ruc ted .  

Two of the  pr inc ipa l  e lements  of this  model  are  
shown to be a vers ion of the  Re i cha rd t  mul t ip l ie r  
(Re icha rd t  a n d  Var ju ,  1959) and  the  de Lange  fi l ter  
(de Lange,  1954). (The l a t t e r  is a low pass f i l ter  which 
describes,  for spa t i a l ly  un i fo rm st imuli ,  the  a t t e n u a t i o n  
charac ter i s t ics  of the  h u m a n  visual  sys tem a t  f l icker 
threshold . )  

I t  will be d e m o n s t r a t e d  t h a t  one of the  opera t ions  
pe r fo rmed  b y  the  model  is runn ing  aurocorre la t ion  
(q. v. L ickhder ,  1951). I t  will also be shown t h a t  the  
mode l  makes  cer ta in  p red ic t ions  concerning the  phase  
sens i t iv i ty  of the  v isual  sys tem as a funct ion of 
s t imulus  f requency.  These pred ic t ions  are tes ted  and  
the i r  v a l i d i t y  ind ica ted .  

2. Experimental Apparatus and General Methods 

The  expe r imen ta l  a p p a r a t u s  used in the  presen t  
s t u d y  has  been descr ibed  in de ta i l  elsewhere (Foster ,  
1970a, b) ;  the  e lements  of the  sys t em are  out l ined 
below. 

Referring to Fig. 1, the rotating radial grating, R.G., was 
transilluminated by the incandescent lamp, L 1, via the liquid 
filter, F,  and diffusing screen, D 1. The view of the grating 
was restricted with the mask, M, to an annulus of 1.5 ~ total 
mean angular subtense, and width, 0.21 ~ Portions of the 
annulus could be sectioned off; the remaining section was 
specified by the coordinate, 0 (see inset of Fig. 1). 

A uniform square background field of total angular sub- 
tense, 4.7 ~ was provided by the light box, L 2, and diffusing 
screen, D 2 . 

The primary stimulus field and background field were 
combined with the beam splitter, P, and the demagnified 
whole viewed via a 2 mm artificial pupil, A.P. Retinal illu- 
mination was approximately 390 trolands, and the eotour 
temperature of the background filed, approximately 2 500 ~ K. 

Both square and sinewave radial gratings were employed: 
square wave gratings with spatial periods of 40 ~ , 60 ~ , 90 ~ , 
120 ~ 180 ~ and 360 ~ and sinewave gratings with spatial 
periods of 180 ~ and 360 ~ Deviations of each grating waveform 

from the ideal were determined to be within the tolerances 
of the experimental method (Foster, 1970a). The gratings 
were driven by electric motor, the speed of which was monitered 
continuously using an electronic tachometer. 

A dental bite was used to locate the head of the subject, 
who fixated, monocularly, the centre of the annular stimulus. 
The speed of rotation of the radial grating could be controlled 
by the observer. 

Before commencing observations, the primary stimulus 
was matched by the observer against the background field. 
A ten per cent neutral density filter was then introduced 

i 

5.F. 

field of  v iew 

R.G. 

1 
I 
J 
! 
J 

Fig. 1. The experimental apparatus: L 1 and Lz are incandescent 
light sources; F, a liquid filter for colour correction; S 1 and 
S~, stops; D 1 and D~, diffusing screens; R.G. radial grating; 

M, annular mask; P, beamsplitter; A.P., artificial pupil 
Inset: A, annular aperture; 8.F., surround field 

between the grating and beam splitter. Thus the stimulus 
intensity variation was within ten per cent of the background 
(mean) intensity, and superimposed upon it. 

Observers employed were the author who wore correcting 
contact lenses and was aged 24, G.F. who was aged 20 and 
was slightly myopic (a correcting lens was introduced), 
R. A.E. who was emmetropic and aged 22, and W. H.K. who 
was also emmetropic and aged 42. 

3. Experiments and Results 

I n  the  following sections resul ts  are  p resen ted  
showing the  dependence  of the  t e m p o r a l  f requency,  
/, upon  angular  area,  0, and  spa t ia l  period,  2, a t  bo th  
mot ion  threshold  ( / = / 1 )  and  fl icker th reshold  (] =/u). 
D a t a  for bo th  sine and  square wave  s t imul i  are given.  
I n  addi t ion ,  the  de Lange  a t t enua t i on  character is t ics ,  
as a funct ion of 0, a re  descr ibed for the  presen t  s t imulus  
configurat ion.  

Some pre l iminary  exper iments  were also carr ied 
ou t  in order  to es tabl ish  the  un i fo rmi ty  in response 
a round  the annu la r  field and  the  s y m m e t r y  of the  
response with  respect  to reversal  of p a t t e r n  direct ion.  
These, and  o ther  d a t a  showing the  s t ab i l i ty  of response 
form over per iods  of several  months ,  are r epor t ed  in  
full elsewhere (Foster ,  1970a). F o r  the  purposes  of 
this  present  s tudy,  d a t a  for only  two observers  are 
presented  for each exper iment .  
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3.1. The Dependence of the Lower Critical Frequency, 
/z, Upon Angular Area and Spatial Period 

The lower critical frequency,/z, was determined as 
a function of angular area, 0, for grating periods, 
2, ranging from 40 ~ to 360 ~ for square wave stimuli, 
and 180 ~ and 360 ~ for sinewave stimuli. 

The recorded data of Fig. 2 show the general up- 
ward trend of It with increasing 0 and decreasing 2. 
The sine response curves are depressed with respect 
to those for square wave stimuli, the difference being 
most marked at low/z values. 

At certain values of 0 and ~, a sensation of well- 
defined directed motion is not obtainable within the 
usual range of /z .  This phenomenon is referred to as 
the "stat ionary stroboscopic effect" (Foster, 1969). The 
onset of the effect is indicated in Fig. 2 by the letter 
"8" ,  and is seen to occur at values of 0 just greater 
than 2/2, providing 2 ~ 120 ~ 

3.2. The Dependence of the Upper Critical Frequency, 
/u, on Angular Area and Spatial Period 

The upper critical frequency, /u, was also deter- 
mined as a function of angular area, 0, for a range 
of grating periods, 2. Square waveform gratings, only, 
were employed. 

The results obtained arc displayed in Fig. 3. For 
each 2 value, the curves have been displaced for case 
of examination. Included as a limiting case (Fig. 3a) 
is that  of /u  v. 0 for infinite spatial period (the latter, 
a spatially uniform field with temporal modulation, 
only). 

I t  is seen that  the /u v. 0 response is insensitive 
(within experimental error) to variations in the spatial 
period, 2. 

3.3. The de Lange Attenuation Characteristics 
as a Function of Angular Area 

In  order to obtain the de Lange attenuation 
characteristics for the present experimental configura- 
tion, the following modifications were made to the 
apparatus of Fig. 1. 

A rotating sinusoidal grating of 360 ~ spatial period 
was arranged to interrupt the primary stimulus at  
its intermediate focus, 0 (thus producing a spatially 
uniform field with temporal modulation only). A neu- 
tral, variable density wedge was also introduced into 
the system near the stop, S 2. 

For a given temporal frequency,/ ,  the subject was 
required to adjust the modulation depth so that  
flicker was just descernable. (This is equivalent to 
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determining the stimulus modulation depth as a 
function of ]u for infinite 2.) 

Note. The visual system has been shown to be linear at 
flicker threshold (de Lange, 1954; Veringa, 1958) and theoreti- 
cally there need be no restriction on modulation depths. 
However, the primary stimulus is superimposed on the 
background field (see Sec. 2), and variations in modulation 
depth of the primary stimulus therefore give rise to variations 
in the total mean level (primary~ background). In order to 
minimise these departures from fixed level working conditions 
the modulation depth of the primary stimulus is again re- 
stricted to ten per cent (see Foster, 1970a). 

Attenuation characteristics were thus obtained as 
a function of the angular area, 0. With  the imposed 
restriction on available modulation depths (see above) 
the low frequency response, only, could be determined. 

In  Fig. 4 are shown the low frequency de Lange 
at tenuat ion characteristics for values of 0 ranging 
from 13 ~ to 360 ~ . The curves have been displaced for 
ease of examination. 

I t  will be seen tha t  there is no well-defined change 
in response shape with area, apar t  from a bodily 
downward shift with decreasing 0. The overall response 
is fairly flat, with little differentiation at  low fre- 
quencies, and breaks to commence the characteristic 
integration of the de Lange filter (% v. de Lange, 
1954) a t  approximately 9.0 c.p.s. 

4. General Analysis 

In  the following section, we determine the nature 
and organization of the constituent elements of the 
system model. The de Lange filter and the Reichardt 
multiplier are introduced, and some possible modes 
of output  interaction are examined. 

In  order to achieve the simplest possible represen- 
ta t ion of the system, we first make the following 
assumptions : 

i) The system has a well-defined input array (see 
Sec. 1.2. and Foster, 1970a). 

ii) The response of the system is dominated by  
those units with receptor element pairs lying along 
the direction of pa t tern  motion (see footnote, See. 5.3 e). 

iii) The population density of functional units is 
constant around the annular field, and the distribution 
of units maximally sensitive to clockwise motion is 
the same as tha t  of units maximally  sensitive to 
antielockwise motion. (See See. 3, and for experimental 
evidence, Foster, 1970a.) 

iv) The contribution of edge effects to the total  
response is not of pr imary  significance. This is sup- 
ported by  the following: 

a) Such effects fail to explain the onset of the 
stat ionary stroboscopic effect a t  angular areas 0 ~ 60 ~ 

b) Such effects are inconsistent with the observed 
smooth transition of ]1 from 0 ~--360 ~ (with no edges 
perpendicular to pat tern  direction) to 0 ~ 180 ~ (with 
two terminating edges perpendicular to pat tern  
direction). (See Fig. 2.) 

We now begin the analysis proper. 

4.1. The Nature and Organization 
of the System's  Functional Units 

In  Sec. 1.1. we distinguished two components to 
the total  system response, viz. 0 1 giving information 

about  the local temporal  fluctuations of the stimulus 
and 02  giving information about  the spatial ordering 
of these local temporal  fluctuations. Let  those sections 
of the system associated with output  O1 be termed 
V-units, and those sections associated with output  0 2  
be termed H-units. We now deduce something about  
the nature and organization of these V- and H-units. 

Referring to Fig. 3 it  is seen tha t  within experi- 
mental  error the ]u v. 0 response is independent of the 
spatial period 2. I t  therefore follows tha t  any  inter- 
action between V-units is spatially phase insensitive. 
[This spatial phase insensitivity is distinct from 
Reiehardt 's  pat tern phase insensitivity and from the 
single channel phase insensitivity of the visual system 
discovered by Forsyth  (1960).] I f  we neglect this 
phase independent interaction, we may  represent the 
V-units by  essentially straight-through (vertical) struc- 
tures. 

Referring to Fig. 2 it is seen tha t  the ]iv. 0 response 
is a function of spatial period 2, with the s tat ionary 
stroboscope effect commencing at  values of 0 up to 
60 ~ . I t  therefore follows tha t  in contrast  to the V-units, 
the H-units involve extensive lateral interaction and 
may  be represented by  essentially horizontal forma- 
tions. 

Two possible schemes for the organization of the 
H- and V-units are shown in Fig. 5. The R represent 

R 

O2 

R R ~R H R R 

0 2  0 2  0 2  

scheme a scheme b 

Fig. 5. Two possible schemes for the organization of the H- 
and V-units. The R represent receptors (or groups of receptors) ; 
the channels marked O1 carry information about the local 
temporal fluctuations of the stimulus, and the channels 
marked 02 carry information about the spatial ordering of 

these local temporal fluctuations 

receptors (or groups of receptors) each pair separated 
by  the angular distance, A 0. The two types of output  
channel 0 1 and 0 2 are indicated. 

With scheme (b), the possibility exists tha t  a 
directed motion response could be observed a t  some 
] z ~  ]u. In  practice this is not  observed and for the 
present we adopt  scheme (a) to represent the system. 

4.2. The Ident i ty  of the V- and the H-Units  

In  this section we show tha t  the V-unit may  be 
identified with the de Lange filter, and the H-uni t  
with some form of Reiehardt  multiplier. 

The V-unit is examined first. 
I t  has been noted (See. 3.2) tha t  the variation of 

the upper  critical frequency ]u, with angular area, 0, 
is independent of the spatial period, 2. This includes 
the limiting case of 2----0% i.e. a spatially uniform 
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field. Now the de Lange at tenuation characteristics 
are normally defined for spatially uniform fields, and 
thus as the most  economical assumption, we identify 
the V-unit with the de Lange filter. The at tenuation 
characteristics of the V-unit, as a function of O, are 
therefore given by  Fig. 4. 

I t  will be observed in Fig. 4 tha t  the de Lange 
at tenuat ion characteristics do not exhibit a weli-defined 
change in shape with area, 0, although there is a 
downward displacement of the curves with reduction 
in 0. I f  the sensitivity of the system to variations 
in 0 is a t t r ibuted solely to threshold variations, which 
simply shift the basic response along the attenuation 
axis, 0 may  then be eliminated from the V-unit 
description. In  this case, the V-units are t r u l y "  vert ical"  
(q. v. Sec. 4.1). We shall continue this discussion of the 
V-unit function in See. 5.1. 

We now examine the H-unit.  

a) Phase Comparison. The fundamental  operation 
performed by  the H-uni t  is tha t  of phase comparison. 
For  completeness we demonstrate  tha t  the Reichardt 
multiplier exhibits such a property.  

The response of the Reichardt  multiplier to sine- 
wave inputs may  be writ ten generally, (q. v. Reichardt 
and Varju, 1959, and Thorson, 1966) thus: 

r =G(eo) - sin (2~r- A 0/4) (1) 

where ~ o = 2 ~ ]  (/ is the temporal  frequency), G(eo) 
depends on the input waveform and the construction 
of the multiplier, A 0 is the input pair separation, and 4 
is the spatial period. 

For  the H-unit ,  the phase difference between 
receptor elements, 2 ~A r say, may  be expressed thus : 

27~. A r = 2:r.  A t /T  

= 2 z t .  IA 0/5 
= 2 z t .  A 0 / 4 ,  

where At is the time lag, T is the temporal  period 
of the signal, and 0 is the angular velocity of the 
pat tern.  

Therefore, Eq. (1) may  be rewritten: 

r = G (co). sin (2 : r .  A r (2) 

Thus, the response, r, of the Reichardt multiplier 
gives a measure of the phase difference between the 
two t ime-varying signals incident at  each receptor. 

b) The Stationary Stroboscopic E//ect. We now 
show identification of the Reichardt multiplier with 
the H-uni t  gives rise to an explanation of the station- 
ary  stroboscopic effect. 

From the curves of Fig. 2 giving hv. 0 for various 
4, it is observed tha t  the stat ionary stroboscopic 
effect is only elicited at  0 > 4/2 (for 4 =< 120~ I t  is 
also noted [see Eq. (1)] tha t  the Reichardt  multi- 
plicative interaction scheme gives positive response 
values for input  pair separations A 0 < 2/2 and nega- 
t ive response values for A 0 > 2/2 (providing A 0 < 4). 
I f  the H-uni t  is identified with the Reichardt multi- 
plier, the stat ionary stroboscopic effect may  be 
explained in the following way. 

For  angular areas 0 < 2/2, the maximum available 
H-uni t  input  pair separation is less than 4/2 (since 
z J 0 ~ 0 ) .  According to the Reichardt system, all 
H-uni t  outputs  are then positive. For 0 ~ 4/2, further 

H-units with input pair separations A 0 > 4 / 2  are 
introduced (A 0 g 0). These by the Reichardt system 
give negative outputs. Thus, for 0 > 2 / 2 ,  the total  
response consists of contradictory elements, (posi- 
tive elements implying the true pat tern direction, 
and negative elements implying the opposite to true 
pat tern direction). I f  we make the simplest assumption 
that  the H-uni t  outputs remain distinct, then the 
above situation is one which would give rise to the 
observed characteristics of the stationary stroboscopic 
effect (see Sec. 3.1). 

c) The Dependence o] /l upon 4. We now show 
tha t  the Reichardt scheme is consistent with the 
observed trends of the/zv.  2 data. 

The full expression for the sinewave response of 
the Reichardt multiplier shown in Fig. 6a is the 
following : 

k * O) 2 
r = (a 2 + o)~) (b 2 -4- co 2) " sin (2 ~t" A 0/2) (3) 

J . j R  R ~  

r R R 

r 

a 

74 

w 2 
r -- ~ .  s in (2 tTAe/> , )  

a 2 +W 2 

kw2 
r .- ia2+w2){b2+w2) 0 sin {2n~o/x)  

Fig. 6a and b. Complex frequency (s) domain representat, ion 
of two, two-element motion detectors. In (a) is shown the full 
Reichardt scheme (T(s) is a time-averaging element), and in 
(b) is shown Thorson's simplification of the Rcichardt scheme. 

The sinewave response of each system is indicated 

where a, b, and k are real positive constants. I f  the 
output,  r, of the multiplier is held at  some constant 
value then for eo >~ a, b, we have: 

o ~  = k ' .  s in (2 ~ .  A 0/4) .  (4) 

For Thorson's simplification of the full Reichardt  
scheme (see Thorson, 1966, and Fig. 6b), we arrive 
a t  a similar expression. 

= k " -  sin (2 = .  ~ 0 /4 ) .  (5) 

Thus, it is seen that,  at  constant output,  both 
versions of the multiplier imply an increase in temporal 
frequency with a decrease in spatial period. This is 
indeed the observed situation at  constant (threshold) 
motion response (q. v. Fig. 2). 

In  view of the arguments (a), (b) and (c), above, 
we provisionally identify the H-uni t  with some form 
of Reichardt multiplier. [The phase sensitivity of the 
system is discussed in Sec. (b).] We also make the 
simplifying assumption tha t  the filter characteristics 
of the H-units are independent of both 0 and A 0. 
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4.3. Maximum Inpu t  Pair  Separation, A 0max 

In  Sec. 4.2 b, it was proposed tha t  the stationary 
stroboscopic effect arises from the presence of both 
positive and negative elements in the total  motion 
response. Now, in order for the phenomenon to occur, 
0 must  be large enough for H-units  to be introduced 
with input pair separations, A 0 > 2/2. Since ~t ---- 120 ~ 
can give rise to the effect and 2 = 180 ~ does not (see 
Fig. 2), it follows tha t  the maximum angular input  
pair separation of the H-unit ,  A 0max, must  be greater 
than or equal to 120~ and less than  180~ Tha t  is, 
60 ~ ~ A 0max < 90 ~ 

This is discussed further in See. 5.3b. 

4.4. Summation/Threshold Units  

In  this section we examine the interaction of 
H-uni t  outputs  and V-unit outputs in terms of 
summation]threshold mechanisms. 

In  the case of the V-units, i t  has been proposed 
tha t  the parameter,  0, be shifted from the V-unit 
to the associated threshold unit. With the data avail- 
able it is not possible to distinguish between individual 
threshold shifts and output  summation effects in the 
variation of ]u v. 0. Two alternative schemes are shown 
in Fig. 7. 

t l ITvl  

: t, lo, t, 

E 3 

scheme a scheme b 

Fig. 7 a and b. Two possible V-unit summation/threshold sys- 
tems. In (a), each channel remains distinct, with each threshold 
unit T v , a function of 0. In (b), all channels first feed into the 
(spatially) phase-independent summer, ~.; this then ~eeds into 

0 
the single (0-independent) threshold unit, T v 

In  Fig. 7a, the Ol-channels retain their distinct- 
ness. Each channel has an associated threshold unit, 
T v ,  with 0 as a parameter.  In  Fig. 7 b, the 01-channels 
first feed (via some weighting function) into the summer, 
~.. The single output  of ~ then feeds into a single 
0 0 

threshold unit, T v (which does not have 0 as a para- 
meter). Providing the summer, ~., is spatially phase 

0 
insensitive in operation (q. v. Sec. 4.1), both schemes 
are equally valid representations of this portion of the 
system. 

We now study the H-uni t  summation/threshold 
system. 

In  proposing the origin of the s tat ionary strobo- 
scopic effect (see 4.2b) it was suggested tha t  all 
H-uni t  outputs remain distinct, thus preserving posi- 
t ive and negative components in the total  response. 
However, the sign of any H-uni t  output  depends only 
upon the input pair separation, A 0 (see See. 4.2 b), and 
therefore the above statement  applies solely to H-units  
with different A 0. For H-units with identical A 0, there 
is no such restriction, and the same two possibilities 
exist for output  interaction as do for the V-units. 

Thus, in Fig. 8a, the 02-channels, retain their 
distinctness, even within a set from identical H-uni t  
A 0. Each channel, independent of A 0 origin, has an 
associated threshold unit, T~ which has 0 as a para- 
meter. Alternatively, in Fig. 8b, the 02-channels from 
H-units  with identical A 0 feed (via some weighting 
function) into the (spatially phase-insensitive) summer, 
~z0. In  turn, the single outputs from each ~z0  feed 
0 0 

into single associated threshold units T R (which do not 
have 0 as a parameter).  

The effect of relative variations in H-uni t  popula- 
tion with variations in A 0 is discussed later. 

5. Detailed A n a l y s i s  

In  the following sections, the V-unit and the 
associated summation/threshold unit  are given specific 
descriptions. A representation of the general motion 
response of the system is established and a motion 
threshold condition derived from this. By  restricting 
the range over which this motion threshold condition 

Ii el t ~ez t Ao2 
2 I02 [O2 

[ 

~2 ~"AO2 

E 

o 

r 

scheme a scheme b 

Fig. 8a andb. Two possible H-unit summation/threshold systems. In (a), each channel independent of AO origin has an associated 
threshold unit, T H, which is sensitive to variations in 0. In (b), all outputs from H-units with identical AO first undergo 
(spatially) phase-independent summation in associated units, ~A0; these then feed into single (0-independent) threshold 

0 

units, Ttl 
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is applied, we deduce the detailed structure of the 
H-uni t  and derive the forms of associated total  and 
relative population weighting factors. 

I t  is shown necessary to modify the chosen Rei- 
chardt  scheme in order tha t  both the square and sine 
wave motion response data be fitted. I t  is further 
demonstrated tha t  this modification, changes the 
function performed by  the system to tha t  of running 
autocorrelation. 

5.1. A Full description of the V-Unit 
and Associated Summation/Threshold System 

Here, we obtain a specific description of the V-unit 
at tenuation characteristics, and determine the sen- 
sitivity of the associated summation/threshold system 
to variations in the number  of V-units in operation. 

We first derive the V-unit transfer function. 
In  Sec. 4.2, it was suggested tha t  the location of 

the parameter  0, be displaced from the V-unit to 
the summation/threshold unit. To obtain, from the 
experimental data, the resulting 0-independent atten- 
uation characteristics of the V-unit, the following 
procedure was carried out. 

Each of the de Lange at tenuation characteristics, 
obtained a t  a different 0 (q. v. Fig. 4) is shifted ver- 
tically to set the at tenuation equal to zero a t  low 
(tending to zero) frequencies, and the curves then 
superimposed. The "averaged" at tenuation charac- 
teristics thus obtained W (co) say, are shown in Fig. 9. 

I t  is seen tha t  there is some spread in the data 
values defining W (co), but  the low pass form is evident. 
The response characteristics are flat at  low frequen- 
cies, and significant at tenuation does not commence 
until the temporal  frequency exceeds 9.0 cps. 

Note. The phase shift characteristics of the V-unit 
are not available. This does not necessarily limit the 
system description, since both the threshold flicker 
response and the threshold (sinewave) motion response 
are independent of any  phase shift induced by the 
V-unit (see Forsyth,  1960; Foster, 1970a). For simpli- 
city we t reat  the V-unit as a pure at tenuator,  with 
transfer function W(eo), and implicitly incorporate 
any phase shift factor into the H-uni t  description. 

i n ! I i I 
a t t en .  
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Fig. 9. The O-independent, averaged, V-unit attenuation 
characteristics, W(w) 

Kybernetik 

We now examine the V-unit summation/threshold 
system. 

In  Sec. 4.4, two possible types of summation/  
threshold system for the V-unit outputs were distin- 
guished, viz., (a) in which all 0 1-channels are distinct, 
and (b) in which the O 1-channels undergo phase 
independent summation (see Fig. 7). With reference 
to scheme (a), let the sensitivity of each threshold 
Tv, to variations in the V-unit population (caused 
by variations in 0) be described by  [Pv(O)] -1. That  is, 
if a is the amplitude of the signal in the 0 1-channel, 
when / -~/u, then: 

a=Tv" [Pv(O)] -1. (6) 

With reference to scheme (b), let each O 1-channel 
feeding into the summer ~. be weighted by P~,(0). 

0 

That  is, when / = / u ,  we have (remembering tha t  ~. is 
spatially phase insensitive): 0 

O. P~(O)" a~-T r (7) 

where 0 gives a measure of the total  number  of outputs 
contributing. For the two schemes to be equivalent, 
we require the following equality to hold: 

Pv(O) = O. P~(O). (8) 

Thus, when Pv(O) is specified experimentally, so 
is P~, (0). Therefore, in the remaining discussion, we refer 
solely to Pv (0). 

Now, Pv(O) may be obtained from the curves of 
Fig. 4 by plotting attenuation a t  the lowest temporal 
frequency ( ]u=0.45c .p .s . )  as a function of 0. This 
method only yields six points defining Pv(O), and 
each is taken from an independently determined 
curve. In  order to obtain a more precise definition 
of Pv (0), direct measurement of flicker threshold as a 
function of 0(at ] u : 0 . 4 5  c.p.s.) was carried out. The 
same experimental technique was used as in the deter- 
mination of the de Lange attenuation characteristics 
described in Sec. 3.3. 

The results of these measurements are displayed 
in Fig. 10. I t  may be seen tha t  on a log-log plot, 
Pv(0) may  be described by  two linear sections, with 
gradients cl ~ _ 0.7 and c 2 ~-0.3, and with break at 
0 --~ 90 ~ 

5.2. The General Motion Response ~ ,  
and Motion Threshold Condition 

In  order to precede with the specification of the 
H-uni t  and associated summation/threshold unit, i t  
is necessary to establish an explicit representation of 

PvCO} ~.lOglo . . . . . .  
2.0 ~ o ~ o -  

] 6 ~ o . ~ + ~ t  ~ 

1.2 I "+~ 
~ i , | t ! n 8 

I0 20 30 50 I00 200 300deg. 

Fig. 10. The areal sensitivity, PF (0), of the V-unit summation/ 
threshold system. The r.m.s, deviation associated with each 

point is indicated 
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the total  motion response of the system, and derive 
an appropriate motion threshold statement. This we 
now do. 

In See. 4.4, we discussed two possible types of 
summation/threshold mechanism for H-units of iden- 
tical input pair separation A 0. Associated with each 
mechanism, an areal weighting factor may be intro- 
duced (q. v. See. 5.1) to describe the sensitivity of 
the system to the number of H-units in operation 
(the latter determined by 0). If these factors are 
PH (0) and P~ (0), then, as with the V-unit summation/ 
threshold system, we may show that  for equivalence 
of the two schemes, P~(O)=O. P~(O). Hereafter, we 
refer solely to PH (0). 

Now P~(O) is associated with the total H-unit  
population. There also exists the possibility that  there 
are relative variations in the H-unit  population with 
variations in input pair separation, A0. Let  this 
relative weighting be described by the function 
PH(A 0). That  is, if the response of a single H-unit  
to some waveform is r~a(A 0), and the final weighted 
response [of a single H-unit  by scheme (a) of Fig. 8, 
or of a group of H-units by scheme (b) of Fig. 8] is 
r~a(A 0), then: 

r'~,a(A O) =Pa(O) �9 pH(A 0)" r~x(A 0). (9) 

The final motion response of the system then 
consists of all those r~x (A 0) large enough to surmount 
the associated thresholds, T H (T H > 0). 

Let  this set of outputs be ~ ,  then using conven- 
tional set-theoretic notation, we may write: 

= {r'o,,a(A O) :A 0 ~ [A 0mi n , A 0max], 
(10) 

where [A 0n~n, A 0max] is the set of all possible input 
pair separations, and r~a(A 0) is defined by Eq. (9). 

In order tha t  ~ may give rise to a sensation of 
motion with well-defined direction, we require that  
is non-empty, and, by the arguments of Sec. 4.2b, 
tha t  all r~x  (A O) have the same sign. (For simplicity 
this is chosen positive.) 

Thus, for a sensation of well-defined directed 
motion to be elicited at  some O, co, 4, the following 
must  hold : 

= {r'~a (A O):A 0 ~ [A Omi., A 0max], 
( l l )  

r~a  > T~} ~= r (the empty set). 

If the temporal (angular) frequency increases, 
r~x (A 0), and therefore r~a  (A 0), decrease in magnitude 
(q. v. Sec. 4.2c). Since it is necessary that  r'o~(A 0)) T~/ 
for membership of ~ ,  any increase in o) also implies 
a decrease in the population of ~ .  I t  then follows 
that  the greatest frequency for which ~ # r is the 
lower critical frequency, h (] ~ oJ/2 ze), (but see App. B). 

For r'o~,a(A O) all distinct, we need consider only 
one member of ~ ,  viz: r'o~,a(AO)max. The latter is 
defined by the following expression: 

r ~  ~ (A O)m~x = max {r~o~ ~ (A O) 
(12) 

:A 0 e [A 0 ~ ,  A 0m~x], r ~  ~(A 0) > 0}. 

Thus, for a sensation of well-defined directed motion 
t ~ be just perceived, the following equality must be 

satisfied (see App. B): 

max {PH (0) " PH (A O) " r~ ~ (A O) (13) 

:A 0 E [A 0min, A 0max], r~ a (A 0) > O} = T H . 

The above is referred to as the motion threshold 
condition. 

5.3. A Description of the H-Unit  
and Summation/Threshold System 

In the following, it will be shown that  by 
restricting, or holding constant, the values of 0, co, 
and 2, the threshold statement of Eq. (13) may be 
simplified to expressions which may be applied 
directly to the observed data. By this method, we 
determine for the ]=[-unit the most appropriate modi- 
fication of Reichardt multiplier (and therefore define 
r~(dO) for all input waveforms), and evaluate the 
two population weighting functions, P~ (0) and PH (A 0). 

a) The Choice o[ Reichardt Multiplier. In  Sec. 4.2 
it was demonstrated that  the H-unit  could be identified 
with some version of the Reiehardt multiplieative 
interaction scheme. We now determine the most 
appropriate version. 

The sinewave response of the H-unit  can be 
expressed, generally, in the following form (see 
Sec. 4.2): 

ro,~(A O ) :  G(o~) �9 sin (2~"  A 0/4) (14) 

]c~o 2 
where G (w) -- (a 2 + ~ )  (b 2 + eo~) ' if the full Reichardt 

scheme of Fig. 6a is used for the H-unit, or G(eo) = 

co if Thorson's simplification of Fig. 6b is a S ~- ~o ~ , 
adopted. W(eo), the V-unit at tenuation factor (q. v. 
Sec. 5.1) may be omitted, since W(eo) is unity for 
/ < 9.0 c.p.s, and for sinewave stimuli, ]~ < 9.0 c. p. s. 
(see Fig. 2). 

For  o~ >> a, b, Eq. (14) reduces to the following: 

r~,~(A 0) 1 .  sin (2~ .  A 0/4) (15) 

where n----2 for the full Reichardt scheme, and n = 1 
for Thorson's simplification. I t  may  be shown that  
other modifications of the Reichardt scheme give 
different values of n. We use n to indicate which scheme 
is the most appropriate. 

Consider values of A 0 < 2. sin (2 g A 0/4) may be 
replaced by its argument, and the condition of 
r o ~ (A 0 )>0  may be dropped from the threshold 
statement of Eq.(13).  Substituting for r~a(AO), 
Eq. (13) may thus be written: 

max (PR(O) �9 p , ( A  0)" 
(16) 

(0) -n"  2 Yl A 0/~):  A 0 e [A 0min, A 0max] } = T  H . 

The operation of taking the maximum is with respect 
to A 0, and the above therefore reduces to: 

P/t (0) �9 a~ -n. 2 z/2 
(17) 

�9 m a x { p  H (A 0) �9 A 0: A 0 E [A 0rain, A 0max] ) = T I t .  

Now, max{pn(A O) �9 A O:A OE[A 0rain, A 0max] } is not a 
function of o) or 4, and at  fixed 0, max{pH(AO ) "AO 
: A 0 E [A 0rain, A 0max]} is constant. Let  0 be fixed at 
0mi n (the minimum area for which sensation of directed 
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motion  m a y  just  be elicited), then, providing 2 is no t  
too small, the condit ion A 0 ~ 2 is satisfied, since A 0 
is restricted to  the closed interval  [A 0~i., 0rain] and 
0 r ~ n = 1 3  ~ Fur thermore,  with 0 constant ,  PH(O) is 
constant .  Eq.  (17) therefore simplifies to  the following: 

/ r  = constant /~.  (18) 

This m a y  be applied to the mot ion  response data  for:  

i) Sine-wave stimuli ( r ~ ( A 0 )  is the sinewave 
response of the multiplier). 

ii) 0 = 0,~n- 
ifi) 2 no t  too small (with respect to 0~. ) .  

Most of the experimental  da ta  is for square wave 
stimuli (see Fig. 2). However ,  f rom the curves of 
Fig. 2a,  displaying l~v. O, 4, for both  square and 
sinewave stimuli, i t  m a y  be seen tha t  for / ~_ 1.0 e. p. s., 
there is no significant difference in response form for 
the  two stimulus waveforms. Therefore, for the pur- 
poses of this prel iminary analysis, the square wave 
da ta  (for 2 < 180 ~ is t reated as sinewave. 

I n  Fig. 11, we have replot ted on a log-log scale 
the observed [~v. ~ response for intermediate values 
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Fig. 11. The dependence of the lower critical frequency, 
h ,  upon spatial period, 2, at 0 = 0mi n (see text). Unless other- 
wise indicated, all data values are for square wave stimuli. 
The r.m.s,  deviation associated with each point is marked 

of 2 with 0 = 0n~n = 13 ~ I t  is seen t h a t  the  gradients 
are closer to  un i ty  than  any  other  integer, and in 
view of the elevation of the square wave response at  
large 4, we chose n = 1. Thus, Thorson 's  simplification 
of the Reichardt  scheme is determined to be the most  
appropr ia te  representat ion of the H-unit .  

b) The General Form o] the Relative Weighting 
Factor, pH(ZJO). I t  was shown in Sec. 13 tha t  there 
exists a max imum  value to the input  pair separation, 
A 0, viz./1 0max. Since A 0max if finite, we have : 

pH(/10)=O, for d 0 > d 0 m a  x . (19) 

Fur thermore ,  since the ]~v. 0 curves for 2 = 180 ~ and 
360 ~ are monotonic  (q. v. Fig. 2), it follows tha t  
p~(XO) is also monotonic.  F rom this and Eq. (19), we 

require pn(AO) to decrease smoothly  to zero. I n  
practice we might  chose something of the form:  

1 
p~(O)-- AOm, for AO<AOmax, m>.,~l (20) 

= 0, for A 0 >/1max" 

I t  is shown in the next  section tha t  we need not  
be this specific in defining Pn (A 0). 

c) The Areal Weighting Factor, PH(O). We now 
deduce the form of the weighting funct ion PH(0), 
associated with the total  H-uni t  population. 

Consider the threshold s ta tement  of Eq. (13). Sub- 
st i tut ing PH(/1 0) defined by  Eq. (20) and r~a(/1 0) by  
Eq. (14) into this expression, we obtain the following 
(for sinewave stimuli): 

max  {PH (0)- A 0 -m. a . sin (2 ~ . /1  0/4) 
a ~ + ~2 (21) 

:A 0e  [A 0min, /1 0max] , Sin (2~"  /I 0/k) > 0} Y~. 

Now, A 0max < 90 ~ (q. v. See. 4.3), and therefore for 
2 > 1 8 0  ~ the condition, s i n ( 2 ~ -  A 0 / ~ ) > 0 ,  m a y  be 
omi t ted  f rom the above statement.  We m a y  also 
take out  all those factors which do no t  contain A 0. 
This gives : 

�9 max{A 0 -m. s in(2~ �9 A 0/k) PH (0)" aS + ~~ ~ 
(22) 

: A 0 ~ [/10ram,/10m~x]} = Tz. 

But,  max  {A 0 -m. sin (2 ~ . / 1  0/k) : A 0 E [A 0~n,  A 0max]} 
= A 0mien �9 sin(2 z " / 1  0~n/2) for m >-1 [% v. Eq. (20)], 
and this is true for all 2".  [ I t  is noted tha t  this simpli- 
fication foUows for any  function pH(A O) which falls 
off a t  least as rapidly as (sin A 0)-L] 

Assuming tha t  PH (/1 0) falls off a t  least as rapidly 
as (sin zJ 0) -1, Eq. (22) reduces to the following (for 
sinewave stimuli with ~ > 180 ~ : 

PH (0). PH (A 0rain) " sin (2~r. A 0rain/X) ~ = T H. (23) a 2 A- c0 ~ 

I n  practice, only two values of ~ > 1 8 0  ~ are 
available, viz. 180 ~ and 360 ~ (q. v. See. 2). We show 
below tha t  for ~ = 180 ~ the rate constant  a of Eq. (23) 
m a y  be omitted. 

I t  is observed (Figs. 2a, e) tha t  with a sinewave 
stimulus of 360 ~ a directed mot ion response cannot  
be obtained for 0 < 2 0  ~ This is in contras t  to  the 

~ 180 ~ case. We interpret  this phenomenon in terms 
of Eq. (23) in the following way. 

The L H S  of Eq.  (23) has a max imum value, with 
respect to w, of 

[PH(O)" PH(A 0mi~) " Sin(2 ~r �9 0mi,/2) " (1/2a)]. 

I f  PH(O) is reduced to  such a value tha t  this expression 
is less than  TH, then Eq. (23) can no longer be satisfied 
and h cannot  be defined. I t  is suggested tha t  in the 
present case, with ~ = 3 6 0  ~ the reduct ion in PH(O) 

�9 If we include H-units with input (receptor) pairs at 
angles d to the direction of motion, then the expression in 
brackets becomes: 

max {A 0 -m. sin (2 n-  A 0. cos ~/~) 

: zJ 0 C [A 0min, ZI 0max], r E [0, re]} 

assuming PH (A 0) is not a function of ~. This reduces to the 
simpler expression in the text (q. v. Introduction, See. 4). 
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for values of 0 < 20 ~ is such tha t  the L H S  of Eq. (23) 
is less than T H, and at  0-----20 ~ just equal to T H. 
Accordingly, an approximate value of a is given by  
the value of h at  0 = 20 ~ ~ = 360 ~ 

From this, and general inspection of the sine re- 
sponse curves of Fig. 2 it is seen tha t  a is only signi- 
ficant a t  low temporal  frequencies, and m a y  be 
neglected for the t---- 180 ~ response. 

Thus, if the t ~--180 ~ response, only, is considered, 
Eq. (23) simplifies to the following: 

PH ( 0 )  ~--- constant/~ (0). (24) 

Tha t  is, the 1 =  180 ~ /~v. 0 sine response gives a 
direct measure of the areal (population) weighting 
function, PH(O). 

I t  will be shown later that ,  analogously to Pv (O), 
PH (0) may  be described by  the following function: 

PH(O)=0% for 0 < 0 b  

= k" 0 c', for 0 > 0b, k = 0(b cl-e'). (25) 

To summarise, we have obtained for the H-uni t  
the most appropriate version of Reiehardt multiplier, 
fixed the general form of the relative (population) 
weighting factor, PH (A 0), and arrived at  a description 
of the areal (population) weighting factor, PH(O). We 
now examine the fit  of the model to the observed 
data. 

The threshold s ta tement  of Eq. (23) may  be 
simplified with the inclusion of pH(A O) in the constant 
TH. PH(O) may  also be replaced by  the expression of 
Eq. (25). This gives: 

0 v (~ "sai l  (2 ~1: . /10min/~  ) = TH, c = c 1 o r  c2 (26) a 2 + o) 2 

which holds for all 0, providing ~ = 180 ~ or 360 ~ For 
this range of 2, variations in A 0mi n (/1 0mi n =< 0mi n = 13 ~ 
are not significant in determining the relationship of 
one curve with respect to another. For the present, 
we assign an arbi t rary value to A 0min (less than  13 ~ 
and determine a specific value later. 

Eq. (26) was fitted to the /iv. 0 sine data of 
Fig. 2. The results obtained are displayed in Fig. 12 
and the final values of the parameters  indicated. 

The significance of the rate  constant a is evident 
at  low 0, in tha t  the ~----360 ~  response is depressed 
in relation to the 180 ~ response. I t  is also noted tha t  
PH(O) defined by  Eq. (25) provides an adequate 
description of the/~v. 0 dependence. 
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Fig. 12a-c. The /lv. 0, 2 sinewave response of the model 
compaxed with the experimental sinewave data. (a) and (b) 
show theoretical fits to the sinewave data of Figs. 2d and 2a 
respectively, and (c) shows the theoretical fit to the sinewave 
data of Fig. 2e. The relevant parameter values axe indicated 

in each ease 

5.4. A Revised Description of the H-Uni t  

We examine here the ability of the proposed 
scheme to provide a description of the square-wave 
motion-threshold response data. I t  will be shown 
necessary to extend the threshold s ta tement  of Eq. (13), 
and to modify the representation of the H-uni t  by  
Thorson's simplification of the Reichardt  scheme. 

In  Sec. 5.2 it  was shown tha t  in order for a sensa- 
tion of well-defined directed motion to be just elicited, 
the following (motion-threshold) s ta tement  must  hold: 

m a x { P  H (0)" PH (/I 0)" r~  (A O) 
(27) 

: A 0 6 [A Omin, A Omax],r~ (A O) > 0 }  = T H. 

6 Kybernetik, Bd. 8 

Providing the relative weighting factor, pH(A 0), 
fails off at  least as rapidly as (sin A 0) -1, then the 
above reduces to the expression of Eq. (26), describing 
the sinewave /zv. 0, ~ motion response. A description 
of the population weighting function, PH(O), is also 
obtained. 

In  order to arrive at  a description of the square 
wave data, an expression for the H-uni t  square wave 
response must  first be derived. This is then inserted 
in the above. The steady-state response of Thorson's 
scheme to a square wave train of unit  amplitude, is 
given (Foster, 1970a) by  the following [V-unit 
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Fig. 13. Representation of the complete model in the complex 
frequency (8) domain (see text) 
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Fig. 14. The variation of the H-unit  square wave response, 
r~,~(AOo, t) with time, t, (t in units of the period, T) at fixed 
A00. For A=360  ~ / : 0 . 7 h z ,  and for ~ = 4 0  ~ / = 3 h z ;  the 
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Fig. 15. The variation of the maximum H-unit  output with 
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input pair separation, A0. For  k = 4 0  ~ / = 3 h z ,  and for 
~t=360 ~ / = 0 . 7 h z ;  the rate constant, a = 0 . 3 2 h z ,  and 

k = 0.6 hz 

attenuation, W (co), included] : 

+co 
roa(A O, t) = ~, ~, W (nco) W (n'co) 

n r 
odd 
+1 
16co [ coscon't - sin con(t + At) 
zt 2 [ n(a 2 + co 2 n'2) (28) 

sin con't - cos con (t -I'- At) 
n' (a ~ -f- co~n s) 

aco . s incon ' t . s incon( t+zJ t )  [ ~ '  - - ~ ] ]  
(a s + co 3 nS). (a s + m~m 's) 

I t  is noted that  the response is t ime-dependent 
even in the steady state, in contrast to the sinewave 
response [q. v. Eq. (1)]. 

I f  the threshold statement of Eq. (13) is rederived 
from the general motion response, [Eq. (11)], with the 
H-uni t  response now as a function of both A 0 and t, 
the following extended condition is obtained: 

m a x  {PH (0)" PH (A 0 ) "  reo 2 (A 0,  t) : • 0 E [A 0min, A 0max], 
tE(T', ~), r~(AO, t)>O}=TH (29) 

where (T', oo), T'>> l/a, is the time for which the 
steady-state response only, need be considered. 

I f  r~z(AO, t), defined by Eq. (28), is substi tuted 
into the above expression, and the maximum evaluated 
with respect to both A 0 and t, it is found tha t  the 
values of l1 predicted are considerably in excess of 
these recorded. That  is, the model in its present 
form, with Thorson's simplification of the Reichardt 
scheme for the H-unit,  does not yield a true description 
of the observed square-wave response data, although 
the sinewave data may certainly be fitted. 

In  order to reduce the significance of the higher 
harmonies, without affecting the response to the 
fundamental ,  we introduce into the H-uni t  output  a 
low pass filter with transfer function: 

k 
X (s) --  (30) s + k  

where s is the complex frequency, and k is a real 
positive constant. Such a filter at tenuates the time- 
varying component of the output, only, and this 
leaves the sinewave response intact. 

In  Fig. 13 we show the full scheme with this new 
modification incorporated. 

Note: The introduction of this output  filter modifies 
the function performed by  the system to include the 
operation of running autocorrelation (q. v. Licklider, 
1951, and App. C). This contrasts with the operation 
of "straight" autocorrelation carried out by the basic 
Reiehardt scheme (Reichardt and Varju, 1959). 

I f  we now rederive the steady-state square-wave 
response of a single H-uni t  (q. v. App. D) we obtain 
the following : 

r~(AO, t) 
+~176 4 eJn2n'AO/~ [ 1 1 ] 

odd (31) 
�9 eito(n+n,)t k 

k + j ( n  + n')w " W(nco)  W(n'o.)) 

which may now be inserted into the threshold state- 
ment  of Eq. (29). 
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In  order to determine the maximum of pH(A 0)" 
r~a(AO, t), with respect to AO and t, [% v. Eq. (29)], 
we must first find the conditions under which the 
requirement r~a(A 0, t ) >  0 is satisfied. 

In  Fig. 14 is shown the variation of r~,~(AO, t) 
with t, at fixed A 0, for two values of 2, viz: 40 ~ and 
360 ~ . In Fig. 15 is shown the variation of 

max{  ~-~.r~(AO, t) :tE(T', oo)} 

with A 0, also for these two ~ values. 
I t  is seen that  the following two conditions are 

satisfied: 

i) For 2 _-- 180 ~ ro~a(A 0, t) > 0 for all A 0, and for 
2<180  ~ r~a(A O, t) > 0  for A 0 <~/2 .  

ii) For m-->1, A 0----A 0ma. yields a maximum of 
[A 0 -~ �9 r,~a(A O, t)] with respect to A 0. 

I t  is possible to prove (Foster, 1970a) tha t  these 
two statements are true for a first approximation to 
expression (31) defining ro,~(A O, t). I t  is noted that  (i) 
is consistent with the observed conditions for the 
stationary stroboscopic effect (q. v. Sec. 3) and that  
(ii) is also true for the sinewave case (q. v. See. 5.3c). 

Substituting r~(AO, t) defined by Eq. (31), and 
PH(O) defined by Eq. (25), into the threshold state- 
ment of Eq. (29), we obtain the following relationship 
between the input variables: 

O~-exp[~-x "in~TH/~-~-'r,  na(AOmin, t'max}] 
k / ~ ~min 

for 0<0b  (32) 

= exp [~-ln{TH/~'ro,~(AOmin,Omax'O(bC'-c ' )}]  

for 0 --> 0b 

providing that  ff 2 < 180 ~ 0 <~]2. The subscript max 
is with respect to time. 

Values for the constants a, TH, Oh, c 1 and cz, obtained 
earlier (Sec. 5.3), were inserted into Eq. (32) and this 
was then fitted to the square wave data of Fig. 2 
using trial values of k and A 0rain (k affects the low 
frequency end of the response and A 0m~n, the small 

end of the response). The theoretical fit to the data, 
and optimum parameter values, are displayed in 
Fig. 16. 

In Fig. 16a, the theoretical fit  to the sine and 
square wave data of Fig. 2a is shown, for ~ =  180 ~ 
and 360 ~ In Fig. 16b, the fit to the data of Fig. 2e, e 
is shown, also for ~t= 180 ~ and 360 ~ In Fig. 16c is 
shown the theoretical fit  to the square wave data of 
Fig. 2 b for all experimental values of 2. 

The elevation of the square wave response with 
respect to the sinewave response, at low temporal 
frequencies, is evident. 

6. Prediaion~ o/the Model 
We now obtain predictions from the model con- 

cerning the behavior of the real system, and then 
subject these predictions to experimental test. The 
particular property that  is investigated is the phase 
sensitivity of the model (and the system) to variations 
in the phase structure of the stimulus pat tern (q. v. 
Reichardt and Varju, 1959). 
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6.1. The Phase Sensitivity of the H-Unit Response 
We first determine the response of the H-unit to 

a general, moving spatially-periodic waveform. Let the 
fixed-point time-varying course of this signal be 
described by ] (t) with period T. 

Referring to Fig. 13, showing the full model, 
let ](t) be incident at  input (a) and / ( t~ -A t )  be 
incident at input (a'). Let F (s) be the Laplace trans- 
form of ](t), and R(s) be the Laplace transform of 
the final response, r ~ ( A  0, t). Following the signals 
through the system, we obtain the relationship below: 

R ( s ) =  F ( s ) * F ( s )  8 + a J  

k (33) 
{ F ( 8 ) ,  F(s). e~}t - -  F(S)" s + a  8-[-k 

where * represents the operation of convolution. (The 
attenuation due to the V-units is omitted.) 

Performing the convolution, and inverting back 
into the time-domain, we arrive at  the following 
expression for the steady-state response: 

-{- oo o~ 2 

- ~  m (34) 

.[ 1 1 ] /c 
a + j m n  a+jo~m ]cTjoJ(n+m) 

. & ( j o ~ ) & ( j o . n )  

with T 
F0(]o~n) = f / ( 0 "  e-J~"t dt. 

0 

If  we write Fo(~eon)=lFo(]o~n)I .e jr176 where 
~b (wn) is the phase structure of the stimulus pattern, 
then F 0 ( --  ]o) n) = I F0 (]w n) l �9 e-J~ (~ n). Substituting in 
Eq. (34), we see that  those terms of the double sum 
with n = - - m  are independent of the phase structure 
of the stimulus pattern, whereas those terms with 
n ~ = - - m  are not independent of the phase structure 
of the stimulus pattern. (It will also be noted that  
n = -- m implies time-invariance, and n ~= -- m implies 
time-dependence.) 

I t  may also be shown (Foster, 19703) that  atten- 
uation by the factor 

{[, 1 

in Eq. (34) is such that  m ~ - - n  only gives rise to 
signifieant contributions to the total motion response 
when o) is low. At high ~o, the dominant term of the 
summand is that  with m = - - n  = • 1. 

We therefore have the following: 
i) At low co, the response of the model depends 

upon the phase structure of the stimulus pattern. At 
high co it does not. 

From Eq. (32) it is seen that  large co implies large 0 
(at constant [threshold] motion response), and small w 
implies small 0. Thus (i) may be re-written: 

ii) At  small 0, the response of the model depends 
upon the phase structure of the stimulus pattern. 
At large 0, it does not. 

This property of the model, i.e., (i) [or (ii)] is 
directly attributable to the presence of the output  
filter, k/(s~-/c), and contrasts with the universal 
phase insensitivity of the original Reichardt scheme 
(Fig. 6a). 

6.2. The Phase Sensitivity of the System 
We now determine whether the system exhibits 

the frequency-dependent phase sensitivity predicted 
by (ii). The experimental technique adopted is de- 
scribed below. 

A radial grating with the waveform shown in 
Fig. 17 was substituted for the conventional square 
wave type. This grating consists of two elements, 
(ab) and (cd), of fixed angular subtenses X/3 and X/6 
respectively, and variable angular separation, zJ x. 
By varying A x, we vary the magnitude and phase 

a 
a b c d a 

I xl',l r 
I_ X. J 
r rl 

Fig. 17. The waveform and grating used in the phase sen- 
sitivity test (% v. Sec. 6.2). The two sectors, ab and cd have 
fixed angular subtenses; their angular separation, b c is variable 

of the Fourier components making up the stimulus 
pattern. If  F(nv)  is the Fourier transform the wave- 
form, we have the following for IF(nv)]e: 

iF(nv)t~ = 2 ~ n ~  [2 - cos (2 re n/3) 

- cos (vn A x) -- cos (vn A x') 

~- cos (2 re n/3 -~ vn zJ x) (35) 

~- cos (2 re n/3 + vn A x') 

--  cos {2 re n/3 ~- vn (A x Jr A x')}] 

where v = 2 7r/X. 
I t  may be seen that  interchange of A x and A x' 

leaves IF(nv)l ~ unaltered; i. e., IF(nv)l is a symmetric 
function of A x (or A x'), about the point A x --~ A x ' =  
90 ~ . 

Thus, if the system is insensitive to the phase 
structure of the stimulus pattern, i.e., operates on 
IF(nv)l, then the response should by a symmetric 
function of the shift variable A x (or A x'). Alter- 
natively, if the system is insensitive to the phase 
structure of the stimulus pattern, then the response 
should be an asymmetric function of A x (or A x'). 

To determine, then, whether the symmetry of the 
response depends on 0 in the manner predicted by 
(fi), the following experiment was performed. 

The lower critical frequency, /z was measured as 
a function of the shift variable, A x, at two extreme 
values of 0, viz: 17 ~ and 360 ~ Readings were taken 
in pairs, i.e., /z(Ax) and / l(90~ and the 
ordering reversed periodically to offset the presence 
of systematic drifts. Two naive observers were used 
as subjects. 

In  Fig. 18 the quotient of each pair of readings, 
/ l (90~ is plotted as a function of A x 
for each value of 0 (the s. d. is indicated). For both 
subjects, it is seen that  at 0 : 360 ~ ]l ( 900 -- A x)//~ (A x) 
remains close to unity, whereas, for 0 = 17 ~ there are 
sharp departures from unity. 
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I n  view of the earlier discussion, i t  follows tha t  
a t  small  0, the system exhibits  sensi t ivi ty  to the phase 
s t ructure  of the st imulus,  and  at  large 0, insens i t iv i ty  
to the phase s t ructure  of the  st imulus.  Predict ions (i) 
and  (ii) are therefore verified. 
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Fig. 18. The quotient of paired values of /l as a function of 
the shift variable x, at two values of 0. The r.m.s, deviation 

associated with each point is indicated 

7. Conclusion 

I n  line wi th  the s ta ted in ten t ion ,  we have con- 
s t ructed a funct ional  model  of the h u m a n  visual  
sys tem in  its response to a cer ta in  class of moving  
stimuli .  I n  order to demons t ra te  the va l id i ty  of this 
representat ion,  we ob ta ined  predict ions from the model 
concerning the phase sensi t iv i ty  of the  system, a nd  
then  verified these predict ions experimental ly .  

I t  is noted  t h a t  the f requency dependence of the 
model ' s  phase sensi t iv i ty  arises from the presence of 
the low pass o u t p u t  filter. This filter also modifies 
the func t ion  performed by  the model to include t h a t  
of r unn ing  autoeorrelat ion.  I t  is emphasised, however, 
t h a t  the filter was in t roduced in  order to reconcile 
the  square-wave mot ion  response with the  sinewave. 

As a f inal  comment ,  i t  is pointed out  t h a t  the 
range of va l id i ty  of the  model  is restr icted to the  class 
of i n p u t  s t imuli  defined, and  need no t  necessarily 
ex tend  beyond  this  range. 

A p p e n d i x  A 

Small .Signal  Lineari ty  
Let the response of some non-linear element to an input x 

be/(x), and suppose/(x) and all of its derivatives exist in the 
open interval (xo--a, xo-]-a). Providing A x < a ,  we may 
expand/(xo-4-Ax ) in a Taylor's Series thus: 

/(Xo + AX)=/(Zo)+ ~J:~. /'(Xo) 

(A x) 2 ./,,(x0 ) A- higher terms. (A.1) + --SV-., 

If A x is sufficiently small, then (A. 1) reduces to: 

f(x o -4- A x) = f(xo) -4- A x .  f (%) (A. 2) 
i.e., 

A / =  Ax .  /" (z0). (A. 3) 
Thus, the element with characteristic /(x) behaves linearly 

for small changes A x changes in the input. 
A nondinearity which satisfies the conditions on /(x) 

(q. v. Spekreijse and Oosting, 1970) and which is relevant in 
this context of the human visual system (see de Lange, 1954; 
Veringa, 1958) is log x. For this non-linearity, an error of 
less than ten per cent is introduced into the output if the 

linear approximation of Eq. (A. 3) is used with A x = O . l % .  
Such an error is within experimental tolerances (q. v. Sec. 3), 
and accordingly for this restricted range of input amplitudes 
we treat the system as consisting of linear elements. 

Append i x  B 
A Rigorous Definit ion o t the Lower Critical Frequency 

For a sensation of motion to be elicited, we require there 
to be at least one H-unit output, r', greater than the associated 
threshold, T//, i.e., at least one r'e(Tt~, or). The interval 
(T//, c~) has the greatest lower bound TH, but no minimal 
element. Since r' is a continuous function of / (and varies 
approximately inversely), it follows that there is a least 
upper bound to those / for which r '>Tl t ,  but no maximal 
element /l. Thus, strictly, the lower critical frequency ]t 
cannot be defined as the greatest frequency for which there 
exists some r" > T//. 

However, in practice, the system has a limited sensitivity; 
i.e., for each r'oE(Ttt , oo),we may choose a 6 > 0  such that 
for all r" ~ (r'o -- 6/2, r'o -4- 6/2), the induced sensation of motion 
appears the same. In particular, we may choose a (~0 > 0, such 
that the latter is true for all r '  ~ (TH, T/r-t- ~0). If r ' is defined 
to be a one-to-one function of I, g say, it them follows that we 
may wriim for this 60, the statement below: 

h ~ (g-~(TH+ 6o), g-~(Ttr)). 

By letting r' approach sufficiently close to T H (maintaining 
r '>TH),  ]l may be specified with an arbitrarily small (but 
non-zero) error. 

Thus although ]l cannot be defined rigorously as the 
greatest frequency for which r ' >  TtI , it is convenient abbre- 
viation of the above expression. In the "limit" we write: 

g-l(r,) =/ t ,  when r' = TH. 

A p p e n d i x  C 
To show that the Model Performs the Operation 

o] Running  Autocorrelation 
We work in the time-domain. Referring to Fig. 13, let 

time-varying signals, /l(t) and f~( t )=h(t--At) ,  be incident 
at the inputs (b) and (b') of the H-unit. After passage through 
the cross-filter, ]2(t) transforms to/~(t), thus: 

t 
llft) = f / 2 ( t - ~ ) -  e-a~d~. (C. 1) 

0 

On the LHS of the system, we have after multiplication: 
t 

h(O " f /~(t-~) . e-,~ed~ (c. 2) 
0 

and this, after transmission through the output filter, yields: 

t [ o' ] f e-k(t-t ' )  . h (t') . f ]~(V--~) . e-a~d~ dr'. (C. 3) 
0 

(A similar result is obtained for the RHS of the model.) 
Rearranging (C. 3) and putting ( t -  t ' ) =  ~/, we have: 

t Ft-~ ] 
f e - a e l f  e - k n . h ( t - - ~ l ) . / ~ ( t - - ~ - - $ ) d  ~ d~. (C. 4) 
0 LO 

The integrand of (C. 4) is large when ~ and ~ are small. 
We also require t large (tending to infinity) in order to achieve 
steady state. The upper limits on both integrals may therefore 
be extended to infinity. That is, to a good approximation, 
Eq. (C. 4) becomes: 

[0z ] ~e-a~ e-kn .h f f - -n) .12 f f - -~- -~)d  ~ d~. (C. 5) 

The expression in brackets [ ] is the rtmning crosscorre- 
lation function between fl(t) and f~(t--~). If )t~(t) is replaced 
by ]z(t--At), we obtain Lieldider's running autocorrelation 
function ~RAcF(t, T) (see Licklider, 1951), where 

Cm~CF(t, T ) =  7 w(t'),  l ( t - - t ' ) . / ( t - -  T - - t ' )  at'. (C. 6) 
o 

Here, T=At- t -$ ,  and w(t ' )=e-k t ' .  
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This may be contrasted with the "s t ra igh t"  autocorre- 
lation function r implied by the original Reichardt 
s theme: 

+~/2 

~bACF(T ) = lim - -  / ( t ) ' / ( t  -~ T) d t. (C. 7) 

-~/2 

Append i x  D 

The Steady-State Squarewave Response 
o / the  Modi/ ied H-Un i t  

Let ](t) be a square wave of unit amplitude and period T, 
and let the Laplace transform of / ( t )  be F(s). Then, 

F(s) = 1 [ 1 - e - ' T / 2  ] 
s l ~ e - S T / 2  �9 ( D .  1) 

Referring to Fig. 13, l e t / ( t )  be incident at input (a) and 
](t-~At) be incident at input (a'). Working in the complex 
frequency domain and following the signal through the 
system, we obtain the expression below for the intermediate 
output  R '  (s) at the point (/): 

R '  ( s ) :  {[V (s)'F(s)]* [s-~--a-'e "LIt" F(s)]} 
(D. 2) 

-- {[-~q._ a " V (s) " F(s)]* [V (s) " eSnt " F(s)]} 

whore * represents the operation of convolution, and F(s) is 
the transfer function of the V-unit. 

Substituting for F(s), defined by (D. 1), and writing 
the convolution in full, we obtain: 

R'(s)--  2rt j  V(s')" V(s--  s')" 

1 1 - -  e - ( S - s ' ) T / 2  

1 1 - -  e--s'T/2 

s 1 ~ e-s'T/2 
(D.3) 

1 eSAt.[ 1 ] 
s - - s '  l+e- (S - s s )  T/2 s ' + a  s - - s ' + a  ds" 

where 0 < a < Re (s). 
The intcgrand of (D. 3) has the following singularities to 

the left of s '=a:  
i) A simple pole at s ' =  0. 

ii) A simple pole at s ' =  - - a .  
iii) Singularities due to V(s'). 
iv) Simple poles at s' : j eo n, where ~o = 2 ~ /T  and n is odd. 
The residue at s" ~ 0 disappears on evaluation. The residue 

at s ' = -  a gives rise to a term when inverted back into the 
time domain, fMls of as e - a  t. In  the limit, as t--> c~, this vanishes. 
(We want the steady state component of the response.) The 
singularities of V (s) must all lie to the left of the imaginary 
axis, and these give rise to terms which also vanish at t-> ~ .  
Thus we are left with the residues at s" = jwn .  That is: 

+ o o  1 2 1 
R'(s) = ~,  V( jwn) .  V ( s - - j w n )  j~o n T/2 8 -- j o3 ,1~ 

o~d (D. 4) 
- - 0 0  

l + eSTI2 ei~nAt . [ 1  1 ] 
1 - - e - s~ l  2 ) couq-a  s - - j w n q - a  " 

Transmission of R' (s) through the output filter k/(s q-/c) 
(q. v. Fig. 13) and subsequent inversion back into the time 
domain yields the following contour integral for the final 

response rcoa(AO, t ) :  
a+jer 

ra, a(AO, t )= 12~j~j f est .[R'(s) .s--~lds (D. 5) 
a - - ~ o o  

where a > 0. 
The integrand of (D. 5) has the following singularities to 

the left of 8 = a: 
i) Simple poles at s =jo)n, n odd. 

ii) Simple poles at s =jo9 n -- a, and at s = -- k. 
iii) Singularities due to V(s --jeo n). 
iv) Simple poles at s = j w  m, m even. 
The residue at s = j w  n disappears on evaluation of the 

full expression, and the residues at (ii) and (iii) vanish in the 
limit as t--> vo (see before). Evaluating the residues as s = j w  m, 
we obtain the following: 

+ ~176 4 ejn2n'aO/a [ 1 ]  
- -  - -  rt ~ nn" a -[-jneo a § rm2(AO, t) 

n ~t s 

odd 
-oo (D. 7) 

k �9 eJ~ �9 W(no)) W(n'~o) 
k -q-j(n q-- n')co 

where V(s) has been replaced by W(co) (see Sec. 5.1), ~At  
has been replaced by 2 ~ A 0/~t (q. v. Scc. 4.2), and n '  = m --  n. 

This is the steady-state square-wave response of the modi- 
fied H-unit�9 
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