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Frequency of mismatching surface colors in the
wild
David H. Foster
Department of Electrical & Electronic Engineering, University ofManchester, ManchesterM13 9PL, UK (d.h.foster@manchester.ac.uk)

Received 3 July 2024; revised 19 November 2024; accepted 20 December 2024; posted 20 December 2024; published 31 January 2025

Colored surfaces may appear to match in one viewing condition but not in another, usually because of a change in
illumination. The aim of this computational study was to estimate the frequency of mismatching outdoors under
natural, uncontrolled, illumination changes, unlike the purely spectral changes in studies of illuminant metamer-
ism. Data were taken from hyperspectral radiance images acquired at intervals of 1 min to more than 4 h. For pairs
of randomly chosen surfaces in a scene, the relative frequency of their appearing initially the same and different later
was around 10−4 to 10−3, depending on color difference. However, if they already appeared the same, the relative
frequency was higher, around 6% to over 60%, much higher than for illuminant metamerism, suggesting that real-
world lighting changes may well impair surface identification by color.
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1. INTRODUCTION

If two surfaces in a scene look the same at one moment, will they
look different later? The answer is probably no, providing that
the only change in viewing conditions is in the spectral power
distribution of the illumination. Yet this proviso, which has been
common in studies of color appearance, is not always realistic
with outdoor scenes, where natural, uncontrolled, illumination
changes are more uneven, complex, and unpredictable than
changes in spectra alone.

The phenomenon of two surfaces appearing to have the
same color under one illuminant with a certain spectrum and
different under another is termed illuminant metamerism [1,2].
Its frequency of occurrence outdoors has been estimated in
a previous computational analysis of scenes whose effective
spectral reflectances [3] at each point were known. Under a
simulated change in illuminant from a daylight with a correlated
color temperature (CCT) of 25,000 K to one of 4000 K [4,5],
characteristic, respectively, of light from the north or polar
sky and light from the setting Sun, the relative frequencies of
metameric pairs, as a proportion of all pairs of matching surfaces
in a scene, ranged from around 10−2 to 10−1, averaged across 50
such scenes [6].

These frequencies, which are high enough to affect visual
inferences about material identity, are conditional in that the
pairs are assumed initially to match, or, more precisely, to have
color differences less than some threshold for discrimination.
When pairs were chosen without constraint, the resulting
unconditional relative frequencies were much lower, ranging
from around 10−6 to 10−4, for the same illuminant change [6].

Similar estimates have been recorded with large ensembles of
individual object reflectance spectra [7].

For clarity, the analyses of empirical spectra should be distin-
guished from those of hypothetical spectra that are metameric
[4,8–10] but which may not represent spectra in the real world
[11,12], where reflecting properties are complicated by typically
non-Lambertian behavior.

By contrast with changes in illuminant spectra, illumination
changes outdoors are more like a redistribution of light over a
scene [13,14]. Changing solar elevation and fluctuating atmos-
pheric transmission produce both large-scale and local changes
in direct and indirect illumination [15,16], with little change in
color cast during most of the day. In fact, the CCT of daylight
is largely constant ([17], Fig. 5) ([18], Fig. 7). Only for short
periods at dawn or dusk is there a pronounced spectral shift away
from or toward longer wavelengths [19].

Figure 1 shows an example of the effect of solar elevation
on the color appearance of natural non-Lambertian surfaces
at 14:33, 15:13, and 16:12. The pairs of square patches are
enlarged copies of the sample areas indicated in the images.

Changes in the upper pair are transient. They first match,
then mismatch, and then match again as the cast shadow moves
over the coplanar areas. Changes in the lower pair are progres-
sive. They first match, then mismatch, and then mismatch
further as the angle of incidence of the solar beam changes on
the non-coplanar areas. There are also small changes in the
spectrum of the direct beam, which affect neither matches nor
mismatches. With larger, heterogeneous scenes, the differences
in appearance are more varied still, as illustrated later. These
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Fig. 1. Effect of solar elevation on the color appearance of pairs of surface areas. The sRGB images were rendered from hyperspectral radiance
images acquired at 14:33, 15:13, and 16:12 [13]. The square patches are enlarged copies of the indicated areas averaged over approximately 1 mm2 of
the rendered image. The four locations are identical in all three images. The correlated color temperatures of the direct illumination on the scene were,
from left to right, 5615 K, 5526 K, and 5345 K.

changes in appearance are clearly different from those produced
by changes in illuminant spectra alone.

The aim of this study was to estimate computationally the
frequency of mismatching surface colors in outdoor scenes
undergoing natural illumination changes, over short and
extended time intervals. Both conditional and unconditional
relative frequencies were found to be much higher than with
simulated changes in daylight spectra.

2. MATERIALS AND METHODS

All computations were performed in the MATLAB computing
environment (Version R2023b, The MathWorks, Inc., Natick,
MA).

A. Hyperspectral Radiance Image Pairs

Hyperspectral radiance images were taken from sources listed in
the data availability statement. Technical accounts of the images
and their acquisition with a wavelength-scanning camera and
subsequent processing have been given elsewhere [6,14,20]. The
hyperspectral images were acquired at different times during the
day from 18 outdoor scenes in the Minho region of Portugal.
The scenes are illustrated by the sRGB images in Fig. 2 rendered
from the hyperspectral data.

The hyperspectral images were grouped into two sets. The
short-interval set consisted of just two images from each of the
18 scenes in Fig. 2, with intervals of about 1–15 min [14,20,21],
determined by the imaging conditions. The extended-interval
set consisted of multiple images from each of the four scenes in
the top row of Fig. 2 with intervals of about 1 min to over 4 h
[13]. Differences in time of day thus took the place of differences
in CCT used with simulated changes in daylight spectra [6].
Each image had dimensions of 1344 pixels× 1024 pixels and
spectral range of 400, 410, . . . , 720 nm. The shortest interval
of about 1 min between images was set by the process of image
acquisition [3]. The reported intervals are rounded to whole
minutes.

Standard MATLAB routines were used to register each of the
images over wavelength by uniform scaling and translation to
compensate for variations in optical image size [3]. Because of
their different acquisition times, the two members of each image
pair were also registered with respect to each other by translation
to compensate for any residual differences in optical alignment.
Goodness of alignment was determined to within 0.1 pixels
by maximizing the mutual information between the images,
estimated with an offset form of the Kozachenko–Leonenko
estimator [22,23], which converges more rapidly and accurately
than the original estimator [24].

For some scenes, padding artifacts a few pixels wide were vis-
ible at the edges of the images and were subsequently trimmed.
Images were calibrated for spectral radiance against independent
spectral radiance data recorded from one or more neutral ref-
erence surfaces embedded in each scene or introduced into the
field of view [3].

The angular subtense of each scene at the hyperspectral
camera was approximately 6.9◦ × 5.3◦. Since images were not
averaged over successive acquisitions to reduce noise, each was
downsampled by spatial averaging over 2× 2 pixels. Each pixel
therefore represented an image spectral radiance integrated over
an elementary area subtending approximately 0.6× 0.6 arc
min, possibly containing a mixture of several distinct spec-
tral reflectances at some finer scale, unresolved by either the
instrument or the eye [13].

B. Natural Illumination Changes

With much larger scenes than in Fig. 1, changes in solar eleva-
tion can affect surface appearance differently at different depths.
Figure 3 shows sRGB images rendered from a hyperspectral
radiance image of the scene in Fig. 2(d) at 16:07 and 17:11 and
a grayscale plot of the absolute differences in total radiance at
each point of the scene. Spectral radiances were scaled linearly
to match physically over the approximately uniform sky region,
where fluctuations in the intensity of the direct light, of the
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Fig. 2. Color images of the 18 scenes used in this study. Each of the scenes provided single pairs of hyperspectral radiance images separated by
short intervals of about 1–15 min [14,20,21]. Each of the four scenes in the top row also provided multiple pairs of hyperspectral images separated by
extended intervals of about 1 min to 4.6 h [13]. Adapted from Ref. [14] (Fig. 2) under CC BY 4.0.

order of 0.25%, were smaller than in light reflected from sur-
faces [14] and of the same order as independent estimates from
pyrheliometer recordings [25,26].

Differences in the reflected light are distributed over the
scene but tend to increase as the distance of the reflecting surface
decreases from the top of the grayscale image to the bottom.
The ratios of the mean and maximum absolute differences

in radiance relative to the mean radiance were about 9% and
340%, respectively (the grayscale plot was clipped to 99% of
maximum). Similar though smaller differences were found with
intervals of the order of minutes.

The number of scenes in Fig. 2 with these large-scale illumi-
nation changes was roughly the same as the number with more
local changes.
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Fig. 3. Changes in scene radiance over 64 min. The left and middle panels show sRGB images rendered from hyperspectral radiance images of the
scene in Fig. 2(d) acquired at 16:07 and 17:11, respectively. The right panel shows a grayscale plot of the absolute difference in total radiance at each
point clipped to 99% of the maximum. In the bottom left of the plot, the sphere has an oblique dark line across it marking the transition between
radiance differences of opposite sign but the same magnitude. The CCTs of the direct illumination on the scene at 16:07 and 17:11 were 5538 K and
5149 K, respectively.

C. Resolution Limits on Frequency Estimates

For convenience, the following summary of the system cali-
bration measurements is extracted from two previous accounts
[6,27].

The line-spread function of the imaging system was almost
exactly Gaussian with standard deviation (SD) of about 1.3
pixels at 550 nm. The intensity response at each pixel, recorded
with 12-bit precision, was linear over the entire dynamic range.
The nominal peak-transmission wavelength differed by less
than 1 nm from the actual peak-transmission wavelength, and
the bandwidth (FWHM) ranged from 7 nm at 400 nm to 16 nm
at 720 nm. A system measurement of the spectral reflectances of
a GretagMacbeth ColorChecker had a root mean square error
over wavelength of 0.25% [27].

Notwithstanding these measurements, the estimates of
the frequency of mismatching are limited not by the intensity
resolution at each pixel but by the frequency with which two
pixels match at one instant and mismatch by some multiple
of discrimination threshold at another. With a downsam-
pled image size of, say, M = 650× 500= 325,000 pixels,
the lowest frequency of resolvable pairs is 1 in M(M − 1)/2,
i.e., ∼2× 10−11. For computational reasons, the number of
pairs was limited to 5× 108, which corresponds to a lowest
resolvable frequency of 2× 10−9, several orders of magnitude
lower than the frequencies reported here.

D. Spectral Change Controls

To compare mismatches under natural illumination changes
with mismatches due to illuminant metamerism, images were
generated from each scene to simulate purely spectral illumina-
tion changes. Thus, one member of each pair of radiance images
(Section 2.A) was converted into an effective spectral reflectance
image by dividing it pointwise by the spectrum of the direct
illumination recorded from a reference surface in the scene [3].
The reflectance image was next converted into two radiance
images by multiplying it pointwise by daylight spectra [5] with
CCTs of 25,000 K and 4000 K, the largest spectral change used
previously [6]. Estimates of the frequency of metamerism under

this illuminant change were then obtained exactly as with natu-
ral illumination changes. Estimates from a previous analysis [6]
were not used since the sets of scenes and uniform color spaces
were different.

The foregoing procedure is an approximation and contingent
on the measurement of direct illumination, but it ensures that
individual pairs of surfaces drawn from the scene are treated
equally. The presence of shadows complicates the representation
of reflectances, though with little effect on frequency estimates
([6], Appendix A and Section 3.F).

E. Uniform Color Spaces

The spectral radiance at each image point was mapped into
tristimulus values and then into a color space where discrim-
inability could be quantified for a standardized observer and
viewing conditions [3]. Two color spaces were used with
different colorimetric properties. The first was the approx-
imately uniform color space CAM02-UCS [5], which has
coordinates (J ′, a ′M, b′M), where J ′ is a correlate of lightness,
a ′M of redness–greenness, and b′M of yellowness–blueness
(these chromatic axis names are not used attributively). Given
differences 1J ′, 1a ′M, 1b′M between two sets of coordinates,
the total color difference [2] was evaluated with the Euclidean
norm, 1E = [(1J ′)2

+ (1a ′M)2
+ (1b′M)2

]
1/2. When

color differences were assessed chromatically, i.e., without the
lightness term, the norm was adjusted to 1E = [(1a ′M)2

+

(1b′M)2
]
1/2.

The second color space was the popular albeit less uniform
CIELAB space [5], which has corresponding coordinates
L∗, a∗, b∗, with total color differences also evaluated with the
Euclidean norm. To preserve its interpretation, a more uniform
color-difference formula such as CIEDE2000 [28] was not
applied, but a chromatic adaptation transform CMCCAT2000
[29] was introduced because CIELAB does not accommodate
illuminants very different from average daylight [5,30]. With
both color spaces, the observer was assumed to be fully adapted
to the ambient illumination, which was recorded from a barium
sulfate plug or a neutral (Munsell N7) sphere or flat reference
surface placed in the scene [6,14,20].
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Fig. 4. Sampling from connected components. Panel (a) shows an sRGB reproduction of the scene in Fig. 2(i). Panels (b) and (d) show, respec-
tively, points in white belonging to CAM02-UCS [5] color intervals (30,−15, 15) to (45, 0, 30), selective for yellow–green surfaces, and (30, 30, 0) to
(45, 45, 15), selective for red surfaces. Panels (c) and (e) show the corresponding connected components in false color and the locations of single repre-
sentative points in white.

F. Threshold Color Differences

Reference threshold color differences 1E thr were specified for
each color space. These thresholds were used to decide whether
two surfaces were indistinguishable under one illumination and
distinguishable under another, and, if so, by what multiple of
the threshold. In practice, values depend on whether surfaces
are adjacent or not [31] and on the presence of other surfaces in
the scene [32]. These configurations were not tested individu-
ally but sampled randomly, thereby allowing for their natural
frequencies of occurrence.

For CIELAB space, a discrimination threshold of 1.0 has
often been assumed [33–35], though for detecting color
differences in scene images, empirical thresholds of about 2.2
may be more appropriate [32,36]. Both were tested. Higher
thresholds may be used in acceptability measures [37] and
categorization tasks [38]. Whatever the choice, expressing the
mismatch as a multiple of a threshold color difference reduces
the indeterminacy of near-threshold values.

Despite there being no unique mapping of CIELAB thresh-
olds to CAM02-UCS thresholds [39], a previous empirical
approximation over 50 hyperspectral images of outdoor scenes
[40] suggested a scaling factor of about 0.7. The two reference
thresholds of 1.0 and 2.2 for CIELAB space were therefore
transformed to 0.7 and 1.5, respectively, for CAM02-UCS.

G. Scene Sampling and Connected Surface Areas

Only the spectral properties of the light reflected at each point
in a scene were considered [14], not the local spatial attributes,
such as texture, shape, location, and proximity to other surfaces,
which, unlike the illumination, were taken as constant. A total

of 5× 108 unique pairs of points were drawn randomly from
each scene [6]. This pointwise sampling was indifferent to what
physically defined the contents of each scene [41], since that
knowledge was unavailable receptorally.

That said, a confound could have arisen with surface areas
where sample points were adjacent to or connected to other
sample points with similar reflecting properties and local
illumination.

To test the effect of what is a low-level articulation of the
scene, known to be important in other contexts [42–47], the
random sampling was repeated in a stratified way with pro-
gressively wider colorimetric tolerances on points in spatially
connected components from which just one representative
point was chosen.

The procedure was as follows. For a given CAM02-UCS
color interval width defining the tolerance, the range of coor-
dinates (J ′, a ′M, b′M) was divided into a finite number of
non-overlapping intervals, and each point of the image was
assigned to one of those intervals. For example, for a coordinate
interval of width 15, the range of J ′ values was divided into
intervals from 0 to 15, 15 to 30, and so on, and similarly for a ′M
and b′M. The color coordinates of a particular point, say (38,−4,
17), would accordingly belong to the interval from (30, −15,
15) to (45, 0, 30). Each subset of image points with coordinates
in the same color interval was partitioned into spatially con-
nected components. The J ′, a ′M, b′M values in each connected
component were therefore all within 15 of each other. Notice
that the J ′, a ′M, b′M values were not themselves quantized.

Samples still consisted of 5× 108 distinct pairs of points but
with no more than one point from each connected component,
rather than being drawn randomly from the scene as a whole.
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Fig. 5. Frequency of mismatching at integer multiples of threshold.
The logarithm of the conditional and unconditional relative frequency
of mismatching is plotted against the criterion multiple n of the
CAM02-UCS [5] threshold 1E thr

= 0.7. The boxes placed over the
data points mark quartile values. The panels on the left are for the 18
scenes in Fig. 2 with intervals between images of about 1–15 min. The
panels on the right are for the four scenes in the top row of Fig. 2 with
intervals between images extending from about 1 min to over 4 h. Data
points have been jittered horizontally for clarity.

The one point was chosen to be representative of the compo-
nent in having the median color coordinates, although random
selection from the component produced similar outcomes.

Frequencies of mismatching were obtained with interval
widths of 2.5, 5.0, . . . , 20. As the interval width increased, the
number of sample points decreased until a width was reached
where the number of pairs available reached the minimum of
5× 108.

Figure 4 shows an example of connected components for the
scene in Fig. 2(i) with CAM02-UCS color coordinates drawn
from two of 82 color intervals, each of width 15. Figure 4(a)
shows an sRGB image rendered from the hyperspectral radiance
image of the scene. Figure 4(b) shows all the points in white
that belong to the color interval (30, −15, 15) to (45, 0, 30),
which is selective for yellow–green surfaces. Figure 4(c) shows in
false color the connected components from those yellow–green
surfaces, and in white the locations of the single points in each
component used for frequency estimates. Figures 4(d) and 4(e)
show corresponding data for the color interval (30, 30, 0) to (45,
45, 15), selective for red surfaces.

The number of color intervals and their representative mid-
points should not be confused with the number of scene colors
that, in other circumstances, might be judged by an observer as

empirically relevant, for example, in describing a scene [48,49]
or categorizing its colors [50,51].

H. Relative Frequency and Discrimination Threshold

The frequency of mismatches in a scene undergoing a change
in the illumination was estimated by taking a random sample
of pairs of surfaces and counting the number of pairs for which
color differences were subthreshold before the change and
suprathreshold by a certain multiple n after the change. An
alternative approach modeled on the CIE special metamerism
index: change in illuminant [5] does not lend itself to this appli-
cation since it requires the initial color difference to be zero (or
corrected to zero) to avoid the risk of a confound [52].

In more detail, for a given scene imaged at times t1 and t2, say,
suppose that N distinct pairs of points are drawn randomly from
the scene (Section 2.G) and suppose that N0 of these pairs have
color differences 1E less than the chosen threshold 1E thr at
time t1, where N0 > 0. Suppose further that N1 of these pairs
have color differences 1E greater than n times 1E thr at time t2,
where n = 1, . . . , 4 specifies the criterion multiple. The uncon-
ditional relative frequency of mismatching in the scene is then
N1/N, and the conditional relative frequency is N1/N0. These
definitions are the same as in an earlier analysis of illuminant
metamerism [6].

As a side note, estimated median frequencies were similar
when the order of images was reversed, that is, when N0 of pairs
had color differences 1E less than 1E thr at time t2 and N1 of
those pairs had color differences 1E greater than n times 1E thr

at time t1.

I. Statistical Quantities

The main reporting statistics are median relative frequencies
across scenes and image intervals, according to context. Medians
were used in preference to means [6] to allow for occasional
extreme values with small samples. Logarithmic scales (base 10)
were used to stabilize variance and linearize dependencies across
relative frequencies. Uncertainties in estimates were quantified
with 95% confidence intervals (CIs) estimated by Efron’s BCa
bootstrap method [53] with 1000 bootstrap replications across
scenes and intervals.

3. RESULTS AND COMMENT

A. Relative Frequencies for Short and Extended
Time Intervals

Relative frequencies of mismatching varied with the scene, with
the interval between images, and with the criterion multiple of
the discrimination threshold. Figure 5 shows column scatter
plots of the logarithm of the relative frequency against the cri-
terion multiple n. The panels on the left are for all 18 scenes in
Fig. 2 with time intervals between the images of each scene of
about 1–15 min. The panels on the right are for the four scenes
in the top row of Fig. 2 with intervals between images of each
scene extending from about 1 min to over 4 h. The CAM02-
UCS reference threshold 1E thr specifying whether two surfaces
were indistinguishable was 0.7.

Across short and extended time intervals, median conditional
relative frequencies ranged from about 0.06 to 0.63, i.e., 6% to
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Table 1. Median Relative Frequencies of Mismatching Pairs under Natural Illumination Changes with CAM02-UCS
Threshold 1Ethr = 0.7

a

Criterion Multiple n of Threshold

Estimate Type Time Intervals 1 4

Conditional 18 short 6.3× 10−1 (4.3× 10−1, 8.5× 10−1) 6.0× 10−2 (1.8× 10−2, 1.9× 10−1)
4 extended 6.7× 10−1 (4.3× 10−1, 8.0× 10−1) 5.7× 10−2 (3.8× 10−2, 1.5× 10−1)

Unconditional 18 short 5.7× 10−4 (3.1× 10−4, 1.0× 10−3) 6.4× 10−5 (3.8× 10−5, 8.6× 10−5)
4 extended 1.8× 10−3 (1.5× 10−3, 2.0× 10−3) 2.2× 10−4 (1.1× 10−4, 3.6× 10−4)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details, including time intervals, as for Fig. 5.

Table 2. Relative Frequencies of Mismatching Pairs under Natural Illumination Changes with CAM02-UCS
Threshold 1Ethr = 0.7

a

Time Criterion Multiple n of Threshold
Scene Interval, Conditional Estimate Unconditional Estimate
Label Scene Name min 1 2 3 4 1 2 3 4

a Nogueiró 3 6.4× 10−1 1.9× 10−1 6.6× 10−2 2.5× 10−2 2.3× 10−3 7.0× 10−4 2.4× 10−4 9.2× 10−5

b Gualtar 3 1.9× 10−1 4.6× 10−3 1.2× 10−3 7.6× 10−4 6.7× 10−4 1.6× 10−5 4.4× 10−6 2.7× 10−6

c Sete Fontes 1 5.6× 10−1 1.2× 10−1 4.0× 10−2 1.8× 10−2 1.1× 10−3 2.4× 10−4 7.9× 10−5 3.6× 10−5

d Levada 2 1.8× 10−1 2.4× 10−2 9.2× 10−3 3.7× 10−3 7.0× 10−4 9.5× 10−5 3.7× 10−5 1.5× 10−5

e Souto Farm Barn 1 4.6× 10−1 1.0× 10−1 2.9× 10−2 6.6× 10−3 3.1× 10−3 6.9× 10−4 1.9× 10−4 4.5× 10−5

f Ruivães Fern 3 9.8× 10−1 9.0× 10−1 7.8× 10−1 6.5× 10−1 1.6× 10−4 1.4× 10−4 1.2× 10−4 1.0× 10−4

g Tibães Garden 4 8.8× 10−1 5.6× 10−1 3.3× 10−1 2.1× 10−1 2.3× 10−4 1.5× 10−4 8.7× 10−5 5.5× 10−5

h Ribeira Hotel 2 3.7× 10−1 3.8× 10−2 9.2× 10−3 5.5× 10−3 4.7× 10−4 4.9× 10−5 1.2× 10−5 7.1× 10−6

i Bom Jesus Red
Flower

8 9.6× 10−1 8.4× 10−1 6.9× 10−1 5.6× 10−1 9.5× 10−5 8.3× 10−5 6.8× 10−5 5.6× 10−5

j Tibães Corridor 5 7.6× 10−1 3.8× 10−1 1.8× 10−1 7.7× 10−2 5.5× 10−4 2.8× 10−4 1.3× 10−4 5.6× 10−5

k Ribeira Old Tower 2 4.6× 10−1 1.5× 10−1 5.5× 10−2 1.9× 10−2 1.5× 10−3 4.7× 10−4 1.8× 10−4 6.1× 10−5

l Santuário Sameiro 6 5.5× 10−1 2.4× 10−1 1.4× 10−1 8.9× 10−2 2.1× 10−4 9.1× 10−5 5.2× 10−5 3.3× 10−5

m Ruivães Cottage 3 9.2× 10−1 6.7× 10−1 4.6× 10−1 2.9× 10−1 2.7× 10−4 2.0× 10−4 1.3× 10−4 8.6× 10−5

n Gualtar Villa 15 3.9× 10−1 8.0× 10−2 4.8× 10−2 2.8× 10−2 2.3× 10−3 4.6× 10−4 2.7× 10−4 1.6× 10−4

o Ribeira Houses
Shrubs

3 4.9× 10−1 1.2× 10−1 5.8× 10−2 3.5× 10−2 3.8× 10−4 9.5× 10−5 4.5× 10−5 2.7× 10−5

p Vila Verde 7 6.5× 10−1 2.7× 10−1 1.6× 10−1 1.1× 10−1 5.5× 10−4 2.3× 10−4 1.3× 10−4 9.5× 10−5

q Ribeira Houses
Concrete

6 7.9× 10−1 3.8× 10−1 1.7× 10−1 8.3× 10−2 1.3× 10−3 6.1× 10−4 2.7× 10−4 1.3× 10−4

r Ruivães Ferns 10 9.7× 10−1 8.4× 10−1 6.7× 10−1 5.1× 10−1 3.4× 10−4 3.0× 10−4 2.4× 10−4 1.8× 10−4

aEntries show relative frequencies for individual scenes identified by letter as in Fig. 2 and by public name for download at Ref. [54]. The time interval refers to the
interval between successive images, which varies with the scene. Further details in Section 2.A.

63%, depending on the criterion multiple n of the threshold.
Median unconditional relative frequencies were much lower,
ranging from about 6× 10−5 to 6× 10−4. Both conditional
and unconditional frequencies declined steadily with increasing
n (see also Ref. [6], Fig. 3). Median values are summarized in
Table 1.

Relative frequencies for individual scenes are given in Table 2,
though values depend on both scene content and the interval
between images (Section 2.A). Examples of color mismatches
are illustrated in Table 3.

Relative frequencies with the higher CAM02-UCS threshold
1E thr of 1.5 had a similar distribution and are not plotted.
Conditional relative frequencies were lower, with median val-
ues ranging from about 1% to 40%. Unconditional relative
frequencies were higher, consistent with the higher threshold
for pairs to be discriminable. Median values are summarized in
Table 4.

Similar or somewhat higher unconditional relative frequen-
cies were obtained with CIELAB space and corresponding

reference thresholds 1E thr of 1.0 and 2.2 (Section 2.F) and
somewhat lower conditional relative frequencies. Median values
are summarized in Table 5 and Table 6.

B. Image Interval Duration

The interval between images is a convenient proxy for more
direct measurements of illumination change and its progres-
sive effects on mismatching. With short-interval image pairs,
interval duration varied with the scene, and since only one
interval was available (Section 2.A), its effects on the frequency
of mismatching were confounded with scene content. With
extended-interval image pairs, however, from 9 to 16 different
intervals were available for each of the four scenes in the top row
of Fig. 2.

Figure 6 shows for these image pairs, scatter plots of the
logarithm of the relative frequency of mismatching against the
logarithm of the image interval for criterion multiples n of the
threshold from 1 to 4. Open and filled symbols denote uncon-
ditional and conditional frequencies, respectively. The slanting
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Table 3. Examples of Matching and Mismatching Pairs of Surface Colors at Successive Instants
a

(a) (b) (c) (d) 
13:42, 13:45 13:44, 13:47 13:20, 13:21 14:09, 14:11 

•••• ••••••• • •••••
•••• • •••••• • •••••

(e) (f) (g) (h) 
13:13, 13:14 16:09, 16:12 - 15:03, 15:05

•••••• ••••
' •••••• • •••

(i) 0) (k) 0) 
15:03, 15:11 16:05, 16:10 17:13, 17:15 14:51, 14:57 

••••••
••••••

(m) (n) (o) (p) 
16:49, 16:52 11:20, 11:35 16:49, 16:52 12:03, 12:10 

•••• •••• •• •• 
•••• • ••••• • • 

(q) (r) 

16:05, 16:11 14:40, 14:50 

•••••• ••••••
•••••• • •••••

aEach panel (a) to (r) shows a scene image and three 2× 2 arrays of matching and mismatching pairs of surfaces at times t1 and t2. The top row of each 2× 2 array
shows the color appearance of a pair of surfaces in the scene at time t1 and the bottom row their color appearance at time t2. Scenes are labeled as in Fig. 2.

Table 4. Median Relative Frequencies of Mismatching Pairs under Natural Illumination Changes with CAM02-UCS
Threshold 1Ethr = 1.5

a

Criterion Multiple n of Threshold

Estimate Type Time Intervals 1 4

Conditional 18 short 4.0× 10−1 (2.7× 10−1, 6.5× 10−1) 1.2× 10−2 (4.4× 10−3, 4.0× 10−2)
4 extended 4.4× 10−1 (3.0× 10−1, 5.8× 10−1) 2.1× 10−2 (1.4× 10−2, 4.4× 10−2)

Unconditional 18 short 2.4× 10−3 (1.7× 10−3, 3.8× 10−3) 1.0× 10−4 (5.1× 10−5, 2.0× 10−4)
4 extended 7.6× 10−3 (5.1× 10−3, 1.0× 10−2) 3.5× 10−4 (2.1× 10−4, 8.6× 10−4)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details as for Table 1.

Table 5. Median Relative Frequencies of Mismatching Pairs under Natural Illumination Changes with CIELAB
Threshold 1Ethr = 1.0

a

Criterion Multiple n of Threshold

Estimate Type Time Intervals 1 4

Conditional 18 short 4.9× 10−1 (3.7× 10−1, 6.5× 10−1) 2.6× 10−2 (7.3× 10−3, 7.2× 10−2)
4 extended 5.9× 10−1 (4.5× 10−1, 7.1× 10−1) 4.7× 10−2 (3.0× 10−2, 7.2× 10−2)

Unconditional 18 short 1.1× 10−3 (8.3× 10−4, 2.2× 10−3) 6.7× 10−5 (3.6× 10−5, 1.1× 10−4)
4 extended 2.6× 10−3 (2.0× 10−3, 3.2× 10−3) 2.4× 10−4 (1.2× 10−4, 4.5× 10−4)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details as for Table 1.

lines are linear regression fits. High conditional frequencies
appear compressed because of the 100% ceiling on values. The
CAM02-UCS threshold 1E thr was 0.7.

The regression fits show an upward trend in conditional and
unconditional relative frequencies with increasing interval.
For example, for intervals of 1 min and 1 h, the conditional

frequency increases from about 34% to 62% for n = 1 and
from about 1% to 12% for n = 4. Estimates with 95% CIs are
summarized in Table 7.

Estimates with the higher CAM02-UCS threshold 1E thr of
1.5 were lower but had a similar distribution, summarized in
Table 8. Slopes of the regression lines are summarized in Table 9.
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Table 6. Median Relative Frequencies of Mismatching Pairs under Natural Illumination Changes with CIELAB
Threshold 1Ethr = 2.2

a

Criterion Multiple n of Threshold

Estimate Type Time Intervals 1 4

Conditional 18 short 3.1× 10−1 (2.3× 10−1, 4.4× 10−1) 6.4× 10−3 (1.4× 10−3, 2.9× 10−2)
4 extended 3.7× 10−1 (2.9× 10−1, 4.3× 10−1) 1.3× 10−2 (2.7× 10−3, 3.3× 10−2)

Unconditional 18 short 3.3× 10−3 (2.7× 10−3, 6.6× 10−3) 8.9× 10−5 (4.4× 10−5, 2.3× 10−4)
4 extended 1.0× 10−2 (6.9× 10−3, 1.5× 10−2) 3.6× 10−4 (1.2× 10−4, 9.1× 10−4)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details as for Table 1.
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Fig. 6. Frequency of mismatching and image interval for the four scenes in the top row of Fig. 2. The logarithm of the conditional and uncondi-
tional relative frequency of mismatching is plotted against the logarithm of the image interval with criterion multiple n of threshold from 1 to 4. The
slanting lines are linear regressions. The vertical dashed lines mark intervals of 1 min and 1 h. The CAM02-UCS [5] reference threshold 1E thr was
0.7.

Table 7. Conditional Relative Frequencies of
Mismatching Pairs under Natural Illumination Changes
for Selected Intervals with CAM02-UCS Threshold
1Ethr = 0.7

a

Criterion Multiple n of Threshold

Time Interval 1 4

1 min 0.34 (0.26, 0.47) 0.01 (0.00, 0.02)
1 h 0.62 (0.53, 0.72) 0.12 (0.08, 0.17)
4 h 0.76 (0.57, 0.96) 0.34 (0.19, 0.55)

aEntries show regression estimates of conditional relative frequencies with
95% confidence intervals in parentheses. Other details as for Fig. 6.

The parallelism of the regression fits for conditional and
unconditional frequencies at each n in Fig. 6 is analyzed in
Appendix B.

C. Simulated Changes in Illuminant Spectra

Replacing real illumination changes by simulated changes in
daylight spectra provides a reference level of performance unaf-
fected by changes in the distribution of light over the scene. The

Table 8. Conditional Relative Frequencies of
Mismatching Pairs under Natural Illumination Changes
for Selected Intervals with CAM02-UCS Threshold
1Ethr = 1.5

a

Criterion Multiple n of Threshold

Time Interval 1 4

1 min 0.18 (0.14, 0.26) –
1 h 0.49 (0.40, 0.57) 0.04 (0.02, 0.07)
4 h 0.69 (0.50, 0.86) 0.18 (0.07, 0.34)

aDetails as for Table 7.

spectral changes, from a CCT of 25,000 K to one of 4000 K,
were very much larger than natural changes in CCT over most
of the day ([17], Fig. 5) ([18], Fig. 7). The panels on the left of
Fig. 7 show the resulting column scatter plots of the logarithm
of the relative frequency for the 18 scenes in Fig. 2 against the
criterion multiple n of threshold. The CAM02-UCS threshold
1E thr was 0.7. Median values are tabulated in Table 10. For
comparison, the two panels on the right of Fig. 7 show corre-
sponding data, replotted from Fig. 5, for natural illumination
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Table 9. Slopes of Linear Regression Fits of Log Relative Frequency of Mismatching Pairs on Log Interval with
CAM02-UCS Threshold 1Ethr = 0.7

a

Criterion Multiple n of Threshold

Estimate Type Time Intervals 1 4

Conditional 4 extended 1.5× 10−1 (5.1× 10−2, 2.3× 10−1) 7.3× 10−1 (5.0× 10−1, 9.1× 10−1)
Unconditional 4 extended 1.7× 10−1 (1.0× 10−1, 2.4× 10−1) 7.5× 10−1 (5.7× 10−1, 9.0× 10−1)

aEntries show slopes and 95% confidence intervals in parentheses. Other details as for Fig. 6.

Table 10. Median Relative Frequencies of Mismatching Pairs under Simulated Changes in Illuminant Spectra with
CAM02-UCS Threshold 1Ethr = 0.7

a

Criterion Multiple n of Threshold

Estimate Type No. of Scenes 1 4

Conditional 18 2.6× 10−1 (1.9× 10−1, 4.2× 10−1) 1.6× 10−4 (4.5× 10−5, 3.6× 10−3)
Unconditional 18 2.8× 10−4 (2.1× 10−4, 4.5× 10−4) 4.0× 10−7 (7.3× 10−8, 1.5× 10−6)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details as for Fig. 7.
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Fig. 7. Frequency of mismatching with simulated changes in illu-
minant spectra and real illumination changes replotted from Fig. 5.
The spectral changes were from a daylight with CCT of 25,000 K to
one of 4000 K, and the real illumination changes were over intervals
of about 1–15 min. Relative frequencies were too low to record with
spectral changes in three scenes for n = 4 (bottom left panel, arrowed).
Other details as for Fig. 5. Notice the doubled vertical scale.

changes on the same 18 scenes with time intervals between the
images of each scene of about 1–15 min.

Both unconditional and conditional relative frequencies
with illuminant spectral changes were lower than with natural
illumination changes, even with short intervals. Differences in
log10 units ranged from about−0.33 (CI−0.46 to−0.15) for
unconditional relative frequencies and n = 1 down to about

−2.5 (CI−3.3 to−2.0) for conditional relative frequencies and
n = 4. Differences were greater still with natural illumination
changes over extended intervals.

D. Chromatic Matches

In the scene in Fig. 1, there were large differences in lightness
between mismatched pairs, but only small differences in hue
angle, not more than 3 deg either within or between image pairs.
Across all scenes, lightness differences accounted on average for
47% (CI 33% to 72%) of the total variation at short intervals
and 76% (CI 70% to 83%) with extended intervals.

To test the importance of lightness differences in determin-
ing the frequency of mismatching, the lightness term J ′ was
omitted from the color difference formula, leaving only the
chromatic attributes (a ′M, b′M) (Section 2.E). In the event, con-
ditional frequencies were not reliably different for any criterion
multiple n of threshold. By contrast, unconditional frequencies
were higher, and reliably so by factors ranging from about 10.8
(CI 6.5 to 20.0) to 18.5 (CI 8.5 to 25.5) across n.

Median relative frequencies for chromatic differences alone
are summarized in Table 11 and may be compared with the
estimates in Table 1 for total color differences.

E. Connected Surface Areas

Could random sampling by points overrepresent image areas
that were susceptible to mismatching, thereby inflating fre-
quency estimates? Partitioning images into spatially connected
components with similar colors and choosing no more than one
point from each component, as detailed in Section 2.G, should
have countered this effect.

Figure 8 shows the logarithm of the median relative fre-
quency for the 18 scenes of Fig. 2 plotted against the width of
the CAM02-UCS color interval specifying the similarity of
the colors in each connected component. As interval widths
and therefore connected surface areas increased, the number of
distinct connected components decreased, and eventually for
widths greater than 10.0, one or more scenes failed to provide
frequency estimates. Up to that limit, both unconditional and
conditional relative frequencies varied little about the horizontal
straight lines through the symbols, even though the number of



Research Article Vol. 42, No. 5 / May 2025 / Journal of the Optical Society of America A B143

- 1 . 5

- 1 . 0

- 0 . 5

0 . 0
n  =  1

0 5 1 0 1 5 2 0
- 4 . 5

- 4 . 0

- 3 . 5

- 3 . 0

Lo
g 10

 m
ism

atc
h f

req
ue

nc
y

n  =  2

0 5 1 0 1 5 2 0
C o l o r  i n t e r v a l  s p e c i f y i n g  s i m i l a r i t y  o f  c o m p o n e n t  c o l o r s  

n  =  3

0 5 1 0 1 5 2 0

n  =  4

Co
nd

itio
na

l

0 5 1 0 1 5 2 0

Un
co

nd
itio

na
l

Fig. 8. Frequency of mismatching with increasing size of connected surface areas in partitioned images. The panels show the logarithm of the
median conditional and unconditional relative frequency plotted against the width of the CAM02-UCS [5] color interval specifying the similarity of
the colors in each connected component. Medians were taken over all 18 scenes in Fig. 2. The vertical line marks the limit beyond which the number
of connected components decreased sufficiently to affect the number of sample pairs and therefore the frequency estimates. At that limit, the median
number of sample points was 3% of the unpartitioned scenes, and the number of colors defining them was 67. Up to that limit, sample standard
deviations of the logarithm of the relative frequency were less than 0.04. Other details as for Fig. 6.
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Fig. 9. Frequency of mismatching with increasing size of connected surface areas in partitioned images. Medians were taken over four scenes in the
top row of Fig. 2 and multiple extended time intervals. Other details as for Fig. 8.

sample points fell to 3% of the total available. The pattern of
performance was similar with the four scenes in the top row of
Fig. 2 and extended time intervals (Fig. 9).

4. DISCUSSION

The examples in Fig. 1 illustrate how surface colors in an out-
door scene can mismatch locally as solar elevation changes over
time with little change in illumination spectrum. The analysis

of the radiance images of all 18 scenes in Fig. 2 generalized

this observation. Both conditional and unconditional relative

frequencies of mismatching were much higher under natu-

ral illumination changes than under spectral changes alone,

and both frequencies increased systematically as the intervals

between images increased.

In the following sections, the results of this analysis are con-

sidered in more detail, together with their implications and
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limitations. Issues addressed include differences in the fre-
quency of mismatching; sampling by points, areas, and objects;
lightness variations; relational color constancy; and surface color
information.

A. Frequency of Mismatching

The difference between unconditional and conditional frequen-
cies of mismatching is a consequence of initial conditions. The
unconditional relative frequency of mismatching is necessarily
low in outdoor scenes since two surfaces chosen at random
are unlikely to match [6]. For the 18 scenes with intervals
between images of 1–15 min, unconditional relative frequencies
ranged from around 10−3 for a suprathreshold color differ-
ence to around 10−4 for a four-fold threshold color difference.
But given two surfaces that already match, the conditional
relative frequency is much higher. For the same scenes and
intervals, conditional frequencies ranged from over 60% for a
suprathreshold color difference to around 6% for a four-fold
threshold color difference, the latter increasing markedly with
longer intervals.

These estimates were for a CAM02-UCS discrimination
threshold of 0.7. With a higher CAM02-UCS threshold of 1.5,
appropriate for detecting changes in scenes [32,36], uncondi-
tional relative frequencies were higher, and conditional relative
frequencies were lower, but still relevant. The pattern of per-
formance was similar with the less uniform CIELAB color
space and corresponding thresholds of 1.0 and 2.2. The roughly
inverse relationship between conditional and unconditional
frequencies is analyzed in Appendix A.

Interval duration had its expected effect on relative frequen-
cies, but as a single explanatory variable, it can account
only partially for the variation. A fuller description would
require variables that were more directly related to the light
reflected from scenes, for example, solar elevation, atmospheric
transmission, the changes in each, and local scene structure.

B. Sampling by Points, Areas, and Objects

Many scenes contained extended, similarly colored physical
surfaces that could have biased frequency estimates based on
random sampling by points. But both conditional and uncon-
ditional relative frequencies remained almost the same when
scene images were partitioned into connected components
containing similar colors, and sampling was reduced to one
point from each component. Random sampling by points seems
not to have inflated frequency estimates (or potential detection
performance).

An issue concerning point sampling itself is the mixing
of reflected spectra. After downsampling, each pixel in a
scene image represented an elementary area of approximately
0.6× 0.6 arc min angular subtense. If images had been acquired
at a greater distance, producing more spectral mixing, frequen-
cies could differ. Yet, in previous simulations with illuminant
spectral changes, image blurring had only a modest effect on the
frequency of metamerism [6].

A more fundamental issue is whether sampling by points
could be replaced by a higher-level sampling such as by objects.
For some scenes, however, what constitutes an object may be

difficult to decide, for example, in Fig. 2(a) whether it is an
individual tree or clumps of trees, and in Fig. 2(c) whether it
is part of or all of the rock face. In whatever way an object is
defined, the problem of changes in appearance under changes in
illumination still needs to be addressed, a point taken up later.

C. Contribution of Lightness

Most variation in color appearance in outdoor scenes is in
lightness, not chromaticity [21,55,56]. This may be due to
the way natural light is distributed [12,20,55,57,58], with the
direct beam interrupted by nearby objects, including overhead
foliage, to produce cast shadows [15,16]. Local surface geometry
may also have a role [57] in that surface orientation is usually
preserved over shorter distances than material identity, leading
to more rapid changes in reflected intensity than in spectral
composition [56].

Even so, as the present analysis showed, when light-
ness differences were excluded from the evaluation of color
differences, conditional relative frequencies were little affected.
Their high values, with or without lightness cues, seem not to be
due to natural lightness variation, either within scenes or over
time. In contrast, unconditional frequencies increased by an
order of magnitude in the absence of lightness differences. The
difference between unconditional and conditional frequencies is
again due to the change in initial conditions. In any given scene,
there is a much higher probability of finding pairs of surfaces
indistinguishable in just chromaticity than in both chromaticity
and lightness.

D. Relational Color Constancy and Mismatching

Failures of color matching under illumination changes are
intimately related to the phenomenon of color constancy, the
constant perceived or apparent color of a surface in the presence
of changes in the intensity and spectral composition of the
illumination [38,59–61]. In experimental studies, the illumi-
nation changes have, in general, been spatially uniform over the
surfaces involved, as with the simulated spectral changes in this
study and in laboratory experiments with real objects [62–64].
Levels of constancy have been found to vary, depending on the
physical cues available and the experimental task [38,60].

As to explanatory mechanisms, chromatic adaptation, typ-
ified by von Kries scaling of cone responses [59,65–67], can
help preserve color appearance. Where it cannot, observers
can still attribute changes in appearance to changes either in
illuminant or in the reflecting properties of the scene. This
operational approach [68] may depend on relational color
constancy, that is, the constancy of perceived spatial color rela-
tions, in turn quantified by spatial ratios of cone excitations or
of their post-receptoral transformations [69,70]. Relational
color constancy may also facilitate other kinds of surface-color
comparisons [71–73]. In particular, mismatching under illu-
mination changes may be seen as a failure of relational color
constancy in which the perceived color relation between surfaces
is one of identity.

Although illuminant changes can produce lapses in color
constancy and relational color constancy with some reflect-
ing surfaces, especially colorful ones [40,74], it is real-world
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illumination differences that have the greatest impact on these
constancies [13,20], in so far as they apply to appearance, as
illustrated by the transient and progressive changes in the upper
and lower pairs of surfaces in Fig. 1 with changes in the angle of
the incident beam.

Why should natural illumination changes disrupt sur-
face color appearance so much more than illuminant spectral
changes? One explanation is that they may be optically indis-
tinguishable, or nearly so, from genuine changes in surface
reflectance, as noted elsewhere [40]. Spatially restricting von
Kries scaling or spatial ratios of cone signals to compensate for
local changes in illumination could lead to a failure to detect
genuine differences in surface reflectance.

This is not to say that changes in appearance cannot be cor-
rectly judged if there is sufficient context, for example, allowing
an appeal to continuity ([75], §67) [76]. Thus, observing
individual surface areas continuously over time preserves iden-
tification despite changes in their reflected light. Analogously,
observing the spatial continuity of surface areas preserves identi-
fication despite changes in their orientation. Neither is possible
if observations are spatially or temporally discontinuous.

E. Mismatching and Color Information

The existence of mismatching demonstrates the limit on the
information that color provides about scenes undergoing natu-
ral illumination changes. The amount of information preserved
between one observation and another can be quantified with
Shannon’s notion of information [77], in turn interpreted as
the logarithm of the number of surfaces retaining their iden-
tity across time [14], or, more precisely, as a least upper bound
on the average number possible in the given conditions [78].
Consistent with such an interpretation, when this number was
estimated with the four scenes in the top row of Fig. 2 [14], it
declined rapidly with interval duration in a way similar to the
decline in the relative frequency of mismatching.

These considerations suggest that the occurrence of mis-
matching could be predicted by informational quantities. In
an analysis with 50 hyperspectral images of outdoor scenes,
the variation of the relative frequency of mismatching with

simulated changes in illuminant spectra was well modeled
by combinations of informational quantities, if the criterion
multiple of discrimination threshold was not too high [79]. The
variation with natural illumination changes might be modeled
similarly.

F. Conclusion

To return to the question posed at the beginning of this paper, if
two surfaces in an outdoor scene look the same at one moment,
then they may well look different later. The longer the interval,
the greater the difference in appearance. Natural illumination
changes outdoors seem more likely to impair surface identifica-
tion by color than changes in illuminant spectra alone, and to
much greater effect.

APPENDIX A: INTERDEPENDENCE OF
UNCONDITIONAL AND CONDITIONAL
FREQUENCIES

Recall from Section 2.H the sampling regime underpinning
the frequency estimates. For each scene, a sample of N distinct
pairs of points was drawn randomly from the scene. Suppose
that N0 of these pairs had color differences 1E less than the
reference threshold 1E thr at time t1, where N0 > 0, and that
N1 of these pairs had color differences 1E greater than a certain
multiple n = 1, . . . , 4 of 1E thr at time t2. The unconditional
and conditional relative frequencies of mismatching pairs of
points in the scene are given by N1/N and N1/N0, respectively.

Since N1/N = (N1/N0)(N0/N), the logarithm of N1/N is
given by

log N1/N = log N1/N0 + log N0/N.

The variance of log N1/N, which is a linear combination of
random variables, can be decomposed [80]; thus,

var(log N1/N)= var(log N1/N0)+ var(log N0/N)

+ 2cov(log N1/N0, log N0/N). (A1)

Table 11. Median Relative Frequencies of Chromatically Mismatching Pairs under Natural Illumination Changes
with CAM02-UCS Threshold 1Ethr = 0.7

a

Criterion Multiple n of Threshold

Estimate Type No. of Scenes 1 4

Conditional 18 6.0× 10−1 (4.2× 10−1, 7.5× 10−1) 3.5× 10−2 (1.4× 10−2, 1.4× 10−1)
Unconditional 18 8.4× 10−3 (5.8× 10−3, 1.6× 10−2) 7.7× 10−4 (3.1× 10−4, 1.3× 10−3)

aEntries show median values of relative frequencies and 95% confidence intervals in parentheses. Other details as for Table 1.

Table 12. Variance–Covariance Decomposition of Unconditional Relative Frequencies
a

n var(log N1/N) var(log N1/N0) var(log N0/N) 2cov(log N1/N0, log N0/N)

1 0.19 0.05 0.32 −0.18
2 0.15 0.29 0.32 −0.46
3 0.15 0.43 0.32 −0.60
4 0.15 0.56 0.32 −0.73

aEntries show variances and covariances of data in Fig. 5, left panels, over 18 scenes for criterion multiple n of threshold from 1 to 4. Other details as for Fig. 5.
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Table 12 gives values for each of the terms on the right-hand
side of Eq. (A1) for the data in Fig. 5, left panels.

For n = 1, the largest contribution to the variance in the
unconditional relative frequency N1/N is from the variance
in the relative frequency N0/N of subthreshold differences.
As n increases, this dependence changes, so that for n = 4, the
contribution from the variance in N0/N is the smallest. The
negative sign for the covariance of N1/N0 and N0/N implies
that as N0/N increases, N1/N0 tends to decrease. This inverse
relationship is broadly consistent with the effects of changing
1E thr, noted in Section 4.A.

This analysis has parallels with an earlier analysis of the rela-
tionship between the relative frequency of mismatching and
the entropy of colors in a scene under one illuminant and their
conditional entropy under another illuminant [79]. When these
two entropies were combined in a linear model, the coefficients
weighting the entropies appeared with opposite signs.

APPENDIX B: CORRELATION OF
UNCONDITIONAL AND CONDITIONAL
FREQUENCIES WITH INTERVAL DURATION

Notation in the following is adapted from Appendix A. Based on
the plots in Fig. 6, the variation of the logarithm of the uncondi-
tional relative frequency N1/N across samples i and intervals 1t
can be modeled for each criterion multiple n of threshold, as

log N1(i, 1t)/N = b0 + b1 log 1t + e (i, 1t), (B1)

where b0 and b1 are constants and e (i, 1t) represent deviations
about the linear fit. Analogously, the variation of the logarithm
of the conditional relative frequency N1/N0 can be modeled as

log N1(i, 1t)/N0(i)= b′0 + b′1 log 1t + e ′(i, 1t). (B2)

The difference between the left-hand sides of Eqs. (B1)
and (B2) is log N0(i)/N, which depends on i , not on 1t . Its
variation can be modeled as

log N0(i)/N = b′′0 + e ′′(i).

It follows that the gradients b1 and b′1 in Eqs. (B1) and
(B2) should be equal and that the variance of the difference
log N0(i)/N, which equals var(e ′′(i)), should be less than
the variance of the residuals var(e (i, 1t)) and var(e ′(i, 1t)),
which depend on both i and 1t .

Both predictions are consistent with the data in Fig. 6 as the
criterion multiple n of threshold increased and the independ-
ence of i and 1t increased. Thus, the differences between the
gradients of the two fitted lines in each panel decreased from
12% to 3%, and the variance of the differences in unconditional
and conditional relative frequencies as a proportion of the
variance of the residuals decreased from 67% to 11%.
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61. D. H. Brainard and A. Radonjić, “Colorconstancy,” in The New Visual

Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT, 2014),
pp. 545–556.

62. J. M. Kraft and D. H. Brainard, “Mechanisms of color constancy
under nearly natural viewing,” Proc. Natl. Acad. Sci. USA 96, 307–312
(1999).

63. V. M. N. de Almeida and S. M. C. Nascimento, “Perception of illumi-
nant colour changes across real scenes,” Perception 38, 1109–1117
(2009).

64. K. R. Gegenfurtner, D. Weiss, and M. Bloj, “Color constancy in real-
world settings,” J. Vis. 24(2):12 (2024).

65. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics
of natural images,” Vision Res. 37, 3283–3298 (1997).

66. O. Rinner and K. R. Gegenfurtner, “Time course of chromatic adapta-
tion for color appearance and discrimination,” Vision Res. 40, 1813–
1826 (2000).

67. A. Werner, “Spatial and temporal aspects of chromatic adaptation
and their functional significance for colour constancy,” Vision Res.
104, 80–89 (2014).

68. B. J. Craven and D. H. Foster, “An operational approach to colour
constancy,” Vision Res. 32, 1359–1366 (1992).

69. D. H. Foster and S. M. C. Nascimento, “Relational colour constancy
from invariant cone-excitation ratios,” Proc. R. Soc. B 257, 115–121
(1994).

70. S. M. C. Nascimento and D. H. Foster, “Relational color constancy in
achromatic and isoluminant images,” J. Opt. Soc. Am. A 17, 225–231
(2000).

71. D. H. Foster, S. M. C. Nascimento, K. Amano, et al., “Parallel detec-
tion of violations of color constancy,” Proc. Natl. Acad. Sci. USA 98,
8151–8156 (2001).

72. J. J. van Es, T. Vladusich, and F. W. Cornelissen, “Local and relational
judgements of surface colour: constancy indices and discrimination
performance,” Spat. Vis. 20, 139–154 (2007).

73. H. Karimipour and C. Witzel, “Colour expectations across illumination
changes,” Vision Res. 222, 108451 (2024).

74. S. M. C. Nascimento and D. H. Foster, “Misidentifying illumi-
nant changes in natural scenes due to failures in relational colour
constancy,” Proc. R. Soc. B 290, 20231676 (2023).

75. D. Katz, The World of Colour (Routledge, Trench, Trubner & Co., Ltd.,
1935).

76. M. Manassi and D. Whitney, “Continuity fields enhance visual per-
ception through positive serial dependence,” Nat. Rev. Psychol. 3,
352–366 (2024).

77. T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley,
2006).

78. I. Marín-Franch and D. H. Foster, “Estimating information from image
colors: an application to digital cameras and natural scenes,” IEEE
Trans. Pattern Anal. Mach. Intell. 35, 78–91 (2013).

79. G. Feng and D. H. Foster, “Predicting frequency of metamerism
in natural scenes by entropy of colors,” J. Opt. Soc. Am. A 29,
A200–A208 (2012).

80. J. A. Rice, Mathematical Statistics and Data Analysis (Cengage
Learning, 2007).

81. University of Manchester, https://personalpages.manchester.ac.uk/
staff/d.h.foster/.

82. S. Nascimento, “Scientific data,” https://sites.google.com/view/
sergionascimento/home/scientific-data.

83. I. Marín-Franch, M. Sanz-Sabater, and D. H. Foster, “KLo: application
of offset estimator of differential entropy and mutual informa-
tion with multivariate data. Experimental results,” GitHub (2022),
https://github.com/imarinfr/klo.

https://doi.org/10.1002/col.10005
https://doi.org/10.1364/JOSAA.35.00B231
https://doi.org/10.1017/S0952523806233467
https://doi.org/10.1145/248210.248212
https://doi.org/10.1145/146443.146482
https://doi.org/10.1146/annurev-vision-091517-034231
https://doi.org/10.1098/rspb.2021.2483
https://doi.org/10.1364/JOSAA.35.00B192
https://doi.org/10.1002/1520-6378(2001)26:1+&lt;::AID-COL42&gt;3.0.CO;2-J
https://doi.org/10.1068/p03sp
https://doi.org/10.1068/p12sp
https://doi.org/10.1167/4.9.2
https://doi.org/10.1364/JOSAA.24.001830
https://doi.org/10.1167/13.1.14
https://doi.org/10.3390/jimaging7040072
https://doi.org/10.1038/s41598-023-29380-8
https://doi.org/10.1016/j.visres.2021.05.008
https://doi.org/10.1167/10.9.16
https://doi.org/10.1002/col.20642
https://doi.org/10.6084/m9.figshare.c.5240420
https://doi.org/10.1364/JOSAA.15.002036
https://doi.org/10.1364/JOSAA.15.002036
https://doi.org/10.1364/JOSAA.15.002036
https://doi.org/10.1016/j.isci.2023.107421
https://doi.org/10.1364/JOSAA.27.000206
https://doi.org/10.1364/JOSAA.27.000206
https://doi.org/10.1364/JOSAA.27.000206
https://doi.org/10.1098/rstb.2005.1633
https://doi.org/10.1016/j.visres.2010.09.006
https://doi.org/10.1073/pnas.96.1.307
https://doi.org/10.1068/p6277
https://doi.org/10.1167/jov.24.2.12
https://doi.org/10.1016/S0042-6989(97)00125-9
https://doi.org/10.1016/S0042-6989(00)00050-X
https://doi.org/10.1016/j.visres.2014.10.005
https://doi.org/10.1016/0042-6989(92)90228-B
https://doi.org/10.1098/rspb.1994.0103
https://doi.org/10.1364/JOSAA.17.000225
https://doi.org/10.1073/pnas.141505198
https://doi.org/10.1163/156856807779369733
https://doi.org/10.1016/j.visres.2024.108451
https://doi.org/10.1098/rspb.2023.1676
https://doi.org/10.1038/s44159-024-00297-x
https://doi.org/10.1109/TPAMI.2012.78
https://doi.org/10.1109/TPAMI.2012.78
https://doi.org/10.1109/TPAMI.2012.78
https://doi.org/10.1364/JOSAA.29.00A200
https://personalpages.manchester.ac.uk/staff/d.h.foster/
https://personalpages.manchester.ac.uk/staff/d.h.foster/
https://personalpages.manchester.ac.uk/staff/d.h.foster/
https://sites.google.com/view/sergionascimento/home/scientific-data
https://sites.google.com/view/sergionascimento/home/scientific-data
https://sites.google.com/view/sergionascimento/home/scientific-data
https://github.com/imarinfr/klo

