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The natural world is optically unconstrained. Surface properties may vary from one point to another, and
reflected light may vary from one instant to the next. The aim of this work is to quantify some of the physical
failures of color vision performance that result from uncertainty. In computational simulations with images of
vegetated and nonvegetated outdoor scenes, it is shown that color provides an unreliable guide to surface identity.
It is also shown that changes in illuminant may cause colors to no longer match and the relations between indi-
vidual colors to vary. These failures are generally well described by a measure of the randomness of the colors in
scenes, the Shannon entropy. Although uncertainty is intrinsic to the environment, its consequences for color

vision can be predicted.
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1. INTRODUCTION

Color provides us with information about the environment.
It allows us to divide scenes into distinct regions and, within
them, to detect, distinguish, and identify objects. Yet what
we know about color vision in such tasks comes largely from
laboratory measurements with highly simplified stimuli,
typically colored planar geometrical shapes, repetitive pat-
terns, and blocks tableaux, which rarely capture the uncon-
strained, nonuniform optical structure of the natural world
[1]. Scenes containing trees, shrubs, herbs, flowers, grasses,
soil, stones, and rock are spatially and spectrally complex.
Surface reflectance properties may vary from one point to
another, and the light reflected from those surfaces may vary
from one instant to the next due to changes in the illumi-
nation [2,3].

How does this uncertainty of the environment limit the
utility of color? The aim of this work is to quantify in com-
putational simulations several basic physical failures in color
vision performance. These failures are then related to a mea-
sure of the randomness of the colors in scenes, the Shannon
entropy [4].

This paper is based in part on the author’s Verriest Medal
Lecture delivered to the International Colour Vision Society,
Erlangen, 2017. Except for Fig. 5, none of the data presented
in the figures has been published previously.
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2. TRANSLATING TASKS

One way to generalize traditional observations of surface color
properties is to translate tasks to a more naturalistic setting.
Consider an experiment to measure color constancy, the degree
to which the color of a surface is seen or inferred to be constant
despite changes in the spectral composition of the illumination
[5]. Instead of presenting a test surface or object in an abstract
geometric (“Mondrian”) array [6] or in a simple tableau [7], it
can be placed physically in a natural scene, as in Fig. 1. The test
object is a small sphere attached to the trunk of a tree, in the
center right of each image. The sphere is covered in Munsell
neutral matte paint. The images were rendered from a hyper-
spectral reflectance image of the scene under an illuminant rep-
resenting, on the left, direct sunlight with correlated color
temperature 4000 K, and on the right, a mixture of sunlight
and skylight with correlated color temperature 6700 K [8];
see [9] for more comprehensive daylight spectra.

In laboratory experiments, the spectral reflectance of the
sphere was changed by a random amount so that when ren-
dered it had a different surface color. Presented with two images
of the scene in succession, the task of the observer was to
discriminate between an illuminant change alone, as in Fig. 1,
and an illuminant change accompanied by a change in the
reflecting properties of the test surface. This task converts a
subjective approach to color-constancy judgments, based on
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Fig. 1. Translating a color-constancy discrimination task to a natural scene. The images were rendered from a hyperspectral reflectance image of a
woodland scene under an illuminant representing on the left, direct sunlight with correlated color temperature 4000 K, and on the right, a mixture of
sunlight and skylight with correlated color temperature 6700 K. The test object is a small sphere attached to the trunk of a tree, center right [10].

The scene is from Sameiro, Braga, Portugal [11].

color appearance, to a more objective, operational one [12] that
can be performed quickly and accurately [13,14]. As expected,
observers’ performance varies with the scene, but it can be
broadly accounted for by variations in the spatial ratios of cone
excitations across pairs of points under the two illuminants
[10]. More generally, color constancy is supported by a variety
of physical, physiological, and cognitive cues [2,5,7,15-17].
Although these laboratory experiments are informative, they
do not really address the problem of uncertainty in natural scenes:

1. Translated tasks remain primarily deterministic. For each
scene, the test object is usually fixed, and the only uncertainty is
the extent to which its surface reflectance properties vary from
trial to trial.

2. Much of the information in the image may be redundant.
In surface-color judgments, for example, the task can be
executed by comparing the test surface with just one other
surface in the scene [18].

3. Performance is subject to physical constraints that are not
always made explicit. Trichromatic sampling leads to phenom-
ena such as metamerism, whereby surfaces may appear the same
under one illuminant and different under another [8,19].

4. Observers may or may not use the cues available. Those
they prefer may be imperfect, leading to suboptimal perfor-
mance [20].

For the effects of scene uncertainty to be propetly tested, all
the elements of the scene should be given equal prior status,
metamerism should be taken into account where relevant,
and sampling should be random. Moreover, the effects of scene
uncertainty should be distinguished from the effects of observer
uncertainty, since they are intrinsically different [21,22].

3. COUNTING COLORS AND SURFACES

The fundamental role of scene uncertainty is evidenced in dis-
criminating surfaces by their color. A naive limit on realizable
performance is set by the number of discriminable colors
available to the trichromatic eye, or camera, with appropriate
allowance for different sensor spectral sensitivities. Traditionally,

this number is estimated from a theoretical color gamut. A three-
dimensional representation of the collection of all possible
surface colors, the object color solid [19,23] is expressed in a
uniform color space such as CIECAMO2 [24,25] or the less
uniform space CIELAB [8], which can be augmented by a chro-
matic adaptation transform CMCCAT2000 [25,26] and color-
difference formula CIEDE2000 [27,28]. For further details,
see [29]. The solid is divided into unit cells of side equal to the
minimum discriminable, usually defined by a hard discrimina-
tion threshold, AE™" say, and the number of cells then counted.
By these methods, the number of discriminable colors is
around 2.0-2.3 million [30,31].

Clearly, natural scenes do not generally contain all possible
surface colors. But counting procedures can still be applied by
considering just the nonempty units cells in the representation
of the scene in the chosen color space. By way of example, the
image on the left in Fig. 2 shows a scene from Ruivaes, Vieira
do Minho, Portugal. With the side of each unit cell AE™ in
CIECAMO2 set to 0.5, approximately equivalent [32] to a
CIELAB threshold value of 1.0, the number of discriminable
colors in the scene, i.e., the gamut number, is approxi-
mately 8.9 x 10%

Other scenes may contain less or more than this number. An
analysis of 50 hyperspectral images of vegetated and nonvege-
tated outdoor scenes [33] suggested an average number of
discriminable colors per scene of approximately 2.7 x 10°.
Further details of the scenes are given at the end of Section 4.

This result does not imply, however, that on average
2.7 x 10° surfaces in a scene can be discriminated by their color.
The reason is that the distribution of colors within natural
scenes is rarely uniform: individual instances occur with differ-
ing frequencies. In Fig. 2, the pixels making up the flower, a
foxglove, in the bottom right of the image, comprise just
0.63% of the total number of pixels.

The nonuniformity in the distribution of colors has conse-
quences. The pink-purple color of the foxglove enables it to be
readily discriminated from the other constituents of the scene,
but the green of a particular fern or the yellow-brown of a
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Fig. 2. Example scene to illustrate counting colors and surfaces. The color image on the left was rendered from a hyperspectral radiance image of a
woodland scene. The image on the right was obtained by histogram equalization of the gray-scale rendering of the hyperspectral image. The scene is

from Ruivaes, Vieira do Minho, Portugal [11].

particular branch does not allow it to be readily distinguished
from any other fern or branch. Despite there being three clear
colors in the scene, only one individual object can be distin-
guished by its color (the set of all ferns can of course be distin-
guished from the set of all branches and from the set of all
foxgloves). This description is an oversimplification; even so, it
captures the distinction between the two ways of discriminating.
To estimate the number of discriminable surfaces in natural
scenes, a different method of counting is needed that takes into
account the nonuniformity of observed color distributions.

4. ENTROPY OF COLORS AND GAMUT
VOLUME

How should a random distribution of surface colors be
measured? Take the scene illustrated in Fig. 2, left. Suppose
that the distribution of its colors in a color space such as
CIECAMO2 is described by some probability density function
(pdf), f say. The plots in Fig. 3 show histogram estimates of
the marginal distributions of lightness / (top left), the red-green
chroma component ac (bottom left), and the yellow-blue
chroma component b&c (bottom right), each calculated
according to the CIECAMO2 specification with its default
parameters but, importantly, with full chromatic adaptation
[25]. Unsurprisingly, ac signals mainly green and ¢ mainly
yellow. The flattened histogram of adjusted lightness values
J (top right) is discussed later.

The color triplets (/, ac, bc) may be treated as instances u of
a trivariate continuous random variable U whose pdfis /. The
uncertainty or randomness of U may be quantified by the
Shannon differential entropy A(U) thus:

WO = - [ f) log f@) du ()

where the entropy is measured in bits if the logarithm is to the
base 2 [4].

Differential entropy may be interpreted as the logarithm
of the volume of the smallest set containing most of the

probability, otherwise known as the effective support size of
the random variable [34,35]. In the present context, the differ-
ential entropy A(U) of a trivariate continuous random variable
U, the entropy of colors for short, measures the logarithm of the
volume of the most common colors in the gamut. If #(U) is in
bits, then the effective gamut volume is 2”(V). In the limic
where all the colors are equally likely, the differential entropy
coincides with the logarithm of the gamut volume. Evidently its
value depends on the units of the dimensions of the color space.

This interpretation of differential entropy can be tested
by using it to estimate the gamut volume of the lightness values
in the scene in Fig. 2, left. The histogram estimate of the

- 1 1
2
$ 0.2 g
>
o
o
E 0.1+ B
©
2 t

0_ -

0 50 100 O 50 100
Lightness, J Adjusted lightness, J
1 1

>
2
S 0.2 -
3
o
o
201 1
=
°©
o, i

-50 0 50 -50 0 50

Red-green, a. Yellow-blue, b

Fig. 3. Histograms of relative frequencies of lightness values J (top
left) and red-green and yellow-blue chroma component values ac
(bottom left) and & (bottom right) of the CIECAMO2 representation
of the scene in Fig. 2, left. The histogram of relative frequencies of
adjusted lightness values / (top right) is from the histogram-equalized
gray-scale rendering of the scene in Fig. 2, right.
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distribution of J values in Fig. 3, top left, was flattened by
applying empirical histogram equalization, so that the relative
frequency after adjustment was approximately constant over
the interval from the minimum / = 5.7 to the maximum
J = 62.6, as in Fig. 3, top right. The corresponding gray-scale
image is shown in Fig. 2, right. Substituting the histogram for
the pdf f in Eq. (1) and evaluating the integral numerically
yields an estimated differential entropy A(U) = 5.80 bits.
The gamut volume 2", that is, the range of lightness
values, is then 55.8, which is close to the correct value of
62.6 - 5.7 = 56.9. This differential entropy calculation is
approximate because empirical histogram equalization does
not completely flatten the distribution.

By comparison, for the original, unflattened histogram
estimate of the distribution of J values in Fig. 3, top left,
the estimated differential entropy A(U) = 4.97 bits. The effec-
tive gamut volume 2(V), the effective range of lightness values,
is then 31.3, almost half the actual range.

Although these entropy estimates are approximate, the latter
because of bias in the numerical integration [36,37], they illus-
trate how the effective gamut volume is reduced with nonuni-
form color distributions. Crucially, it is the effective gamut
volume that describes the discriminability of surfaces in scenes.
Because the distribution f is bounded, the effective gamut
volume is always less than or equal to the gamut volume.

An effective support size can also be defined for discrete
random variables such as counts. The Shannon entropy then
corresponds to the logarithm of the effective number of
elements in the discrete set [4,35]. An example is given in
Section 5. The relationship between the two kinds of entropies
and effective support is discussed in [4,34].

In what follows, the entropies for each scene are all differ-
ential entropies, unless otherwise indicated, and they were
estimated not by numerical integration but by an asymptoti-
cally bias-free nearest-neighbor method [38—40]. The scenes
consisted of a set of 50 hyperspectral reflectance images
[41], closely similar to those used in [33], where thumbnail
color images are available. Each image had dimensions
<1344 pixels x 1024 pixels and spectral range 400-720 nm
sampled at 10-nm intervals. Reflectance properties are defined
only for the particular viewing geometry at the time of acquis-
ition, as represented by the spectral bidirectional reflectance
distribution function, the BRDF [42]. Of the 50 scenes, 29
were mainly vegetated and 21 mainly nonvegetated. Further
details are given in [41].

5. NUMBER OF DISCRIMINABLE SURFACES

Recall from Section 3 that the number of discriminable colors,
the gamut number, is estimated by dividing the gamut volume
into unit cells of side equal to the hard discrimination threshold
AE™ and then counting the number of cells, in other words,
taking the quotient of the gamut volume by the cell volume. An
analogous procedure can be invoked to estimate the effective
gamut number from the effective gamut volume. The effective
gamut number gives the number of surfaces discriminable by
their color. All that is required is an appropriate formulation of
cell volume.
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A unit cell of side AE™ represents the portion of the color
space over which observer discrimination responses are
random. These responses may be represented by a random
variable, W say, whose uncertainty is quantified by the corre-
sponding entropy A(W), which, for a unit cell of side AE™",
is equal to 3 log AE™" [4]. Alternatively, observer uncertainty
may be defined by a smooth function, for example, a Gaussian
distribution, whose entropy has a standard formulation [4].
Either way, the difference /(U) - /(W) between the entropy
of colors A(U) and the entropy of observer uncertainty
h(W) gives the logarithm of the number of discriminable sur-
faces [43]. As a difference of logarithms, it is equivalent to the
logarithm of a quotient.

In such an analysis of a set of 50 outdoor scenes, the average
number of discriminable surfaces per scene was found to be
approximately 5.2 x 104 with a hard threshold [43], about
one-fifth of the number of discriminable colors with the same
threshold [33].

Notice that these entropy estimates relate solely to how
color can be used to identify points or arbitrarily small surface
elements in the scene, or pixels in a digital representation. The
calculation is indifferent to what physically defines surfaces

Log,, number discriminable surfaces

T T T
4.5 5.0 55 6.0 6.5

Log,, number discriminable colors

Fig. 4. Number of discriminable surfaces and colors. The logarithm
of the number of surfaces discriminable by their color is plotted against
the logarithm of the number of discriminable colors. Each point rep-
resents data from one of 50 outdoor scenes, two of which are pictured
[33,41]. The dashed line shows a linear regression, with R* = 73%.
The oblique solid line represents the upper limit on the number of
discriminable surfaces for each scene. Unpublished data from [43].
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and objects, for example, the foxglove and ferns in Fig. 2.
Nevertheless, it supports the informal considerations of
Section 3. Thus, suppose that the surface elements of the flower
and of the ferns and the rest of the scene are merged into two
separate uniform surfaces. The random variable U representing
the colors in the scene is now discrete, with just two values:
pink-purple and green. The probability p of a randomly chosen
pixel being pink-purple is given by ratio of the areas, that is,
»=16.3x107, and the probability of its being green is
1 - p. The entropy H(U) of the colors is given by the discrete
version of Eq. (1) with (p,1-p) replacing f [4]; that is,
H(U) = 0.055 bits. The number of discriminable surfaces
is then 277U that is, 1.04, very close to the estimate of 1
suggested in Section 3.

Despite the large differences between the number of dis-
criminable colors and the number of discriminable surfaces,
there is an interesting approximately linear relationship
between the two for the majority of scenes, as illustrated in
Fig. 4, taken from unpublished data in [43]. The dashed line
shows a linear regression. The two scenes generating the most
extreme numbers of discriminable surfaces values are pictured.
Since the effective gamut volume must be less than or equal to
the gamut volume (Section 4), the number of discriminable
surfaces must be less than or equal to the number of discrimi-
nable colors. Equality is represented by the oblique solid line.
All the data points fall below it.

6. COLOR MATCHING UNDER DIFFERENT
LIGHTS

The consequences of scene uncertainty become more evident
still when surfaces are sampled under different lights.
Departures from ideal matching with individual surfaces
may be described by various indices, including indices of
metamerism [8] and the related index of inconstancy [44].
In metamerism, the illuminant under which surfaces match
is usually called the reference and under which they differ
the test [8,19]. For definiteness, color matching refers to
the appearance of stimuli whose colorimetric specification
varies continuously [8,19] and should not be confused with
nearest-neighbor matching from a finite population of
colors [40,45].

In principle, natural surfaces are particularly susceptible to
metamerism, for their reflectance spectra generally have more
than three degrees of freedom, in fact between five and eight,
depending on the criterion for discrimination [46].

The practical importance of metamerism may be gauged
in two ways, one absolute, the other conditional. As before,
color triplets (/, ac, bc) in CIECAMO2 may be treated as
instances of random variables U and V under reference and
test illuminants, respectively. Given two instances, u and u’,
under the reference illuminant, their vector color difference
Au=u'-u is defined component-wise, that is, Au=
(A/, Aac, Abc). The magnitude of the difference, usually
called the total color difference or just color difference, AE,
say, is calculated in the usual way [8,19] by AE, =
(AJ? + Adk +Abé)1/2. Likewise, for instances v and v’
and their vector color difference Av under the test illuminant.

For a scene of interest, suppose that a sample of IV pairs of
surface elements is chosen at random. Let NV be the number
of pairs (w,u’) in this sample whose color differences AE,
under the reference illuminant are less than the discrimination
threshold AE™". From this subsample, let NV be the number of
pairs (v, v') whose color differences AE, under the test illumi-
nant are greater than or equal to AE™". Such pairs are some-
times described as parameric [47]. Necessarily, N; < Ny < N.
The relative frequency of metamerism is then V| /N, and the
conditional relative frequency of metamerism is N|/N,. In
other words, NV|/N is an estimate of the probability that
two surface elements chosen at random are indiscriminable
under the reference illuminant but discriminable under the test
illuminant, and N /N, is an estimate of the probability that,
given two surface elements that are indiscriminable under
the reference illuminant, they are discriminable under the test
illuminant.

In simulations with the set of 50 scenes described in
Section 4, illuminants were taken from the more extreme
phases of daylight with correlated color temperatures of
4000 K and 25,000 K, characteristic of direct sunlight and
polar skylight, respectively [8]. The discrimination threshold
AE™M in CIECAMO2 was again set to 0.5, typical for these
tasks [46]. Results were found to be similar with a larger
CIECAMO2 threshold of 1.0. Although not explored further,
thresholds may be defined with respect to acceptability
criteria [48] and categorization measures [49].

Averaged over the 50 scenes, the relative frequency of
metamerism is approximately 1.8 x 1074 Values are smaller still
with more demanding threshold criteria and with illuminants
that are spectrally closer. Small values have also been reported
elsewhere [49]. By contrast, the conditional relative frequency
of metamerism is much larger, approximately 5.7 x 1071,
i.e., 57%, with the same scenes and illuminants, the particular
value depending on the criteria and conditions [41]. By this
conditional measure, metamerism is common.

7. FREQUENCY OF METAMERISM

As with the number of discriminable surfaces, the value of
the relative frequency of metamerism can be related to the
appropriate entropies.

With the notation of Section 6, the quotient Ny/IV is the
relative frequency with which two surfaces chosen at random
are indiscriminable under the reference illuminant, and the
quotient N /N, is the conditional relative frequency with
which those surfaces are discriminable under the test illumi-
nant. The relative frequency N|/N can be decomposed into
their product thus:

Ny _N; Ny
N N, N°

Emopirically, the variation in Ny/N dominates the variation
in Ny /N on a logarithmic scale [50], and No/N depends on
the effective gamut: the smaller the effective gamut, the more
likely that two surfaces chosen at random are indiscriminable.
The logarithm of the relative frequency IV, /N should therefore
be approximately inversely proportional to the entropy of colors
under the reference illuminant.
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Fig. 5. Relative frequency of metamerism and entropy of colors.
The logarithm of the relative frequency N, /N under 4000 K and
25,000 K daylight illuminants is plotted against the entropy of colors
h(U) under the 4000 K illuminant. Each point represents data from
one of 50 outdoor scenes [33,41]. The dashed line shows a linear
regression, with R, = 90%. Earlier versions of this plot appear

in [50,51].

To test this relationship, fresh computational simulations
were performed with the 50 scenes described in Section 4.
Because V| /N is very small, as noted in Section 6, the accu-
racy of the simulations was improved by increasing the size of
the sample NV from each scene by several orders of magnitude to
3.4 x 10%. Here and subsequently, the threshold AE™ was set
to 0.5.

Figure 5 shows data from the 50 scenes under the 4000 K
and 25,000 K daylight illuminants. The logarithm of the rel-
ative frequency N|/N is plotted against the entropy A(U)
of the colors of each scene under the 4000 K illuminant.
The logarithm to the base 10 is used for ease of interpretation.
Relative frequency ranges from 3.0 x 107 to 1.2 x 107>, The
mean is 1.8 x 1074, the same as the value reported in
Section 6 with fewer pairs in each scene sample.

There is a strong linear inverse relationship between the log-
arithm of the relative frequency of metamerism and entropy.
A linear regression accounts for most of the variance, with
R?* = 90%, a value closely similar to that reported in [50,51]
with the same threshold criterion.

As for the relevance of the linear regression, the entropy es-
timates are not without error, and the relationship could instead
be described by some form of orthogonal (e.g., standardized
major axis) regression [52], though there is litcle change
in slope.

8. CONDITIONAL FREQUENCY OF
METAMERISM

Because the relative frequency of metamerism is governed
by the probability of finding surface colors that are indiscrim-
inable under the reference illuminant, the corresponding
entropy of colors is uninformative on whether the surfaces
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are discriminable under another illuminant, that is, the condi-
tional relative frequency of metamerism. What is required is a
conditional version of the entropy of colors.

For two random variables U and V, the conditional differ-
ential entropy A(V|U) is defined by

h(V|U) = —/f(v, u) log f(v|u) dvdu,

or, equivalently,
h(VIU) = h(V,U) - h(U), 2

where A(V, U) is the joint entropy of U and V [4]. As before,
the entropy is measured in bits if the logarithm is to the base 2.
In the present context, it is not the triplets (/, ac, bc) but the
vector color differences (A/, Aac, Abc) that need to be con-
sidered. The random variable under the reference illuminant
is AU with values Au subject to the constraint that their mag-
nitudes AE, < AE™. Likewise, the random variable under the
test illuminant is AV with values Av, where to count as meta-
mers, their magnitudes AE, > AE™". The conditional entropy
h(AV|AU) then measures the logarithm of the effective
gamut of the differences Av under the test illuminant, given
knowledge of the differences Au under the reference illumi-
nant. The larger this gamut, the more likely that two surfaces
chosen at random are discriminable under the test illuminant.
The logarithm of the conditional relative frequency of metam-
erism should therefore be approximately proportional to the
corresponding  conditional entropy of the vector color
differences.

Figure 6 shows the logit of the conditional relative frequency
N, /N, plotted against the conditional entropy #(AV|AU) of
the difference AV under a 25,000 K daylight test illuminant,
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Fig. 6. Conditional relative frequency of metamerism and condi-
tional entropy of vector color differences. The logit conditional relative
frequency N;/N, is plotted against the conditional entropy
H(AV|AU) of the vector color difference AV under a 25,000 K
daylight illuminant given the subthreshold vector color difference
AU under a 4000 K daylight illuminant. Each point represents data
from one of 50 outdoor scenes [33,41]. The dashed line shows a linear
regression, with R2 = 90%.
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given the subthreshold difference AU under a 4000 K daylight
reference illuminant. Each point represents data from one of
50 outdoor scenes. Other details of the sampling regime are
the same as in Section 7. Exceptionally, the logit transform
In[g/(1 - ¢)] of the conditional relative frequency ¢ is used
rather than a logarithmic transformation log ¢ in order to treat
small and large values symmetrically [53], a problem that does
not occur with relative frequency, which is always small. Values
of the conditional relative frequency range from 16% to 83%
over the 50 scenes.

As anticipated in the preceding analysis, the logit of the con-
ditional relative frequency increases as the conditional entropy
increases, and there is a strong linear relationship between the
two, with R2 = 90%. This result should be distinguished from
that reported in a previous analysis [54], where the chosen
explanatory variable was the conditional entropy A(V|U) rather
than A(AV|AU). It provided a poorer description, with
R* = 64%.

The opposite directions of dependence in Figs. 5 and 6 are
not inconsistent. In Fig. 5, the relative frequency of metamer-
ism decreases as the entropy of colors increases because the
chances of surfaces that are chosen at random being indiscrim-
inable under a reference illuminant (and therefore potentially
discriminable under the test) decrease as the effective gamut
of colors gets larger. Conversely, in Fig. 6, the conditional rel-
ative frequency of metamerism increases with the conditional
entropy of vector color differences because the chances of
surfaces that are indiscriminable under a reference illuminant
being discriminable under a test illuminant increase as the
effective gamut of the differences under the test illuminant gets
larger.

9. MAGNITUDE OF METAMERISM

For single pairs of surfaces, the usual measure of the magnitude
of metamerism is the metamerism index, that is, the total color
difference AE, induced by substituting the test illuminant for
the reference illuminant [8,19]. For multiple pairs of surfaces,
the natural measure is the mean or the more robust median
value of AE, taken over all the pairs in the sample. Because
the pairs (u, u’) under the reference illuminant are not exactly
metameric, but instead have vector color differences Au with
magnitudes AE, < AE™, an analog of the standard CIE
correction was applied ([8], Section 9.2.2.3). In this correction,
the residual vector color differences Au under the reference
illuminant are subtracted from the corresponding vector color
differences Av under the test illuminant, and the total color
difference quantified by AE,. This notion is developed further
in Section 10. Since the mean or median value of AE is pro-
portional to the effective gamut, its logarithm should be
approximately proportional to the corresponding conditional
entropy of the vector color differences.

Figure 7 shows the logarithm of the median value of AE,
plotted against the conditional entropy #(AV|AU) of the vec-
tor color difference AV under a 25,000 K daylight illuminant
given the subthreshold vector color difference AU under a
4000 K daylight illuminant. Each point represents data from
one of 50 outdoor scenes. Unsurprisingly, the variance about
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Fig. 7. Magnitude of metamerism and conditional entropy of vector
color differences. The logarithm of the median total color difference
AE_ under a 25,000 K daylight illuminant is plotted against the condi-
tional entropy of the vector color difference AV under a 25,000 K
daylight illuminant given the subthreshold vector color difference
AU under a 4000 K daylight illuminant. Each point represents data
from one of 50 outdoor scenes [33,41]. The dashed line shows a linear
regression, with R* = 88%.

the regression line is much the same as with the conditional
relative frequency of metamerism in Fig. 6, with R? = 88%.

10. MAGNITUDE OF GENERALIZED
METAMERISM

The measures of metamerism described in Sections 6-9
contain an arbitrary component, the threshold AFE the
below which colors are classified as indiscriminable and above
which they are classified as discriminable. This arbitrariness is
absent in a more comprehensive measure of the changes in
surface color under a change in lighting, namely, generalized
metamerism.

Generalized metamerism refers to pairs of surfaces failing to
maintain their color relations with a change in illuminant ([41],
Section 3.G, 4.C). Color relations or relative color cues are
known to be important in surface color judgments [20,55-57],
and their use has been identified in other species [58]. In the
absence of a uniform color space, the color relations within a
scene may be represented by the spatial ratios of cone excita-
tions across pairs of points [59] or spatial ratios of linear
combinations of these quantities [60]. As noted in Section 2,
spatial ratios may be used to explain some color-constancy
judgments. Within a uniform color space such as CIECAMO02,
however, color relations are more naturally represented by
their vector color differences (A/, Aac, Abc). The two kinds
of representations are plainly interdependent. Empirically, the
median canonical correlation over scenes between vector color
differences and the logarithm of spatial ratios is 97%.

Metamerism is a special case of generalized metamerism, in
which color relations under the reference light are relations
of approximate equality. Given the results of Section 9,
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can changes in arbitrary color relations under a test light also be
described by the conditional entropy of vector color
differences?

As in Section 9, let the vector color differences be Au under
the reference illuminant and Av under the test illuminant,
but without the constraint that the Au have magnitudes
AE, < AE™. Generalized metamerism is expressed by non-
zero values of the vector difference of vector color differences
Av - Au. Its magnitude may be described by the color
difference AE,, in an obvious way [61]; that is, if Au=
(AJ,, Aac,, Abc,) and Av = (A], Aac,, Abg,), then

AEr,t = [(A]t - A]r)2 + (AﬂC,t - AﬂC,r)z + (AbC,t - AbC,r)Z]I/Z'

Although the computation is analogous to that in Section 9,
the symbol AE, is used instead of AE, to reflect the fact that
the Au are unconstrained.

Figure 8 shows the logarithm of the median value of AE
plotted against the conditional entropy A(AV|AU) of the
vector color difference AV under a 25,000 K daylight illumi-
nant given the vector color difference AU under a 4000 K
daylight illuminant. The variance about the regression line is
somewhat greater than with strictly metameric pairs, as in
Fig. 7, though it still accounts for most of the variance, with
R? = 75%. The median value of AE,, ranges from 0.74 to
6.37 in CIECAMO2. The conditional entropies A/(AV|AU)
are larger than in Figs. 6 and 7 because, as just noted, the
Au are unconstrained.

It is worth emphasizing an essential distinction between the
observed and explanatory variables in Fig. 8. The observed
variable is the logarithm of the vector color difference
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Fig. 8. Magnitude of generalized metamerism and conditional en-
tropy of vector color differences. The logarithm of the median total
color difference AE, ; under a 25,000 K daylight illuminant is plotted
against the conditional entropy #(AV|AU) of the vector color differ-
ence AV under a 25,000 K daylight illuminant given the vector color
difference AU under a 4000 K daylight illuminant. Each point rep-
resents data from one of 50 outdoor scenes [33,41]. The dashed line
shows a linear regression, with R?* = 75%. Notice the difference
between the vertical scale and that in Fig. 7.
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AV - AU and, by the definition in Eq. (2), the explanatory
variable is the difference of entropies A(AV, AU) - A(AU).
In general, there is no simple relationship between entropies
of differences and differences of entropies [35].

11. COMMENT AND CONCLUSION

The tasks considered in this analysis all illustrate the physical
limitations on the udility of color in the environment, whether
scenes are viewed by the trichromatic eye or camera. First, and
most fundamentally, color provides an unreliable guide to sur-
face identity. The average number of surfaces per scene that
may be discriminated by their color is about one-fifth the num-
ber of discriminable colors. Second, colors may differ when the
illumination changes. The probability that a pair of surfaces
matching under a 4000 K daylight and not matching under
225,000 K daylight is about 60%. Third, the relations between
individual colors may vary with the illuminant. The median
color difference associated with generalized metamerism ranges
from about 0.7 to 6.4 times the minimum discriminable under
a change from a 4000 K daylight to a 25,000 K daylight. These
failures in realizable performance are generally well described by
the estimates of the entropies of the colors involved.

There are two caveats to this analysis: one theoretical, the
other practical. First, entropy estimates with other combinations
of color signals may provide still better fits, especially for
generalized metamerism. The present entropy estimates were
chosen for simplicity and relevance, and need not be unique.

Second, there is a difference between the properties of a
particular scene and the changes in those properties with illu-
mination. The marked difference between the number of dis-
criminable surfaces and the number of discriminable colors is
not peculiar to a particular illumination. But the failures in
color matching and variations in color relations with illumina-
tion do depend on the nature of those changes. The assumption
that illumination changes are spatially uniform is acceptable in
a task where individual pairs of surfaces are tested first under
one illuminant and then under another [41] or where surfaces
are both in direct illumination or both in the shade [3], but not
necessarily under all illumination changes in the natural world.

The problem with natural illumination changes is that var-
fations in the spectrum of the illumination are almost always
accompanied by variations in geometry, as a result of movement
of cloud, differences in atmospheric scatter, and local fluctua-
tions in mutual illumination and shadows, attached and cast.
These geometric variations [1,62] make the prediction of
changes in reflected spectra more difficult. Knowing the colors
of surfaces under a reference illumination is less useful in reduc-
ing the uncertainty of those colors under a test illumination
that varies from one point to the next. Conditional entropies
based solely on colors are therefore likely to be much larger.

For the illuminant changes considered here, however,
entropy descriptions appear efficient. Uncertainty may be
intrinsic to the environment, but its consequences for color
vision can be predicted.
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