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Abstract. A general description of a class of schemes 
for pattern vision is outlined in which the visual system 
is assumed to form a discrete internal representation of 
the stimulus. These representations are discrete in that 
they are considered to comprise finite combinations of 
"components" which are selected from a fixed and 
finite repertoire, and which designate certain simple 
pattern properties or features. In the proposed de- 
scription it is supposed that the construction of an 
internal representation is a probabilistic process. A 
relationship is then formulated associating the proba- 
bility density functions governing this construction 
and performance in visually discriminating patterns 
when differences in pattern shape are small. Some 
questions related to the application of this relationship 
to the experimental investigation of discrete internal 
representations are briefly discussed. 

1. Introduction 

Many of the contemporary schemes developed for the 
modelling of visual pattern recognition and discrimi- 
nation involve the notion that the visual system rep- 
resents stimuli internally as combinations of various 
discrete "components" which are drawn from some 
fixed repertoire, and which designate certain simple 
pattern properties. Visual recognition or discrimi- 
nation of patterns is then supposed to be determined 
by the extent to which these pattern representations 
concur or differ (see Foster, 1977). Typical components 
suggested for these representations specify (i) global 
pattern features like symmetry, area, "compactness", 
and "jaggedness" (Sutherland, 1968; Mavrides and 
Brown, 1969; Aiken and Brown, 1971; see also Pitts 
and McCulloch, 1947), (ii) local pattern features like 
oriented lines, curves, and vertices (Gibson, 1969; 
Olson and Attneave, 1970; Beck, 1972; Beck and 

Ambler, 1973 ; Rumelhart and Siple, 1974; Pomerantz, 
1978), and (fii) spatial relations between local pattern 
features, such as "above", "right ot", and "joined to" 
(Barlow et al., 1972; Sutherland, 1973; Reed, 1974; 
Palmer, 1978; Foster and Mason, 1979). For further 
examples and discussion, see Zusne (1970), Reed 
(1973), and Leeuwenberg and Buffart (1978). 

Such discrete representation schemes may be con- 
trasted with those schemes in which patterns are 
assumed to be represented internally by the visual 
system as unstructured, approximately point-for-point 
"images" of the stimulus. These pointillistic rep- 
resentations may be internally compared by applying 
to them certain smooth families of internal spatial 
transformations which act to bring the transformed 
representations as closely as possible into coincidence; 
recognition or discrimination of patterns is then sup- 
posed to be determined by the extent of the overlap or 
mismatch of the transformed representations (Pitts and 
McCulloch, 1947; Hoffman, 1970; Marko, 1973; 
Cooper and Shepard, 1978; Foster and Mason, 1979). 

The purpose of this study is to outline a description 
of discrete pattern representation schemes and to 
formulate a relationship between performance in dis- 
criminating patterns and the construction by the visual 
system of the hypothesized discrete internal rep- 
resentations. In developing this relationship, a general 
approach will be adopted in which it will be explicitly 
assumed that the construction of an internal rep- 
resentation constitutes a probabilistic process. In a 
separate article (Foster, 1980), a technique for the 
experimental investigation of these discrete internal 
representations is proposed. 

2. Discrete Pattern Representations 

A pattern is considered here as any static 2- or 
3-dimensional distribution of light in the visual field. 
In attempting to formalize a general description of 
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discrete internal representations of patterns, we shall 
fred it convenient to distinguish two types of com- 
ponent in the representation. The distinction is model- 
led on the difference that may be considered to 
exist between the name of an object and what may 
be said about the object, the predicate. In this 
general description, it is supposed that there is a 
substrate for each internal representation which is 
drawn from a fixed and finite set X of basis elements. 
At a primitive level, suitable basis elements might 
denote points, lines, and regions in the pattern. We 
shall be typically concerned with representations form- 
ed at this level, but the proposed description is also 
applicable at higher levels of representation where 
basis elements might consist of structured collections 
of primitive entities, these collections corresponding 
for example to the complex objects of a natural scene. 
The finite set X of basis element~ should therefore be 
interpreted as being context dependent. For each finite 
subset x={x l , x  2 .... ,xr of basis elements x~eX, 
t/ =1, 2, . . ., 3, incorporated in an internal rep- 
resentation there is considered to be associated with x 
a finite set ~(x) = {~1, c%,..., c~} of variables (~, which 
depends on x, may be unity) each of which defines 
some attribute appropriate to the entities which 
are denoted by the subset x. These attributes %, 
# = 1, 2,..., ~:, are supposed to be selected from a fixed 
and finite set A of possible attributes, where A depends 
on X. For example, if there is only one basis element in 
x, that is, 3=  1, then, if that basis element denotes a 
point in the visual field, an appropriate attribute for x 
might designate some position of the point; if the basis 
element denotes a line, an appropriate attribute 
might designate some length of the line; and if the 
basis element denotes a region, an appropriate 
attribute might designate some area of the region. 

As another illustration, when ~ = 2, if the two basis 
elements xl, x 2 in the subset x denote two distinct 
lines in the visual field, an appropriate attribute for x 
might designate some angle between the lines; if xl 
denotes a point and x2 a non-intersecting non- 
horizontal line, an appropriate attribute might de- 
signate their horizontal spatial ordering, that is, 
whether the point is left or right of the line; and if x~ 
denotes a point and x2 a region, an appropriate 
attribute might designate inclusion, that is, whether 
the point is inside or outside the region. 

As a third illustration, when ~ = 3, if the three basis 
elements x~, x 2, x 3 in x denote three distinct points 
in the visual field, then an appropriate attribute might 
designate their alignment, that is, whether the points 
are collinear or noncollinear. 

Note that, as in studies of machine-based pattern 
recognition (see, for example, Narasimhan, 1969; 
Rosenfeld, 1969 ; Fu, 1974), we distinguish between an 

attribute and the values it may take. In machine-based 
pattern recognition, a distinction is sometimes also 
made between the cases here corresponding to x = {xl} 
and x={xl ,  x2,...,xe}, ~ 2 ;  for x={x l} ,  the at- 
tributes associated with x are called properties and for 
x={xl,x2,... ,x~}, ~_2 ,  some attributes associated 
with x may be interpreted as relations amongst the 
constituent x~, r/= 1, 2 ..... ~ (Rosenfeld, 1969). For  our 
purposes, it is convenient not to make this distinction. 

In all of the above illustrations, the attributes are 
seen to be either continuous variables, for example the 
attribute designating the length of a line can assume 
any value in the interval (0, oe), or discrete variables, 
for example the attribute designating the relationship 
of a point to a region can assume only one of two 
values. In general, we shall suppose that the set ,4 of 
attributes may be partitioned into two subsets A D and 
AC: each attribute in A D can only assume values in a 
countable set which is equivalent to {1,2 .... ,M}CN, 
where N is the set of positive integers and M depends 
on the attribute; and each attribute in A c can only 
assume values in some l-dimeusional interval I in 
Euclidean space R ~, where R is the set of real numbers, 
and I and I also depend on the attribute. In both cases, 
these attribute values are merely nominal; for example, 
the relations "left off and "right off might be labelled 
"1" and "2" respectively. Attributes in A D will be called 
discrete and those in A c will be called continuous. 
Typically, M = 2 ,  or 3, and l=1,2 ,  or 3 (Foster, 1980). 

Other kinds of attribute may be defined; for in- 
stance, attributes might designate functions that specify 
the spatial power spectrum of the stimulus (see Rosen- 
feld, 1969; Ullmann, 1974). Only discrete and con- 
tinuous attributes will be considered here. 

Together, the finite set X of basis elements and the 
finite set A of attributes constitute the fixed and finite 
repertoire of components from which the internal 
representation is considered to be constructed. 

A discrete internal representation is thus conceived 
of as comprising a finite set of finite subsets of basis 
elements, each subset in association with a finite 
number of attributes and attribute values. For  exam- 
ple, a pattern consisting of a point and a line might be 
given the internal representation consisting of two 
basis elements {Xa, x2}, the one labelled "point" and 
the other "line", an attribute a associated with {Xl, x2} 
which designates the perpendicular distance of the 
point from the line, and some value a of that distance. 
Symbolically, the internal representation of a pattern 
may be generally written thus: 

{(xt; (~il, ail), (cq2, a12) .... , (~i~(~), at~(t))):i= 1, 2,..., n}, 

where, for i=  1,2, ..., n, 
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(i) basis-element subsets 

x~= {xil,xt2,...,xt~(l)} , x i ,6X , r /= l , 2  . . . .  ,{(i), 

(ii) attributes 

c% E ~ti(N), /~ = 1, 2 .... , K(i), 

(iil) attribute values 

~{1,2 .... ,M}, if cqueAD [ 
a~,e [ I C W ,  if ~fu~ACj, #=1,  2, ..., ~:(i) . 

The quantities M, I, and I depend on i and #. Note that 
this expression displays attributes and their values 
explicitly. The absence of any dependence of one 
attribute value on another; dependence that might 
occur in a hierarchical arrangement of attributes, is 
important for the method of analysis suggested here 
and developed in Foster (1980). The present approach 
does not preclude the analysis of attributes associated 
with complex basis elements which are themselves com- 
posed of more primitive basis elements, attributes and 
values. It does, however, require that the level of 
complexity for the description be defined appropriate- 
ly in terms of the sets X and A. 

3. Probabilistic Assignments 

It was said in the Introduction that the construction of 
an internal representation would be assumed to con- 
stitute a probabilistic process. The justification for this 
assumption is that there are a number of variable 
factors associated with the visual processing of pattern 
stimuli, for example the conditions of viewing and the 
observer's attentional state, the effect of which on the 
formation of an internal representation cannot be 
completely specified. This uncertainty gives rise to an 
effective indeterminism in the process. Also, there are 
some pattern stimuli which are inherently ambiguous, 
so that there are two or more equally appropriate 
internal representations that may be produced, one at 
a time (see Caglioti and Caianiello, 1978). Examples of 
such stimuli at a non-primitive level of pattern rep- 
resentation are the classical ambiguous figures, like the 
Necker cube and the Rubin's vase-faces illusion, the 
ambiguous forms generated by Shepard and Cermak 
(1973), and the ambiguous characters constructed by 
Blesser et al. (1973) and Naus and Shillman (1976). At 
a more primitive level of pattern representation, there 
are the ambiguous directional grouping effects obtain- 
ed with arrays of simple figures described by Attneave 
(1968). 

To take into account this proposed indeterminism 
in the formation of an internal representation, we 
suppose that the selection of basis-element subsets, the 
selection of attributes, and the selection of attribute 

values are each probabilistic processes. In what fol- 
lows, we shall be particularly concerned with the 
identity of the attributes and the characteristics of the 
probability density functions governing the assignment 
of values to these attributes. The motivation for this 
approach will become apparent later, but it may be 
noted that it need not exclude the analysis of the 
probability density functions governing the selection of 
basis-element subsets. Any such probability density 
function may be analyzed in terms of an equivalent 
probability density function of a suitable discrete 
attribute associated with a new basis-element subset, 
as follows. Suppose an internal representation were 
to have a single basis-element subset chosen from 
the set {xl, x2, . . . ,x,} of distinct subsets of basis 
elements, with probabilities p(1), p(2) . . . . .  p(n) respec- 
tively. Then, ftx a "composite" basis-element subset 
Xo={xl ,x  / .... ,xn} for the representation and as- 
sociate with it a discrete attribute 60 with values in 
{ 1, 2 .. . .  , n} such that the probability of 8 o assuming the 
value i is p(i), i=1 ,2  ... .  ,n. To illustrate this notion, 
consider the probabilities of selection of one of two 
basis-element subsets labelled "spot" and "line". We 
could define a single basis-element subset labelled 
"figure" and a discrete attribute called "shape", and 
then consider the probabilities of the values "spot-like" 
and "line-like" being assigned to that attribute. An 
analogous procedure may be adopted for the analysis 
of the probability density functions governing the 
selection of attributes. 

As was mentioned above, our interest here is in the 
identity of the attributes and the characteristics of the 
probability density functions associated with them. To 
establish the notation, let x~ and xj be two arbitrary 
(and not necessarily distinct) subsets of basis elements 
selected for an internal representation, and suppose 
that a discrete attribute 6~, is associated with x~ and 
that a continuous attribute 7) is associated with xj. By 
definition, 6~, is a discrete random variable, and 7j~ is a 
continuous random variable. Let P~u be the conditional 
discrete probability density function of 6~, and let f )  
be the conditional continuous probability density 
function of 7j~. Thus, ptu(m) is the probability that value 
me{l,2,  ...,M} is assigned to 61,, and, for some subset 

U in R ~, S f~(u)du is the probability that the value of 
v 

7~ lies in U. In Foster (1980), some specific assump- 
taons are made about the way that the shape of the 
density functions p~, and fj~ might vary with changes 
in the pattern stimuli. Now we suppose only that, 
wherever they are defined, Piu and fj~ vary smoothly 
with pattern shape. Since it is certain that on each 
occasion one (and only one) value is assigned to 6t, and 

M 

to 7j,, it follows that ~ p,u(m)= 1 and S f~,(u)du = 1, 
m = l  Ill 
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where M depends on i,/,, and l depends on j, v. In the 
next section, we shall discuss how these particular 
density functions may be related to performance in 
visual pattern discrimination. 

4. Discrimination of Patterns 

Let B, and B 2 be patterns. On each presentation to the 
visual system, each pattern is assumed to give rise to an 
internal representation consisting of a finite number of 
basis-element subsets, attributes, and attribute values, 
all selected probabilistically. We shall suppose that if 
the differences in shape between B, and B 2 are  suf- 
ficiently small, the probabilities governing the selection 
for an internal representation of the basis-element 
subsets x i and x~, and discrete and continuous at- 
tributes at, and 7j~ respectively are identical for B~ and 
B2; oniy the probability density functions p~, and f> 
will be assumed to differ. (The parameters i, j, #, v vary 
over t'mite ranges, and i, j need not be distinct.) 

To derive a relationship between these probability 
density functions and performance in discriminating 
the patterns B~ and B2, we return briefly to a con- 
sideration of the overall probabilities governing the 
assignment of internal representations to these pat- 
terns. We make the general assumption that pattern 
discriminability is determined by the differences in the 
probabilities of each of the internal representations 
which may be assigned to the patterns. The plausibility 
of this is seen from the following. Suppose that B~ and 
B 2 each give rise to one of just two distinct internal 
representations rt and r 2. Let the probability that By 
gives rise to r,~ be p{v, w), v = 1, 2, w = 1, 2. Hence, 

p{1, 1)+p{1, 2)=p{2, 1) +p{2, 2) = 1. (1) 

In the Introduction, it was mentioned that in discrete- 
representation schemes the discriminability of patterns 
is supposed to be determined by the extent to which 
their internal representations differ. In the present 
condition, in which there are only two possible con- 
junctions of the internal representations for the pat- 
terns, namely r 1 and r, (or equivalently r 2 and r2), and 
r 1 and r 2 (or equivalently r 2 and rl), there are two 
limiting eases, First, suppose that p(1, 1) and p(2, 2) are 
each close to unity. B~ and B 2 then give rise most of the 
time to different internal representations, and, on 
average, discriminability of B, and B a should be 
relatively high. From (1), p(1, 2) and p(2, 1) are each 
close to zero, whence the differences [p(1,1)-p{2,1)l 
and [p{1, 2 ) -  p{2, 2)1 are large. Second, suppose instead 
that p(1, 1) and/)(2, 1) are each close to unity. B t and B~ 
then give rise most of the time to the same internal 
representation, namely r~, and, on average, discrimina- 
bility should be relatively low. From (1), p(1, 2) and 

p(2, 2) are each close to zero, whence the differences 
Ip(1,1)-p(2,1)l and Ip(1,2)-p(2,2)[ are small. Note 
that we are effectively translating a rule for discrimi- 
nation based on differences in deterministic internal 
representations into one based on differences in assign- 
ment probabilities of non-deterministic internal rep- 
resentations. Note further that for this task of discri- 
minating patterns that differ by small changes in shape, 
our concern is not with the nature of the difference 
between r 1 and r> but merely with the fact that there 
is a difference. 

For the situation described at the beginning of this 
section, the consideration of these differences in pro- 
babilities reduces to the consideration of the differ- 
ences in the probability density functions Piu and in the 
probability density functions f~  governing the assign- 
ment of discrete and continuous attribute values re- 

spectively. Let p~u(v, rn), me{1,2, . . . ,m},  and f)(v,u), 
u e R  Z, denote the different density functions for the 
patterns By, v--1, 2. We also use the notation p~,(v,.) 
and fir(v, .) for these functions. Observe that for 
each v = 1 , 2  the function p~,,(v, .) is a sequence 
(piu(v, 1), pi,(v, 2), ..., pi,(v, m)) with values in R, and that 
the function f~,(v, .) is a mapping of R l into R. An 
obvious way to measure the differences Jp~,(1, rn) 
-pt~(2, re)l, me {1, 2 .. . . .  M}, and Ifj~(1, u)-fj~(2, u)l, 
u e R  l, is with the lp and Lp norms. Let 

e,,(1, 2) = 1 [p~,(1, m ) -  p,u(2, rn)lq/i/q, (2) 

where M, l, and the integers q, q' (1 _~ q, q' < oo) depend 
on i, lAj, v. 

Since the subsets xi, xj of basis elements, and the 
attributes 6~u, ~# are each selected probabilistieally, the 
effectiveness of the difference e,u(1, 2) between p~,(1, .) 
and p~,(2, .) and the difference e>(1, 2) between fj~(1, .) 
and fj~(2, .) in determining the discriminability of B1 
and B 2 will depend on the values of these selection 
probabilities (which, by assumption, are the same for 
the two patterns). We accordingly suppose that e~,(1, 2) 
and ej~(1, 2) are weighted by coefficients w~, and w j, 
respectively, 0_~w~,, wj~_~ 1, in their contribution to 
discriminability. To quantify this discriminability, we 
use the discrimination index d' which arises in the 
theory of signal detection (Green and Swets, 1966; 
Swets, 1973). (Although d' is here assumed to be based 
on normal-theory statistics, this does not imply that 
the continuous density functions fj~ need be normal.) 
Recall that d' increases monotonically as the discrimi- 
nability of the patterns increases, and d' = 0  corres- 
ponds to the non-discriminability of the patterns. 
Hence, each weighted difference term w~ue~u(1,2), 



155 

Ws~eav(1, 2) is supposed to contribute a factor d'i,(1, 2), 
d}v(1,2), depending monotonically on wiue~u(1,2), 
wj,ej~(1, 2) respectively, to the overall discriminability 
d'(1, 2). Let these monotonic dependences be described 
by the functions Y~u, Y.i~, thus: 

d',u (1, 2) = y,u(w,,%(1, 2)), (4) 

dS~(1, 2) = yah(widest(i, 2)). (5) 

T h e n ,  

d'(1,2)= ~ d',u(1,2)+ ~ @(1,2), (6) 
all i/~ all Jv 

by the additivity of discrimination indices (see, for 
example, Durlach and Braida, 1969). 

5. Characteristics of  Discrete and Continuous Attributes 

Equations (2)-(6) of Sect. 4 relate measurable pattern 
discrimination performance to the hypothesized prob- 
ability density functions governing the assignment of 
attribute values. This relationship may be compared 
with the corresponding relationship which would be 
obtained in a scheme using unstructured pointillistic 
representations, as outlined in the Introduction. In 
such a scheme, we might suppose that a pattern is 
given an internal representation which has as basis 
elements some (non-countably) infinite number of 
internal "points" x; parametrized by internal spatial 
coordinates ~=(~1,~2)~R 2. Associated with each x~ 
there is an attribute 0~ which is a continuous random 
variable and which provides an estimate of the external 
coordinates z '=  ' ' 2 (z~,z2)eR of the external point 
denoted by xr Let 9~ be the continuous probability 
density function of 0~. If the internal representation of 
the external point by x; were, on average, veridical, 
then the expected value E(0~) of 0~ would coincide with 
the actual coordinates z of the external point, that is, 

E(o~)= S z'g~(z')dz'=z. 
R2 

For the patterns B~ and B> the differences e~(1, 2) in 
the probabilities governing the assignment of attribute 
values to 0~ for each internal point xr are, by analogy 
with (3), thus: 

ec(1, e)= (d ]g~(1, z')-g~(2, z')lqdz')l/~. (7) 

We might suppose that, as for discrete attributes, the 
contributions to pattern discriminability of these dif- 
ferences are weighted by factors w;, 0_~ w~ _~ 1, and that 
the relationship between the wce~(1, 2) and discrimina- 
bility factors d~(1,2) is monotonic, thus: 

d~(1, 2) = y~(wce~(1, 2)). (8) 

The overall discrJminability of the patterns B a and B 2 
is then given by 

d'(1, 2)= S d~(l, 2)d~, (9) 
all 

where d~ is the area element for the internal space 112 
which provides the parameterization of the points x~, 

In the particular case that B 2 differs from B 1 by a 
(small) displacement of a single point, the discrimina- 
bility determined by (7)-(9) depends only on the 
magnitude and direction of the displacement. It does 
not depend on the spatial distribution of the points in 
B1 that are not displaced. For the discrete scheme, the 
discriminability determined by (2)-(6) does not have 
this independence property. 

The scheme summarized by (2)-(6) is, however, 
characterized by a more distinctive property, namely 
one deriving from the difference term %(1, 2) defined 
by (2) which directly embodies the discrete nature of 
the proposed representation. Suppose that we varied 
the shape of a pattern B in some smooth fashion 
(formal definitions in Foster, 1980), where any particu- 
lar shape is specified by a parameter t ranging in some 
parameter space T (a subspace of Euclidean space), 
that is, B = B ,  depends smoothly on t. Suppose we let 
BI=B,+a~ and B2=Bt_At in (2)-(6), where At>O is 
fixed and is in some sense small. Suppose further that 
the parameter space T is chosen so that there are only 
a finite number of regions on which the objectively 
determined value of the discrete attribute 6~, is con- 
stant. So far, no specific assumptions have been made 
about how the probability density functions P~u of the 
internally assigned values of air might depend on 
pattern shape. For the internally assigned values of cSiu 
to coincide, on average, with the objectively deter- 
mined values, the p~, might be constrained to have 
their greatest changes in value occur at or close to the 
boundaries between regions. If we could construct a 
curve t(s), a < s < b, in T which has a finite number of 
intersections s o with these boundaries, then we should 
be able to observe peaks in the difference term %(1, 2) 
and therefore in d'~,(1,2) at or close to these critical 
values s o (Foster, 1980). [How the incremental differ- 
ences in shape between B~ and B 2 may be expressed in 
terms of the parameter s is also discussed in Foster 
(1980).] 

This form of variation with t suggested for %(1, 2) 
may be contrasted with that which might be expected 
for e~(1, 2). With no great loss in generality, suppose 
that the curve t(s), a =< s__< b, may be chosen so that the 
objectively determined value of the attribute 7sv varies 
linearly with s. A reasonable constraint on the distri- 
bution of the internally determined values of 7~ is that 
the mean or expected value E(Ys~) of ys~ should coincide 
with the objectively determined value, or at least with 
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some value close to that. We might then further 
suppose that the parameterization of the curve t(s), 
a _< s < b, can be adjusted so that the second and higher 
moments about the mean of the distribution of 7~, are 
constant with s. Unlike the difference term ei,(1 , 2), the 
difference term e j,(1, 2) should then be constant with s. 
If this were so, then d~,(1, 2) would be constant with s. 

Some implications of this claim are discussed in the 
next section. 

6. Discussion 

In this study, we have considered a class of schemes for 
visual pattern recognition and discrimination in which 
internal representations are assumed to be composed 
of combinations of components drawn from fixed and 
finite repertoires. For such discrete schemes, we have 
set out a description of these internal representations, 
taking into account their proposed probabilistic con- 
struction, and have formulated a relationship between 
observable pattern discrimination performance and 
the probability density functions governing the com- 
position of the internal representations. 

The intention in deriving this discrimination re- 
lationship has been to model the detectability of small 
changes in pattern shape. It has been assumed that 
each stimulus pattern is presented under conditions for 
which it is reasonable to suppose that just one internal 
representation is generated during that presentation. 
Scrutiny of the stimuli is assumed not to occur. The 
discrimination relationship is moreover not intended 
to cover the more complex kinds of process involved in 
visually comparing transformed (for instance~ rotated 
and reflected) pairs of patterns, interpreted as "same", 
against randomly paired patterns, interpreted as "dif- 
ferent", which have been analyzed by Foster (1978), 
Foster and Mason (1979), and Kahn and Foster (1980). 
The only transformation that here relates pairs of 
patterns assumed to give rise to identical probability 
density functions governing possible internal rep- 
resentations are the trivial translations in the plane 
perpendicular to the line of gaze. That is, internal 
representations differing only in their specification of 
pattern position are considered to be identical with 
respect to the discrimination relationship (but see 
Kahn and Foster, 1980). 

The essential property of discrete representation 
schemes proposed here concerns the existence of dis- 
crete attributes. As indicated in Sect. 5, it should be 
possible to reveal the characteristics of the discrete 
probability density functions of these attributes by an 
-examination of discrimination performance at points 
along suitable curves defining smooth variations in 
pattern shape. A number of difficulties have to be 

circumvented, however, before such a technique may 
be applied experimentally to the analysis of discrete 
internal representations. First, it is necessary to devise 
an adequate method for generating a smoothly varying 
family of pattern shapes. Unlike a formally analogous 
situation in auditory perception, where the auditory 
discriminability of adjacent speech-like sounds mea- 
sured at points along an acoustic continuum has been 
found to maximize at the boundary of phonemes 
(Liberman et al., 1957, 1961), there are no natural 
"dimensions" to visual stimuli which can provide a 
suitable parameterization. Shepard and Cermak (1973) 
have devised a set of closed-curve visual stimuli speci- 
fied by a finite-dimensional parameter space, and these 
have been used (Cermak, 1977) to explore a boundary 
effect in the "interpretation" of these stimuli, but such 
an approach is not sufficiently general for the present 
purpose. 

Second, given that both discrete and continuous 
attributes may contribute towards discrimination per- 
formance, there is the problem of distinguishing these 
contributions. [Compare a similar problem in audi- 
tory perception; Pisoni and Lazarus (1974), see also 
Macmillan et al. (1977).] In principle, one would 
choose a parameterization of the patterns so that the 
contribution of all continuous attributes is constant 
with that parameter, as was suggested in Sect. 5. In 
practice, the selection of such a parameterization may 
not be obvious or straightforward. 

Third, even with a suitable parameterization, the 
significance of the contribution to discrimination per- 
formance by some hypothesized discrete attribute may 
be masked if the contribution by continuous attributes 
is sufficiently large. Thus, the stimulus configuration 
and method of pattern presentation should somehow 
be chosen to preferentially weight the role of the 
discrete attributes in the internal representation. 

An approach to the solution of these problems is 
proposed in Foster (1980). In that study two experi- 
ments are considered. The one examines the effect of a 
putative discrete attribute designating the collinearity 
or noncollinearity of the points in a pattern; the other 
tests for the existence of a discrete attribute designating 
the acuteness or obtuseness of the angle between two 
lines. 
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Note added in prooL In this paper a form of non-discrete internal representation was outlined in which patterns are assumed to be represented 
as unstructured pointillistic "images". Internal comparison of these representations is considered to be achieved by applying certain smooth 
compensatory families of internal spatial transformations to the representations. The particular notion of dynamically effecting a family 
of internal spatial transformations as described by Cooper and Shepard (1978) does not itself require that the internal representations being 
transformed be pointillistic and unstructured (R. N. Shepard, 1980, personal communication); such representations may indeed be highly 
structured. See Shepard, R. N. : Psychophysical complementarity. In: Perceptual organization. Kubovy, M., Pomerantz, J. R. (eds.); Hillsdale, 
N. J. : Earlbaum 1980, for further discussion of the dynamics of internal pattern transformation; see also Foster, D. H. : Visual apparent , 
motion and the calculus of variations. In: Formal theories of visual perception. Leeuwenberg, E. L. J., Buffart, H. F. J. M. (eds.), pp. 6742;  
Chichester: Wiley 1978. i I 


