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Abstract 

The sequential presentation of two distinct stimulus objects to 
the visual system will, under certain conditions, induce an apparent- 
motion effect, called beta motion, in which the first object appears to 
smoothly transform into the second. This study is concerned with 
the kinds of paths selected by the visual system in effecting beta 
motion in which the metric structure of the object is preserved 
throughout. Two schemes are advanced according to which the 
visual system might operate. The first concentrates upon the mani- 
fold M in which the object appears to transform and the second 
upon the group G of transformations of M onto itself in which the 
particular transformation describing this motion lie. Under the 
identification of M with the 2-sphere S2, each scheme specifies the 
action-minimizing curves in the rotation group SO(3) for a particular 
"natural" Riemannian metric. An experiment is described in which a 
determination is made of the actual paths taken by an object under: 
going various rigid-motion beta motions. The results obtained 
indicate that the visual system behaves more in accordance with the 
second scheme than with the first. A generalization of this result is 
briefly discussed. 

1. Introduction 

If two visually distinct spots of light are presented to 
the visual system in rapid succession, then, under ap- 
propriate conditions, a visual apparent-motion effect 
occurs in which the first spot appears to move smoothly 
across into the second (Wertheimer, 1912: Kenkel, 
1913: Kolers, 1972). This phenomenon is known as 
beta motion (and also as phi motion and optimal 
motion). 

Given an arbitrary visual object A and transform 
o(A) of A, suppose beta motion can be induced between 
A and o(A). The question then arises as to the precise 
nature of the path described by the object in going 
from its initial to final form. If the visual system operates 
according to variational principles, it will prefer those 
paths which minimize the action, that is, the integral of 

the kinetic energy. The kinetic energy depends upon 
the Riemannian metric assigned to the space in which 
these paths are defined and there are, in fact, two spaces 
available for consideration: first, the manifold M in 
which the object undergoing the beta motion appears 
to transform, and second, the group G of transforma- 
tions of M onto itself in which the particular transfor- 
mations describing this motion lie. 

In the present study we shall be concerned with rigid- 
motion beta motion, that is, beta motion in which the 
metric structure of the object is preserved throughout. 
Both the corresponding configuration space and the 
group G can then be identified with the Lie group 
SO(3) of proper rotations of Euclidean 3-space. This, 
however, does not mean that we get the same motions 
in M independent of which space we work with, for the 
metric induced on SO(3) by the "natural" metric on M 
is not the same as the metric which is "natural" to 
SO(3) when the latter is viewed as a representation of 
G. The aim of this study is to determine, experimentally, 
which of these two spaces is the more appropriate for 
the modelling of rigid-motion beta motion. 

In Section 2, after giving a formal description of 
beta motion and fixing an appropriate local coordinate 
system for configuration space, we set out in detail two 
schemes by which rigid-motion beta motion might be 
effected, the one scheme based on M and the other on 
G. In Section 3, we describe an experiment in which the 
actual paths of a bar object undergoing various rigid- 
motion beta motions are explored. The technique 
employed is to introduce a probe object into the path 
of the motion and then to adjust its position until the 
path of the composite motion is visually indistinguish- 
able from the original. In Section 4, we discuss the 
compatibility of the observed data with each of the 
two schemes, and then, finally, in Section 5, speculate 
upon the form of beta motion in general. 



2. Two Schemes for Rigid-Motion Beta Motion 

2.1. Notation and Definitions 

The organization here is similar to that of Foster 
(1973a). 

Let R denote the reals. Let S2 be a fixed sphere in 
R3, centred at the origin and of dimensions large in 
comparison with those of the eye. Let the eye be 
located at the centre of S2. We associate at all times 
with S2 a fixed mapping C of S2 into R, the background 
field, which assigns to each point p E S2, unless other- 
wise stated, some specified luminance C(p) 2 0 .  (Sup- 
pose white-light stimuli.) A visual object A on S2 is, at 
least, a mapping of a non-empty subset UA of S2 into 
R such that A(p) 2 0  is the luminance of the object at 
the point p E UA. Depending upon the occasion, we 
allow an object A, or more accurately its domain UA, 
to inherit certain of the natural structure on S2. We 
shall be particularly concerned here with the dif- 
ferentiable structure induced on U, by the standard 
(C") differentiable structure on S2 and the' metric 
structure induced on UA by the metric structure on S2 
arising from the standard Riemannian structure on 
S2. When necessary, UA may be assumed open in the 
standard topology on S2. 

Let, then, U be a fixed open subset of S2 and let 
Diff(U, S2) denote the set of all diffeomorphisms a 
taking U onto an open subset a(U) in S2. We define 
the action of such a transformation CJ ~Di f f (U ,  S2) 
on the set F(U) of all objects with domain U by setting 

(o(A))(p) = A(aP1(p)) for all A E F(U) and p E a(U) , 

which assigns to each point p in the domain of the 
transformed object o(A) the luminance at its pre- 
image. 

It will be convenient to consider beta motion as if 
it occurs on S2. Provided all sets, mappings, and the 
like defined on S2 are understood to be specified only 
to within visual indistinguishability (Zeeman, 1962), 
the internal subjective phenomenon may certainly be 
replaced by an equivalent external real motion. 
Accordingly, if F denotes the set u{F(V):VC S2) 
consisting of all objects on S2, given the sequential 
presentation to the visual system of some object A 
and some transform o(A) of A, o €Diff(UA, S2), beta 
motion between A and o(A) is the generation by the 
visual system of a smooth time-parametrized curve o 
in F joining these two objects. It is a smooth curve in 
the sense that we consider it arising from the action of 
a 1-parameter family of transformations y:[O, l] 
x UA + S2 (see Appendix 1) satisfying yo@) = p and 
y l  ( p )  = o(p) for all p E UA, where y ,  denotes the map- 

ping p E UA + y(t, p)  E s2.  Thus, 

We shall sometimes refer to A as the initial object 
and to o(A) as the final object. The symbol a will 
always be reserved for the corresponding trans- 
formation. 

As was said in the Introduction, the interest here is in 
beta motion that preserves the metric structure of the 
object throughout. Since objects are defined on S2, it 
follows that each transformation y,  must coincide with 
the restriction of a transformation drawn from the 
orthogonal group O(3). Since, for each t E [O, I], y ,  can 
be joined to the identity transformation by a smooth 
curve, we need only consider the identity component 
of 0(3), that is, the rotation group SO(3). 

It will be recalled that the configuration space of a 
system is a manifold which models the totality of all 
its possible positions. For non-trivial objects A on S2, 
it is obviously SO(3): we just identify A with the 
identity I of SO(3). 

2.2 A Local Coordinate System for Configuration Space 

We fix a chart in SO(3) at the identity I with the 
introduction of canonical coordinates of the second 
kind. Let x, y, z be the coordinate system of R3, and 
suppose that the visual axis coincides with the z-axis 
(and, for later reference, suppose also that the y-axis 
is vertical). Let SO(3) be the Lie algebra of SO(3) and 
exp : SO (3) + SO (3) the exponential mapping. In 
matrix representation, we have that 

form a basis for SO (3). The mapping 

which associates with each point (dl, e2, 8,) 

I )  a rotation about the z-axis by d3, 
2) a rotation about the y-axis by 82, 
3) a rotation about the x-axis by 8,, 

is a diffeomorphism onto its image when restricted to 
( -  z, z) x (- n/2,n/2) x (-71, z). This gives us the de- 
sired chart at I. We denote the coordinate functions by 
dl ,  8,, 19,. [The matrix representation of the transfor- 



mation Q with coordinates (el(@), 02(e), 03(e)) is given 
in Appendix 2.1 

In the experiment to be described, the initial 
object A is a small bar of length 0.015, centred at the 
point (0,0, 1) (where S2 has unit radius). In selecting 
the transformation o to fix the final objects o(A), we 
therefore restrict the range of the coordinate 03(0) 
to (- 71/2,71/2). The ranges of the other two coordinates 
9, (o) and 02(o) are each restricted to ( - E, E), E = 0.02. 

2.3. The Two Schemes 

Before setting up the two schemes for beta motion, 
we summarize some facts concerning action-mini- 
mizing curves in manifolds (see Milnor, 1963; Bishop 
and Crittenden, 1964). 

Let N be a connected complete Riemannian 
manifold with metric g. Let p and q be any two distinct 
points of N and let Q(p, q) be the set of all smooth 
curves y : [0, 11 -+ N joining p to q. The action S(y) of 
y is defined by 

where j(t) is the vector tangent toy at y(t). The function 
S achieves its minimum value precisely on the set of 
minimizing geodesics in Q(p,  q). (A geodesic is mini- 
mizing if its length is less than or equal to the length of 
any other piecewise-smooth curve joining its endpoints.) 
The completeness and connectedness of N guarantee 
the existence of at least one such geodesic yo in Q(p, q). 
Provided q is not a cut point of p along yo, so that there 
is a proper extension of yo beyond q that is still mini- 
mizing, this geodesic is also unique. The restrictions on 
the range of the coordinates (8,(o), @,(a), 03(o)) of the 
transformation o (Section 2.2) are sufficient to ensure 
that this uniqueness condition is satisfied in the 
present cases. 

We now proceed with the two schemes, obtaining 
in each explicit descriptions of the geodesics. 

Scheme 1. The object of importance here is the 
manifold M = S2. It has the natural (standard) 
Riemannian metric (,) obtained by restricting the 
form ( d ~ ) ~  + ( d ~ ) ~  + ( d ~ ) ~  to S2. For a given object 
B on S2, the metric g, on SO(3) corresponding to (,) 
is defined in the following way. Let Q ~ S 0 ( 3 )  and let 
X, Y E T,S0(3), the tangent space to SO(3) at Q. For 
p E UB, X(p) and Y(p) are in Te(,,S2, the tangent space 
to S2 at ~ ( p ) .  Set 

where d s  is the usual surface measure. Note that, in 
general, this is a left- but not right-invariant metric. 

Now consider the transformation a. Let y:[O, 11 
-+S0(3) be the unique minimizing geodesic (with 
respect to g,) joining the identity I to o. Provided the 
first two coordinates 8, (a), 02(o) ofo and the dimensions 
of the object A are all small, which is the case here 
(Section 2.2), then, to a good approximation (see 
Appendix 3), y is given in terms of the local coordinate 
system O,, 82, 8, by 

where ei (t) = 0, (y (t)). 
Scheme 2. The object of importance here is the 

group G = SO(3). We assign to it a Riemannian metric 
g2 that is invariant under both left and right transla- 
tions. Such a metric exists since SO(3) is compact. (It 
is also unique up to a multiplicative factor.) Thus, if 
X, Y E T,S0(3), the tangent space to SO(3) at the 
identity I, introduce the inner product 

trace,(X Y*) 

on T,S0(3), where Y* is the transpose of I: and then 
extend to all of SO(3) by left translation. 

The metric .g2 is natural in that the maximal geo- 
desics with respect to g2 that pass through I are 
precisely the 1-parameter subgroups of SO(3). Thus, 
if y : [0, 11 -+ SO(3) is the unique minimizing geodesic 
(with respect to g,) joining I to a, then there exist 
ql, q2 ,  q 3  E R such that 

where the matrices L, , L,, L3 are defined in Section 2.2. 
Provided I 4', 1, I cp2 1 < I 4', 1, which is the case here, then, 
to a good approximation (see Appendix 4), y is given 
in terms of the local coordinate system O,, 62, 83 by 

'33(t) = 4'3t 2 

where again (t) = Oi (y (t)). 

3. Experiment 

To investigate the actual path taken by an object 
undergoing rigid-motion beta motion, the following 
experiment was carried out. Two stimulus arrays were 



Fig. 1. An example of the full stimulus field 

set up as in Fig. 1. The lower array consisted of two 
fixed bars A, o(A) ,  and the upper array of two fixed 
bars A, o(A) ,  and a variable probe bar B = @(A),  with 
coordinates ( B 1 ( @ ) ,  6 ,(@),  Q 3 ( @ ) ) .  For various values of 
B,(Q), the values of Bl(e) and 0 , ( ~ )  were adjusted so 
that, as point sets, the beta motion induced by the 
sequential presentation of A, B, o(A)  in the upper 
array visually matched that induced by the sequential 
presentation of A, o (A)  in the lower array. 

To quantify the tendency of the recorded points to 
fit with the curves of the one scheme or the other, a 
linear regression analysis was performed. 

3.1. Appurutus 

A diagram of the apparatus, which is a modification of that used 
in an earlier study (Foster, 1973b), is shown in Fig. 2. It consisted 
essentially of four channels, each forming a Maxwellian view 
system. Channels L H , ,  L H , ,  and L H ,  gave rise to the various test 
stimuli and channel RH to the uniform background field. 

The single light source Q was a 12 V, 100 W quartz-iodine lamp 
with a compact coiled filament. It was run from a stabilized power 
supply which maintained fluctuations in the light level to withm 
0.25% of the mean. Light was taken from both sides of Q and col- 
limated by the lenses L ,  and L,. The left hand beam was divided 
(amplitude division in all cases) by the beam splitting mirror S M ,  
and the two resulting beams focussed by the lenses L, and L ,  onto 
the stops S ,  and S, .  The light was then recollimated by the lenses L, 
and L, .  The parallel light beam is channel LH, transilluminated the 
mask M,(,, and that in channel L H ,  the mask MA. The two beams 
were brought together by the beam splitter cube B. The right hand 
beam was divided by the beam splitting mirror S M,.  The parallel 
light beam in channel L H ,  after passing through aperture S ,  
(located above S ,  and S,) transilluminated the mask MB. The beam 
was then combined with the beams from L H ,  and L H ,  by the beam 
splitting mirror S M , ,  after which all three beams were brought to a 
focus at the 2 mm artificial pupil A P  by the lenses L, and L,. The 
parallel light beam in channel RH was brought to a focus at A P  by 
the lens L, and the beam splitting mirror SM, .  The pupil was 
completely filled with light. 

With the colour-correcting filters CF and neutral density filters 
F in place, the channels L H , ,  LH,, L H , ,  and RH all matched in 
colour and brightness from S M ,  onwards. 

The masks MA, Me(,,, and MB defined the corresponding objects 
in the two test arrays and examples are shown in Fig. 3a. The mask 
MB was mounted in a cylindrical bearing fixed on an adjustable 
table, which allowed precise and independent control of the orienta- 
tion Q,(Q) and position O,(Q), O,(Q) of the probe object. 

The construction of the sector R is shown in Fig. 3b. The two 
"open" sections were covered by polaroid sheets P, and P,, with the 
axis of P, perpendicular to that of P?. The axes of the polaroid sheets 
P, and P, covering the top aperture in M,,(,, and the single aperture 
of MB (Fig. 2) were also perpendicular. When the sector R rotated, 
the stimuli appeared in the order indicated in Fig. 4. 

The full test field shown in Fig. 1 is to scale. Corresponding 
points in the two arrays subtended 2.7' at the eye, the long side of 
each bar subtended 0.9", and the background field (not shown) 
subtended 1 1". The retinal illumination of each bar was 4800 trolands 
and that of the background field was 2400 trolands. The colour 
temperature was 3200 OK. 

 ye' 
Fig. 2. The experimental apparatus: Q light source: L,,  L , ,  ..., L ,  
lenses; M mirrors: S M , ,  S M , ,  S M , ,  S M ,  beam splitting mirrors: 
S , ,  S , ,  S ,  stops: CF colour-correcting filters: F neutral density 
filters: R sector: P, polaroid sheet: MA, MOcA,, MB masks: B beam 

splitter cube: A P  artificial pupil 
Fig. 3a and b. Examples of the masks MA, M,(,,, MB, and the sector 

R:  P I ,  P,, P, are polarized sheets 



Fig. 4. The order of presentation of the component stimuli of Fig. 1 

3.2. Procedure 

Only those pairs of masks MA, M,,,, for which rigid-motion 
beta motion could be induced were used. The period of the stimulus 
cycle (Fig. 4) was set at 2.0 sec. 

The subject, equipped with a dental bite-bar, monocularly 
fixated the centre of either the top or bottom array. The horizontal 
position 02(e) of the probe bar B was fixed by the experimenter so 
that 0 d2(e) 5 02(u). The subject then adjusted the vertical position 
dl(@) and orientation O,(Q) of B so that as point sets (i.e., with no 
reference to time parametrization) the resultant beta motion of the 
top array was visually indistinguishable from that of the bottom 
array. There was no limit on observation time. 

The coordinate 02(e) was reset by the experimenter and the above 
procedure repeated. The probe bar B was in this way tracked from 
one end of the top display to the other and then back a total of four 
times. At each value of Hz(@) eight determinations of O,(Q) and O,(e) 
were thus obtained. The beta motion associated with seven different 
pairs of patterns A, u(A) was investigated. 

Two subjects were employed: FMF, who was myopic and aged 
twenty-six years, and DHF (the author), who was myopic and aged 
twenty-eight years. In both cases, the apparent distance of the test 
stimuli was within the range of accommodation of the subject's 
naked eye. FMF was unaware of the purpose of the study. 

3.3. Analysis o fDuta 

A linear regression analysis was carried out (see, for example, 
Draper and Smith, 1966). 

The Schemes I and 2 imply respective dependencies upon 
02(@) of the expected value E(H,(@)) of Qi(e). i = I, 3, thus: 

where the functions f; and g, are defined implicitly by (2) and (3) 
respectively. The true experimental curves must pass through the 
fixed end-points (0,O.O) and (dl (a), 02(u), Oj(u)), be smooth, and, we 
suppose, be like ,f; and 8, in the following sense: 

where - x < w, < x . If Scheme 1 holds, then w, = 0, and if Scheme2 
holds, then W, = 1. 

The ordinary least squares estimate w ;  of the regression coef- 
ficient W, is given by 

where hi =g,  - ,f;, n1 is the number of distinct values assigned to 
the variable (I2(@), and n is the fixed number (eight) of determinations 
O,,,,, of Ri(e) at each /I2:,. The estimated standard error s, of W: is 
given by 

where d:;j = w;q,(O2:,) + (I - wI)J;(H~,~) and N = mn. A 100(1 - a)"" 
confidence interval [u,, u,] for w, is then 

[ui7 oil = ["I - t N  1,  1 - =  IS i ,  M.: + t N  1 . 1  2si] , 

where t ,  , , ,  - z  is the (1 a / 2 )  0o point of a t-distribution with 
N - 1 degrees of freedom. 

The adequacy of the statistical model underlying (4) is tested 
by comparing the "lack of fit" sum of squares with the pure error 
sum of squares. We compute the ratio 

1 " 
where &,, = - If the ratio is significant, that is, if F,  " k = ,  

exceeds F ,  ,,- , ,  , ., the 100(1 - a) "6 point of an F distribution 
with m - I and N - m degrees of freedom, the model is rejected. 

In both determining confidence intervals for wi and testing the 
adequacy of the model we work at the level c( =0.01. 

In those cases in which the model is accepted, we distinguish 
two particular outcomes: 

u i s o s c , <  I ,  ( 5 )  

O < U , ~ I  s o i .  (6)  

We take (5) as support for Scheme 1 and (6) as support for Scheme 2. 

4. Results 

The data obtained from the experiments described 
in Section 3 are plotted in Fig. 5a-h. In each figure, 
the means of the observed values of the coordinates 
Oi = O,(Q), i = 1, 3, of the probe object B = @(A) are 
shown against the selected values of the coordinate 
8, = O,(Q), with the standard deviations of the observed 
values marked by vertical lines. In each case, the 
functionsA and g, (Section 3.3) describing the variations 
with 8 , ( ~ )  of the expected values of the coordinates 
$,(Q), i = 1,3, according to Schemes 1 and 2, are shown 
by the broken and continuous curves respectively. 
The points corresponding to the initial and final 
objects are circled. The values of the constants cp,, cp,, 
cp, (Section 2.3) are also given. 

It is clear from a superficial inspection of Fig. 5 that 
there is an overall tendency of the observed beta 
motion to follow the curves of Scheme 2 rather than 



those of Scheme 1. This is particularly evident in the two schemes is indicated. Of these eight, six give 
Fig. 5c and d in the coordinate 0, .  The results of the Scheme 2 and only two give Scheme 1. [It is also seen 
formal analysis (Section 3.3), which are summarized that in only three cases is the statistical model under- 
in Table 1, provide support for this conclusion. It is lying (4) proved inadequate.] In the remaining five 
seen that there are eight cases in which precisely one of cases in which the model is accepted, but neither 

01 Q FMF 4 
1 1 I I I  

nnc n r ?  CMC 

- - 
d 0 -.006 -.012 e 0 -.006 --012 f ,012 -006 0 

0 2 0 2  02 
Fig. 5a-h. Means of the recorded values of the coordinates Bi = Bi(@), i = 1 , 3 ,  obtained at selected values of the coordinate 0, =Hz(@), with 
associated standard deviations. The continuous curves show the expected values according to Scheme 2 and the broken curves the expected 

values according to Scheme 1 



Table I 5. Discussion 

Experiment i wi F, [ui ,  oil Indicated 
scheme 

" Significant 

scheme is uniquely indicated, no common value of the 
regression coefficient wi is evidenced. The possibility 
that the form of the initial object is of importance in 
determining the final motion cannot of course be 
ruled out, but the investigation of this is not within the 
scope of the present study. 

We have constructed two schemes according to 
which the visual system might effect rigid-motion beta 
motion between two objects on the sphere S2.  The first 
specifies the action-minimizing curves in the associated 
configuration space, that is, S 0 ( 3 ) ,  when equipped with 
the metric corresponding to the standard Riemannian 
metric on S2,  and the second specifies the action- 
minimizing curves in the group of rigid motions of S2 ,  
that is, S 0 ( 3 ) ,  when equipped with a bi-invariant 
Riemannian metric. The results of the experimentation 
imply that at least for the pairs of objects considered 
the visual system behaves more in accordance with the 
second scheme than with the first. 

Consider, now, the case of general beta motion. For 
each domain U c S2,  suppose that the set consisting 
of all local transformations of S 2  which have domain 
U and which the visual system is capable of effecting 
through beta motion forms a local Lie transformation 
group G x U+ S2 ,  where G is a local Lie group. Thus, 
if 1 :  G - +  Diff(U, S2 )  is the canonical injection, we have 
for any beta motion, w,, t E 10, 11, a commutative 
diagram 

for some path y : [O , i ]  -+ G with y(0) = e, the identity 
of G. In view of the outcome of the present study, it is 



natural to conjecture that the path y lies on a local 
1-parameter subgroup in G. If this conjecture is valid, 
then the family y, must be the restriction to [0, 1) of a 
local 1-parameter group of local transformations, so 
that if s, t, s + t E [0, 11 and if p, y,(p) E U ,  then 

This property should not be difficult to check ex- 
perimentally for an observed family y,, since (7) is 
precisely the condition for "steady flow", that is, the 
invariance of the velocity field of the flow y, by the 
flow. It is-easy to see that whereas the second scheme 
of this study always gives flows which are steady, the 
first sometimes gives flows which are not. 
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Appendix 1 (Section 2.1) 

A 1-parameter family of transformations defined on an open 
subset U of SZ is a differentiable mapping v of 10, I ]  x U into S2 
such that for each t E [0, I], the mapping v, :p+v(t ,p)  is a diffeo- 
morphism of U onto y),(U). 

Appendix 2 (Section 2.2) 

We have, for O,, Hz, 8, E R, 

The matrix representation of the transformation Q is by definition 
exp0,Llexp8,L2exp03L3, where Oi=O,(@), i =  1, 2, 3. By direct 
evaluation this is 

/ cosQ,cos0, - cos 8, sin0, sin0, \ 

sin8, sin 0, sin8, cosl), 
cosd, cos H, 

- cos0, sin%,cosH, + cos8, sinO,sinH, 

Appendix 3 (Section 2.3) 

The metric g, is invariant under left translations L,:z' E SO(3) 
+TT '  E S0(3), T E SO(3). In particular, for X, Y G T,S0(3), 

where (LC- ,), is the induced mapping of the tangent spaces. Since 
(Lo - , ),X, (Lo - , ), Y E TS0(3), we can find a;, bJ E R, i, j = 1,2,3, 
such that 

3 3 

(L,-,),x= 1 a,Li and (LC-,),Y= 1 bjLj 
I = ,  J =  1 

Suppose, without loss in generality, that the initial object A is 
oriented with its long axis parallel to the y-axis. Let 1, and I, be the 
width and length of A respectively. Evaluating the right side of (I)  
for '4, we get 

Let y :  10, I ]  + SO(3) be an arbitrary smooth curve with y(0) = I 
and ;'(I) = cr, lying entirely within the coordinate neighbourhood 
of I. The kinetic energy T($(t)) of y at the point y(t) is, by definition, 
f gl('j(t), j~(t)). Suppose for some ci: [0, I] + R, i = 1,2, 3, 

Let y(t) have coordinates (8,(t),H2(t),03(t)). Then, using the ex- 
pression given in Appendix 2, we obtain 

c,(t) = cos83( t )~os0z( t )~ , ( t )  + sine3(t)8,(r), 

c2(t) = - s i n 8 , ( t ) c o ~ B ~ ( t ) 8 ~  (t) + cos~,(t)%,(t), 

c3(t) = d3(t) + sinH2(t)@,(t). 

From (Al)  and (A2) we then get the following for the local representa- 
tive T' of T 

where we have ignored higher order terms in I,, I,, H,(t), O,(t) (each 
of the last having magnitude not greater that 0.02). For y to be a 
geodesic it must satisfy Lagrange's equations 

Appendix 4 (Section 2.3) 

For q , ,  9,. q 3  E R, let cp denote the matrix 

The ( r ,  s)th element in the product cp2", n a positive integer, is given 
by the following formula. 

where a,, is the Kronecker delta 
By writing 

" itcp)'" 
e x p t q =  1 - + t q .  1 a - (tcp)2n , 0 s t 5 1 ,  

.=o (2n)! ,,=o (2n+ l ) !  

and making use of the above formula we obtain 

(ex~tcp),, = a,, + t(cpIrs + (cp,cp, - 6,,pZ) 

pt  - sinpt 

J =  1 



3 

wherepZ = 1 (~;.Ignoring second order terms in (P,, (P, (each 
, = I  

having magnitude less than 0.025, the magnitude of (P, being greater 
than 0.7). we then get 

(P 2 -(I - coscp,t) 

sin (P, t coscp,t 
(P 3 

-- " sincp,t 
(P3 

Direct comparison of this with the matrix having coordinates 
(O,(t), O,(t), 03(t)) given in Appendix 2 yields 

where higher order terms in 9 , ,  (P, have again been ignored. 
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