
This paper was published in Journal of the Optical Society of America A 
and is made available as an electronic reprint with the permission of 
OSA. The paper can be found at the following URL on the OSA 
website:  
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-29-2-A200.  
 
Systematic or multiple reproduction or distribution to multiple locations 
via electronic or other means is prohibited and is subject to penalties 
under law. 



Predicting frequency of metamerism in natural
scenes by entropy of colors

Gaoyang Feng and David H. Foster*

School of Electrical and Electronic Engineering, University of Manchester, Manchester M13 9PL, UK
*Corresponding author: d.h.foster@manchester.ac.uk

Received September 1, 2011; revised November 15, 2011; accepted November 17, 2011;
posted November 21, 2011 (Doc. ID 153868); published January 26, 2012

Estimating the frequency of metameric surfaces in natural scenes usually requires many comparisons of surface
colors to determine which are visually indistinguishable under one light but distinguishable—by a certain criter-
ion degree—under another. The aim here was to test the predictive power of a simpler approach to estimation
based on the entropy of colors. In simulations with 50 hyperspectral images of natural scenes, the logarithm of the
observed relative frequency of metamerism in each scene under two successive daylights was regressed on com-
binations of the estimated Shannon differential entropies of the colors of the scene under the same two daylights.
The regression was strong, and it remained so when restricted to the estimated differential entropy under just the
first daylight, providing that the criterion degree of metamerism was limited. When the criterion degree was made
more extreme, however, the restricted regression failed. A possible explanation of the predictive power of differ-
ential entropy is briefly considered. © 2012 Optical Society of America

OCIS codes: 330.1690, 330.1715, 330.1720, 330.1880, 330.4060, 110.3055.

1. INTRODUCTION
The phenomenon of metamerism may be revealed in several
ways [1, Sec. 3.9], [2, Sec. 3.8], [3, Chap. 6], [4]. But in one form
or another, it represents a loss of information in which a gen-
erally complex spectral distribution describing lights or reflect-
ing surfaces is reduced typically to three numbers,
corresponding to the excitations of the three classes of cone
receptors of the normal eye (or sensor responses of an RGB
color camera). The metamerism associated with reflecting sur-
faces is particularly important [1, Sec. 3.9], not least because it
concerns the foundations of camouflage [5] and the relation-
ship between visual and material identity in the natural world
[6]. In this form of metamerism, two reflecting surfaces are de-
fined as metameric if they have different spectral reflectances
such that with some illumination spectrum they produce equal
receptor responses (or equivalently equal tristimulus values) [2,
Sec. 3.9]. Although suitable for counting metamers in the the-
oretical object-color solid [2, Sec. 3.10], this definition does not
lend itself easily to making inferences about the frequency of
metamerism in natural scenes.

In practice, a difference in the material identity of meta-
meric surfaces usually becomes evident under a change in il-
luminant (illuminants are assumed here to be broadband,
represented by daylights). Conventionally, metamerism in this
context is measured by the CIE special metamerism index for
illuminant changes [4], which quantifies the color mismatch
under the new illuminant, but for the purpose of estimating
the frequency of metamerism, it is more usefully expressed in
relation to the limits of visual sensitivity [7]. That is, given
some threshold for visual distinguishability, the frequency
of metamerism in a scene is estimated by the number of pairs
of surfaces whose color differences are less than this
threshold under one phase of daylight and greater than this
threshold by a certain multiple—the criterion degree of
metamerism—under another phase of daylight [6]. The

greater the criterion degree of metamerism, the more extreme
the difference in colors.

Quantified in this way, metamerism in natural scenes is gen-
erally rare. Estimates of its frequency, expressed as a propor-
tion of all possible pairs of surfaces in a scene, have been
found to range from about 10−6 to 10−4 under successive day-
lights with correlated color temperatures (CCTs) of 25000 K
and 4000 K [6]. Predicting this relative frequency by theoreti-
cal methods is, however, difficult, for it is a complicated func-
tion of the spectral reflecting properties of the surfaces in the
scene, their relative frequencies of occurrence, the spectra of
the illuminants, and the choice of threshold and criterion de-
gree of metamerism, as well as the spectral sensitivities of the
receptors of the eye. Thus, explicit numerical simulations are
normally required in which many pairs of surface colors are
tested to determine those that satisfy the definition, that is,
visually indistinguishable under the one illuminant but distin-
guishable under the other.

One simpler alternative approach to estimation is to make
use of the statistical properties of the colors of a scene. The
aim of this work was to test the predictive power of one such
property, namely the entropy of colors, which has been
exploited in other applications related to color vision [8–11].
Informally, the entropy of colors in a scene may be thought of
as a measure of the uncertainty of the color of a randomly
chosen point in the scene. Formal definitions are given later.

In order to compare explicit estimates of the frequency of
metamerism with entropy-based estimates, numerical simula-
tions were undertaken in which reflected spectra were calcu-
lated at each point within each of 50 natural rural and urban
scenes under daylightswith different CCTs. Colorimetric quan-
tities were evaluated within the CIE color space CIECAM02
[12], which was chosen not for its representation of particular
appearance attributes, but for its approximate uniformity in de-
fining color differences, an important factor in the evaluationof
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differential entropy. As a control, colorimetric quantities were
also evaluated within the color space CIELAB, which is rather
less uniform than CIECAM02 [4], but which has been used pre-
viously [6]. The relative frequencyofmetamerism ineach scene
under two successive daylights was estimated, and its loga-
rithm was regressed on combinations of the estimated Shan-
non differential entropies [13] of the colors of the scene
under the two daylights. The goodness of fit was summarized
by R2, the proportion of variance accounted for by the entropy
models, after due allowance for the degrees of freedom in the
regression.

The regression was found to be strong, and it remained so
when it was restricted to the estimated differential entropy of
colors under just the first daylight, providing that the criterion
degree of metamerism was limited. But if the criterion degree
of metamerism was made more extreme, the restricted regres-
sion failed. A possible explanation of the predictive power of
differential entropy and its failure is briefly considered.

2. METHODS
A. Reflected Spectra
Spectral-reflectance data were taken from 50 hyperspectral
images of natural scenes [6,14]. Thumbnail illustrations of
some of these scenes are available in [15], and four are shown
in Fig. 1. None of the scenes used here contained visible sky or
other self-luminous regions or objects. Each hyperspectral
image, which had spatial dimensions ≤1344 × 1024 pixels
and spectral range 400–720 nm sampled at 10 nm intervals,
provided a discrete representation of an effective spectral re-
flectance r�λ; x; y� at each wavelength λ and position �x; y�.
The effect of illuminating the scene with a particular illumi-
nant with spectrum e�λ� was simulated by multiplying
r�λ;x; y� at each point �x; y� by e�λ�. The assumptions and ap-
proximations involved in this approach have been discussed
in [6, Appendix A]. As emphasized there, the intention is to
model the effects of changes in natural illumination spectra,
not the spatial changes in illumination resulting from changes
in, e.g., the position of the sun and the distribution of cloud
that give rise to those changes in illumination spectra. Be-
cause of the approximately 1.3 pixel line spread function of
the camera system [6], only alternate pixels were sampled.

Daylight spectra were simulated from those described by
the CIE [4]. They included average daylight with CCT 6500 K
and the extremes with CCTs of 4000 K and 25000 K, charac-
teristic of the sun and sky at different times of the day. On a
reciprocal color-temperature scale, 4000 K and 25000 K are
approximately equidistant from 6500 K.

B. Color Signals
The color signal at each point in a scene was represented by
its 1931 CIE XYZ tristimulus values, calculated in the usual
way; that is, at each point �x; y� with spectral reflectance
r�λ;x; y� and illuminant e�λ�, the values of X , Y , Z are
given by

X �
Z

�x�λ�e�λ�r�λ;x; y�dλ;

Y �
Z

�y�λ�e�λ�r�λ;x; y�dλ;

Z �
Z

�z�λ�e�λ�r�λ;x; y�dλ; (1)

where �x�λ�; �y�λ�; �z�λ� are the CIE 1931 color-matching func-
tions [4] and the evaluation of the integral is over the visible
wavelength range.

These values of X , Y , Z were then transformed into the
corresponding tristimulus values under a reference daylight
illuminant with CCT 6500 K according to the CIECAM02
specification with default values [12], including those for chro-
matic adaptation, for compatibility with [11], and for CIELAB
[4] with the chromatic adaptation transform CMCCAT2000
[16], assumed to be complete for compatibility with [6]. These
corresponding tristimulus values were then transformed,
respectively, into CIECAM02 coordinates J, aC , bC [12] and
CIELAB coordinates L�, a�, b� [4] with respect to D65. Color
differences between points in CIECAM02, which, as noted
earlier, is approximately uniform, were calculated from the
corresponding Euclidean distance [17,18], but in CIELAB,
because of its more limited uniformity, from the color-
difference formula CIEDE2000 [4,19].

C. Frequency of Metamerism
The relative frequency of metamerism was estimated much as
in [6]. Each scene was assumed to be illuminated in turn by
one of two selected daylights. With spatially uniform random
sampling, 50000 points (about 15% of the total available) were
chosen from each scene, yielding N � 50000 × 49999∕2 ≈

1.25 × 109 pairs. These large samples were taken to allow ac-
curate estimates of relative frequency for individual scenes;
smaller samples of 3000 points were also taken for compari-
son with previous estimates [6]. Uniform random sampling
was used, rather than one determined by an analysis of scene
structure, to ensure the neutrality of the estimates with re-
spect to scene contents. For each color space CIECAM02 and
CIELAB, a nominal color-difference threshold value ΔEthr

was chosen, and, from the set ofN pairs of points, theN0 pairs
with color differences less thanΔEthr were determined for the
first daylight. From this subset of N0 pairs, the N1 pairs with
color differences greater than a certain multiple n � 1, 2, 3, 4
of ΔEthr were determined for the second daylight. These N1

pairs were the metameric pairs of the sample for the criterion
degree of metamerism defined by the multiplier n. The relative
frequency of metamerism in the scene as a whole was esti-
mated by N1∕N .

In principle, the nominal threshold value ΔEthr could have
been replaced by a psychometric function [11], but for the pre-
sent purpose this would have unnecessarily increased the
complexity of the analysis. The nominal threshold ΔEthr

was set, in turn, to 0.5 and 1.0 for both color spaces. These
values encompass typical thresholds for the two spaces
[20–22].

The quotient N1∕N can be decomposed [6] into two factors
N0∕N and N1∕N0. The first of these factors N0∕N estimates
the relative frequency of pairs of points in the scene with color
differences less than ΔEthr under the first daylight. The sec-
ond factor N1∕N0 estimates a conditional relative frequency,
namely, given pairs of points with color differences less than
ΔEthr under the first daylight, the relative frequency of their
color differences being greater than nΔEthr under the second
daylight. To anticipate the later analysis, all three quotients
N1∕N , N0∕N , and N1∕N0 proved relevant, and values of all
three were recorded for each scene. These quotients were ex-
pressed as logarithms to the base 10, where defined.
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D. Differential Entropy
Since points were sampled randomly from each scene under
a selected daylight, the triplets of values (J, aC , bC) in
CIECAM02 or of values (L�, a�, b�) in CIELAB may be treated
as instances of a trivariate continuous random variable,U say,

governed by a probability density function (pdf), f say,
which in general varies with the scene and daylight. As in
[11], the degree of uncertainty of the random variable U
was quantified by the Shannon differential entropy h�U�, de-
fined [13] as

Fig. 1. (Color online) Prediction of relative frequency of metamerism by combinations of differential entropy. In each panel, the logarithm of the
observed relative frequency of metamerism for daylights with CCTs of 4000 K and 25000 K and nominal color-difference threshold ΔEthr of 0.5 is
plotted against the combination of estimated entropies defined by Eq. (6′). The dotted lines represent perfect fits. Each panel is based on data for 50
natural scenes with a different criterion degree of metamerism n of 1, 2, 3, and 4, as indicated. Notice the different abscissa and ordinate ranges. The
images above each panel show the scenes with the lowest and highest estimated relative frequencies of metamerism.
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h�U� � −

Z
f �u� log f �u�du; (2)

where the integration is taken over the support set f �u� > 0.
The conventional symbol h for differential entropy should not
be confused with the symbol h for hue in CIECAM02. If the
logarithm is to the base 2, then the differential entropy is mea-
sured in bits.

The relationship between the notions of differential entropy
for continuous random variables and of entropy for discrete
random variables is discussed in [13]. In particular, differential
entropy is not the limit of the corresponding summation de-
fining the entropy of the discretized version of U (assuming
that the pdf f is Riemann integrable).

With two continuous random variables, U1 and U2 say, the
Shannon conditional differential entropy h�U2jU1� ofU2 given
U1 may also be defined as in Eq. (2), but, more usefully here, it
can be obtained in the following way. Let h�U1� and h�U2� be
the differential entropies of the colors of the scene under the
first and second daylights, respectively, and let h�U2; U1� be
the joint differential entropy of the pair �U2; U1�. Then [13]

h�U2jU1� � h�U2; U1� − h�U1�: (3)

In obtaining estimates of the differential entropy, however,
two technical issues need to be addressed. First, the estimate
varies with the coordinate system in which U takes its values
[13]. Fortunately, this variation does not affect the strength of
the regression of the frequency of metamerism on differential
entropy, since the same coordinate systemwas used for all the
entropy estimates (either CIECAM02 or CIELAB). Second,
naive estimators of differential entropy based on, e.g., binning
frequency counts to estimate the pdf f in Eq. (2) are known
to be susceptible to bias [23]. An asymptotically bias-free, k-
nearest-neighbor estimator due to Kozachenko and Leonenko
[24,25] was therefore used. It was applied in a computationally
efficient offset form due to Marín-Franch and Foster [9,26].

E. Modeling Frequency of Metamerism
The relationship between differential entropy and the relative
frequency of metamerism depends on the decomposition
N1∕N � �N0∕N��N1∕N0� (Subsection 2.C). Consider, first, the
factor N0∕N . Since it estimates the relative frequency of pairs
of points in a scene with color differences less than ΔEthr un-
der the first daylight, it necessarily depends on the degree of
uncertainty of U1: the more unpredictable U1, the more likely
that color differences will be greater than ΔEthr, and, there-
fore, the lower the value of N0∕N . Accordingly, the observed
value of log N0∕N for each scene and pair of daylights might
be modeled, to first order, by the estimate of h�U1� for that
scene and the first daylight, but with a negative coefficient
of proportionality; that is,

E�log�N0∕N�� � −β1h�U1� � α1; (4)

where E is the expectation, β1 and α1 are scalars, and β1 > 0.
Consider, next, the factor N1∕N0. Since it estimates a con-

ditional relative frequency, namely, given pairs of points with
color differences less than ΔEthr under the first daylight, the
relative frequency of their color differences being greater than
nΔEthr under the second daylight (Subsection 2.C), it neces-
sarily depends on the degree of uncertainty of U2 given U1

(although, as explained later, this dependency is complicated
by the criterion degree of metamerism n). That is, the more
unpredictable U2 is given U1, the more likely that color differ-
ences will be greater than nΔEthr, and, therefore, the higher
the value of N1∕N0. Accordingly, the observed value of
log N1∕N0 for each scene and pair of daylights might be mod-
eled, to first order, by the estimate of h�U2jU1� for that scene
and daylights, with a positive coefficient of proportionality;
that is,

E�log�N1∕N0�� � β2h�U2jU1� � α2; (5)

where, in general, β2 and α2 are different from β1 and α1 in
Eq. (4), but again β2 > 0.

Since log N1∕N � log N0∕N � log N1∕N0, Eqs. (4) and (5)
may be combined. The observed value of log N1∕N for each
scene and pair of daylights might thus be modeled, to first
order, by

E�log�N1∕N�� � −β1h�U1� � β2h�U2jU1� � α0; (6)

where β1 and β2 are as in Eqs. (4) and (5), and α0 � α1 � α2,
also as in Eqs. (4) and (5). These two entropies are not, how-
ever, independent in practice. If their combination in Eq. (6) is
rewritten as β01h�U1�−β02h�U2jU1�, where β01 � β1∕�β21 � β22�1∕2
and β02 � β2∕�β21 � β22�1∕2, then Eq. (6) becomes

E�log�N1∕N�� � −β0�β01h�U1� − β02h�U2jU1�� � α0; (60)

with β0 � �β21 � β22�1∕2. When β02 � 0, the combination reduces
to h�U1�, and when β01 � 0, to h�U2jU1�. The formulation of
Eq. (6′) is convenient for plotting the results of the regression.

The observed values of log N1∕N (Subsection 2.C) were re-
gressed on estimates of h�U1� and h�U2jU1� over the 50 scenes,
with estimates of h�U2jU1� obtained by applying Eq. (3) to the
separate estimates of h�U2; U1� and h�U1� (Subsection 2.D).
Goodness of fit was summarized by R2, the proportion of var-
iance accounted for by themodel. Exceptwhere the regression
failed, all values ofR2 were adjusted for the degrees of freedom
associated with different numbers of regressor variables [27].

For comparison, goodness of fit was calculated for the re-
stricted models obtained by setting β02 � 0 in Eq. (6′), that is,

E�log�N1∕N�� � −β1h�U1� � α1; (7)

and by setting β01 � 0 in Eq. (6′), that is,

E�log�N1∕N�� � β2h�U2jU1� � α2: (8)

Estimates of the standard error (SE) for R2 were obtained
by a bootstrap with at least 1000 iterations [28].

3. RESULTS AND COMMENT
Figure 1 illustrates the dependence of the frequency of meta-
merism on the entropy of colors for the extreme pair of day-
lights with CCTs of 4000 K and 25000 K. In each panel, the
logarithm of the observed relative frequency of metamerism
is plotted against the combination of estimated entropies de-
fined by Eq. (6′). Each point represents data from one of the
50 natural scenes. The color space was CIECAM02, and the
nominal color-difference threshold ΔEthr was 0.5 (results
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were closely similar to those with ΔEthr of 1.0). Each of the
panels is for a different criterion degree of metamerism n of 1,
2, 3, and 4, as indicated. The dotted lines represent perfect fits.
The coefficients β01 and β02 of the full model defined by Eq. (6′)
were all positive.

The images above each panel show the scenes with the low-
est and highest estimated relative frequencies of metamerism.
Their identity varies with the criterion degree of metamerism
because the frequency distributions of the color differences in
each scene have maxima in different positions and tails of
differing length, as illustrated in [6].

Table 1 gives numerical details of the regressions for these
and other conditions, all with CIECAM02. For each combina-
tion of nominal threshold ΔEthr, criterion degree of metamer-
ism n, and CCTs of the first and second daylights, the entries
show the ranges of the logarithm of the observed relative
frequencies log N0∕N , log N1∕N0, and log N1∕N over the
50 scenes (Subsection 2.C) and the proportions R2 of the var-
iance accounted for by the corresponding entropy models
(Subsection 2.E). The first row of entries in the table sum-
marizes the data in the top left panel of Fig. 1; the fourth, se-
venth, and tenth rows summarize the data in the top right,
bottom left, and bottom right panels of Fig. 1.

The goodness of fit of the full model defined by Eq. (6) is
shown in last column of Table 1. For n � 1, the regression was
strong for all three pairs of daylights and both thresholds, with

mean R2 � 0.90 (mean SE � 0.02). The regression was less
strong, however, for n ≥ 2, with mean R2 � 0.66 (mean
SE � 0.09). From plots of the kind shown in Fig. 1, it can
be seen that this weakening of the regression with increased
n is due not to a loss in linearity of the dependence (i.e., de-
parture from degree 1) but to a loss in the dependence itself.
Even so, the size of n is not the only predictor of the loss in
dependence. The difference in the ranges of log N0∕N and
log N1∕N0 also acted as a predictor. Figure 2 shows R2 for
the full model of Eq. (6) (last column Table 1) plotted against
the difference in ranges of log N0∕N (fifth column Table 1)
and log N1∕N0 (sixth column Table 1). The dotted line shows
a linear regression, for which R2 � 0.74 (SE � 0.08), as else-
where adjusted for degrees of freedom [27].

The goodness of fit of the restricted model defined by
Eq. (7) is shown in the third column from the last of Table 1.
For n � 1, the regression remained strong for all three pairs of
daylights and both thresholds, with mean R2 � 0.88 (mean
SE � 0.03). But, by contrast with the full model, the
regression generally failed for n ≥ 2, with mean R2 � 0.12
(mean SE � 0.06), little different from chance.

As with the full model, the difference in the ranges of
log N0∕N and log N1∕N0 acted as a predictor of the loss in de-
pendence. Figure 3 showsR2 for the restrictedmodel of Eq. (7)
plotted against the difference in ranges of log N0∕N (fifth col-
umn Table 1) and log N1∕N0 (sixth column Table 1). The

Table 1. Regression over 50 Scenes of the Logarithm of Observed Relative Frequency of Metamerism on Estimated

Differential Entropy Calculated within the Color Space CIECAM02 [12] for Various Nominal Color-Difference

Thresholds, Criterion Degrees of Metamerism, and Daylights with Different Correlated Color Temperatures

Thresholda

ΔEthr
Criterion
degreeb n

First daylight
CCT, K

Second daylight
CCT, K

Rangec

log N0∕N
Ranged

log N1∕N0

Rangee

log N1∕N
R2

Eq. (7)f
R2

Eq. (8) g

R2

Eq. (6) h

0.5 1 4000 25000 1.94 0.24 1.81 0.92 0.43 0.92
4000 6500 1.95 0.56 1.90 0.86 0.31 0.88
6500 25000 1.90 0.68 1.71 0.89 0.31 0.90

2 4000 25000 1.94 1.15 1.59 0.74 0.10 0.90
4000 6500 1.94 3.17 2.40 0.12 0.02 0.62
6500 25000 1.88 2.29 1.91 0.17 0.03 0.64

3 4000 25000 1.94 2.35 2.05 0.23 0.00 0.76
4000 6500 1.94 4.15 3.52 0.00i 0.29 0.63
6500 25000 1.90 3.45 2.88 0.00i 0.30 0.61

4j 4000 25000 1.95 2.87 2.49 0.03 0.16 0.72
4000 6500 1.95 4.88 4.66 0.04 0.45 0.60
6500 25000 1.90 4.42 3.76 0.02i 0.44 0.61

1.0 1 4000 25000 1.76 0.33 1.59 0.93 0.35 0.94
4000 6500 1.77 0.68 1.80 0.82 0.25 0.87
6500 25000 1.74 0.83 1.57 0.84 0.22 0.86

2 4000 25000 1.76 1.51 1.77 0.46 0.00i 0.84
4000 6500 1.75 3.85 3.40 0.01 0.07 0.42
6500 25000 1.72 2.95 2.85 0.01 0.18 0.57

3j 4000 25000 1.76 3.14 2.84 0.01i 0.26 0.73
6500 25000 1.74 5.56 5.38 0.01 0.44 0.59

4j 4000 25000 1.76 4.03 3.70 0.01i 0.42 0.70
aNominal threshold for color differences under first daylight, giving N0 pairs out of N ≈ 1.25 × 109 pairs chosen randomly from each of the 50 scenes
bMultiple of ΔEthr for color differences under second daylight, giving N1 pairs out of N0.
cDifference between maximum and minimum of log N0∕N .
dDifference between maximum and minimum of log N1∕N0.
eDifference between maximum and minimum of log N1∕N .
fProportion of variance accounted for by restricted linear model (7), adjusted for degrees of freedom.
gProportion of variance accounted for by restricted linear model (8), adjusted for degrees of freedom.
hProportion of variance accounted for by full linear model (6), adjusted for degrees of freedom.
iAdjustment for degrees of freedom omitted, as invalid.
jResults for other daylight pair or pairs omitted as N1 � 0 for one or more scenes.
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dotted line shows a piecewise linear regression with the first
segment of the model forced to zero. For this regression, R2 �
0.98 (SE � 0.01), again adjusted for degrees of freedom [27].

The goodness of fit of the other restricted model defined by
Eq. (8) is shown in the second column from the last of Table 1.
For all n, all three pairs of daylights, and both thresholds, the
regression was weak, with mean R2 � 0.24 (mean SE � 0.11).

A physical interpretation of the regressions shown in
Figs. 1–3 is considered in Section 4.

With the color space CIELAB, there was a similar pattern of
performance. Table 2 summarizes the numerical details of the
regressions (there were fewer entries, as samples from each
scene were based on just 3000 points). The regressions were,
however, less strong. For example, with n � 1, for the full
model of Eq. (6), mean R2 � 0.73 (mean SE � 0.11); for the
restricted model of Eq. (7), mean R2 � 0.62 (mean
SE � 0.11); and for the restricted model of Eq. (8), mean R2 �
0.12 (mean SE � 0.10).

Fig. 2. Dependence of goodness of fit of the full entropy model on
the difference in relative frequency ranges. Proportion R2 of variance
accounted for by Eq. (6) is plotted against the difference in ranges of
log N0∕N and log N1∕N0, values taken from Table 1. Each point re-
presents data from 50 scenes under different pairs of daylights, with
different nominal color-difference thresholds, and different criterion
degrees of metamerism n. The dotted line is a linear regression.

Fig. 3. Dependence of goodness of fit of the restricted entropymodel
on the difference in relative frequency ranges. Proportion R2 of var-
iance accounted for by Eq. (7) is plotted against the difference in
ranges of log N0∕N and log N1∕N0, values taken from Table 1. Each
point represents data from 50 scenes under different pairs of day-
lights, with different nominal color-difference thresholds and different
criterion degrees of metamerism n. The dotted line is a piecewise lin-
ear regression.

Table 2. Regression over 50 Scenes of the Logarithm of Observed Relative Frequency ofMetamerism on Estimated

Differential Entropy Calculated within the Color Space CIELAB with Color-Difference Formula CIEDE2000 [4]

for Various Nominal Color-Difference Thresholds, Criterion Degrees of Metamerism, and Daylights with Different

Correlated Color Temperatures

Thresholda

ΔEthr
Criterion
degreeb n

First daylight
CCT, K

Second daylight
CCT, K

Rangec

log N0∕N
Ranged

log N1∕N0

Rangee

log N1∕N
R2

Eq. (7)f
R2

Eq. (8)g
R2

Eq. (6)h

0.5 1 4000 25000 2.43 0.94 1.77 0.75 0.24 0.78
4000 6500 2.50 1.31 1.67 0.67 0.13 0.74
6500 25000 2.48 0.95 2.00 0.77 0.22 0.82

2i 4000 25000 2.48 2.37 2.73 0.34 0.00j 0.67
4000 6500 2.51 4.48 3.20 0.03 0.08 0.51

3i 4000 25000 2.59 4.08 2.86 0.01 0.10 0.47
1.0 1 4000 25000 1.69 1.49 1.49 0.54 0.05 0.68

4000 6500 1.72 1.61 1.66 0.49 0.01 0.67
6500 25000 1.72 1.65 1.56 0.53 0.04 0.71

2i 4000 25000 1.72 3.43 3.13 0.01 0.12 0.49
aNominal threshold for color differences under first daylight, giving N0 pairs out of N ≈ 1.25 × 109 pairs chosen randomly from each of the 50 scenes.
bMultiple of ΔEthr for color differences under second daylight, giving N1 pairs out of N0.
cDifference between maximum and minimum of log N0∕N .
dDifference between maximum and minimum of log N1∕N0.
eDifference between maximum and minimum of log N1∕N .
fProportion of variance accounted for by restricted linear model (7), adjusted for degrees of freedom.
gProportion of variance accounted for by restricted linear model (8), adjusted for degrees of freedom.
hProportion of variance accounted for by full linear model (6), adjusted for degrees of freedom.
iResults for other daylight pair or pairs omitted as N1 � 0 for one or more scenes.
jAdjustment for degrees of freedom omitted, as invalid.
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The poorer performance with CIELAB was unsurprising,
with possible explanatory factors including differences in
the extent of the assumed adaptation and the use with CIE-
LAB of the color-difference formula CIEDE2000 for estimates
of the relative frequency of metamerism (Subsection 2.B), but
not for entropy.

With CIECAM02, reversing the direction of the change in
daylights had, on average, a small effect. For n � 1, mean
R2 fell by 0.08, and for n ≥ 2, mean R2 fell by 0.06. With CIE-
LAB and CIEDE2000, reversing the direction of the change in
daylights also had a small effect (cf. [6]). For n � 1, mean R2

rose by 0.07, and for n ≥ 2, mean R2 rose by 0.09.
The subsequent discussion will concentrate on results

obtained with CIECAM02.

4. DISCUSSION
The relationship between the frequency of metamerism in nat-
ural scenes and the entropy of colors is not a direct one. As
proposed here, two entropies need to be considered: the dif-
ferential entropy of the colors in a scene under one daylight
and the conditional differential entropy of those colors under
another daylight. Importantly, when these two entropies are
combined in a linear model to predict the relative frequency
of metamerism, the coefficients weighting the entropies ap-
pear with opposite signs.

Although this model has only three degrees of freedom, it
produced strong regressions across the 50 natural scenes and
three pairs of daylight illuminants used in this analysis. With
the approximately uniform color space CIECAM02, and a cri-
terion degree of metamerism of n � 1, the mean proportion
R2 of variance accounted for by the model was 0.90; with n ≥

2 it was 0.66. Lower values of R2 were obtained with the color
space CIELAB and the color-difference formula CIEDE2000.

Some loss in the strength of the regression with larger cri-
terion degrees n was expected. As n increased, the tails of the
distribution of colors under the second daylight would have
become more and more influential. Consequently, their repre-
sentation by the conditional differential entropy would have
been less and less accurate, given that it measured the degree
of uncertainty of all colors under the second daylight, rather
than of only those with color differences exceeding some mul-
tiple of a nominal color-difference threshold.

What was unexpected, however, was that a restricted ver-
sion of the model, based on the differential entropy of the col-
ors of the scene under just the first daylight, would have such
predictive power. For a criterion degree of n � 1, the mean
proportion R2 of variance accounted for by this restricted
model was 0.88, almost identical to that for the full model.
Yet, for n ≥ 2, this restricted regression failed, with mean
R2 falling to 0.12.

Why should the differential entropy of colors under just the
first daylight be such a powerful predictor when the criterion
degree of metamerism is limited? Some possible contributory
factors are considered in the following subsections.

A. Variation of Metamerism over Scenes
As Fig. 1 and Table 1 showed, the relative frequency of me-
tamerism varied markedly from scene to scene. For a criterion
degree of metamerism of n � 1, the range defined by the loga-
rithm of the ratio of the highest to the lowest observed relative
frequency over the 50 natural scenes was, on average, 1.73, a

ratio greater than 50. For n ≥ 2, the range was even greater
(Table 1, seventh column).

This variation in observed relative frequency N1∕N de-
pends on the variation in its factors N0∕N and N1∕N0 in
the decompositionN1∕N � �N0∕N��N1∕N0� (Subsection 2.E).
Crucially, the ranges of N0∕N and N1∕N0 were very different.
For n � 1, the mean range of log N0∕N was 1.84, and the
mean range of log N1∕N0 was 0.55 (Table 1, fifth and sixth
columns). For n ≥ 2, the ranges were more nearly equal or
reversed in size.

What this difference in ranges implies is that for n � 1,
most of the variation in the relative frequency of metamerism
is determined by the initial probability of finding a pair of sur-
faces that are indistinguishable under the first daylight, rather
than by the conditional probability of their becoming distin-
guishable under the second daylight. Therefore, in a regres-
sion of log N1∕N on differential entropy, it is the factor
N0∕N that accounts for most of the variation in N1∕N , and
it is this factor that is related to the differential entropy of col-
ors under the first daylight.

B. Differential Entropy and Distinguishable Pairs
In Appendix A, two extreme model distributions are defined
to demonstrate more formally the relationship between differ-
ential entropy and the relative frequency of indistinguishable
pairs of points in a scene. The distributions are assumed to be
of one color attribute, say hue. One distribution has pdf f 1,
which is constant over the range of possible hue values (i.e.,
all hue values are equally likely in the scene), and the other
has pdf f 2, which is concentrated at a particular hue value
(i.e., there is only one hue value in the scene). Of such distri-
butions, f 1 has the lowest frequency of pairs of points with
color differences less than ΔEthr, and f 2 has the highest.
On the other hand, f 1 has the highest differential entropy,
and f 2 has the lowest. The extrema of the relative frequencies
of indistinguishable pairs and of differential entropies are thus
inversely related to each other. The plot shown in Fig. 1, for a
criterion degree of metamerism of n � 1, illustrates this in-
verse relationship, as the ordinate is almost identical to the
logarithm of the observed relative frequency N0∕N . The gra-
dient of the dependence of log N0∕N on the differential entro-
py of colors is −0.30, which, when entropy is expressed with
respect to the same base as the logarithm of relative fre-
quency, transforms to −1.00.

C. Uniqueness and Limitations of Differential Entropy
The distribution of colors in a scene under a given daylight can
of course be summarized in more than one way. Are there
summary measures, therefore, other than differential entropy,
which have similar predictive power? One obvious candidate
is the standard deviation or variance of the distribution.

To test its relevance, the variances of the two extreme mod-
el distributions f 1 and f 2 of Subsection 4.B are compared in
Appendix B. Although the distribution f 1 has a high variance
and f 2 has a low variance (in the limit, the lowest), it does not
follow generally that the extrema of the relative frequencies of
indistinguishable pairs and the extrema of the variances of the
distributions are inversely related to each other. A model dis-
tribution f 3 is also defined in Appendix B whose variance vio-
lates this inverse dependence, and whose differential entropy
does not.
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Instead of the variance, other measures of the distribution
of surface colors might be considered, for example, the esti-
mated color gamut boundaries of the scene. Yet, as illustrated
with the model distribution f 3, simply specifying the bounds
on colors, such as their convex hull [29,30], is not sufficient.
Any measure of gamut needs to take into account regions of
color space both where colors are absent or sparse and where
they are dense.

Nevertheless, measures such as variance and gamut bound-
ary, although not optimal, are easy to compute, whereas dif-
ferential entropy may seem less so. But with the availability of
asymptotically unbiased estimators due to Kozachenko and
Leonenko [24,25] and with the offset modification proposed
by Marín-Franch and Foster [9,26], it is possible to make es-
timates of differential entropy both accurately and efficiently.

The predictive power of simple entropy models is necessa-
rily imperfect. The present analysis has shown that for a
limited criterion degree of metamerism, a combination of dif-
ferential entropies under two successive daylights and differ-
ential entropy under just the first daylight were both able to
account for almost all of the variation in the frequency of me-
tamerism across 50 natural scenes. With more extreme criter-
ion degrees of metamerism, however, only a combination of
entropies was able to provide adequate predictive power.
Even then, not all the variation in the frequency of metamer-
ism could be accounted for. To achieve that goal, statistical
models more comprehensive than those considered here
are needed.

APPENDIX A: RELATIVE FREQUENCY AND
DIFFERENTIAL ENTROPY
This example uses two extreme model distributions to illus-
trate the inverse relationship between the relative frequency
of finding points close to each other and differential entropy.

First, consider the model pdf f 1, which is constant over a
continuous range, �−a; a� say, with a > 0, and zero elsewhere.
The relative frequency of finding two points at random within
a certain distance, Δa say, of each other, where Δa ≪ 2a, is
approximately Δa∕a. In fact, this is the lowest relative fre-
quency for all such distributions over the interval �−a; a�. Sec-
ond, consider the model pdf f 2, which is constant over a
region of size Δa centered at the origin, and zero elsewhere.
The relative frequency of finding two points at random within
Δa of each other is exactly 1. Therefore, f 1 has the lowest
relative frequency, and f 2 has the highest relative frequency.

By contrast, the differential entropy of f 1 is log 2a, which is
the highest for all pdfs over the interval �−a; a� (see, e.g., [13]),
and the differential entropy of f 2 is logΔa, which, asΔa tends
to zero, tends to minus infinity. Therefore, f 1, which has the
lowest relative frequency, has the highest differential entropy,
and f 2, which has the highest relative frequency, has the
lowest differential entropy.

APPENDIX B: VARIANCE AND RELATIVE
FREQUENCY
This example illustrates the fact that variance is not inversely
related to relative frequency. For the model function f 1 of
Appendix A, constant over the interval �−a; a� and zero else-
where, its variance is a2∕3. For the model function f 2 of
Appendix A, constant over a region of sizeΔa centered at the
origin and zero elsewhere, its variance isΔa2∕12, which tends

to zero as Δa tends to zero. Therefore the distribution f 1,
which has the lowest relative frequency of finding two points
at random within Δa of each other, has a high variance, and
the distribution f 2, which has the highest relative frequency of
finding two points at random within Δa of each other, has, in
the limit, the lowest variance.

But it is possible to construct a model distribution, f 3 say,
that has the same bounded support as f 1 and that violates this
inverse dependence. Suppose f 3 is constant over two regions,
each of size Δa centered at −a and a, and zero elsewhere. Its
variance is approximately a2, which is larger than the variance
of both f 1 and f 2, whereas the corresponding relative fre-
quency of finding two points at random within Δa of each
other is 0.5. This is between the values for f 1 and f 2, rather
than being lower than the value for f 1.

For comparison, the differential entropy of f 3 is log 2Δa,
which, as required, falls between the values for f 1 and f 2,
thereby preserving the inverse relationship.
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