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Where observers concentrate their gaze during visual search depends on several factors. The aim here was to
determine how much of the variance in observers’ fixations in natural scenes can be explained by local scene
color and how that variance is related to viewing bias. Fixation data were taken from an experiment in which
observers searched images of 20 natural rural and urban scenes for a small target. The proportion R2 of the variance
explained in a regression on local color properties (lightness and the red–green and yellow–blue chromatic com-
ponents) ranged from 1% to 85%, depending mainly on howwell those properties were consistent with observers’
viewing bias. When viewing bias was included in the regression, values of R2 increased, ranging from 62% to 96%.
By comparison, local lightness and local lightness contrast, edge density, and entropy each explained less variance
than local color properties. Local scene color may have a much stronger influence on gaze position than is
generally recognized, capturing significant aspects of scene structure on target search behavior. © 2014 Optical
Society of America

OCIS codes: (330.1720) Color vision; (330.2210) Vision - eye movements; (330.1880) Detection.
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1. INTRODUCTION
What decides where we look when searching a scene for an
object or target? Depending on the situation, there are several
factors known to influence where gaze is concentrated: some
are external to the observer, such as the structure of the scene
and its surface reflecting properties, and others are internal,
such as the nature of the task and the observer’s search
strategy [1–8].

The relationship between these “bottom-up” and “top-
down” factors is complicated [4,7–11]. Most studies of gaze
behavior in natural scenes have used gray-scale images and
free viewing, that is, without a target. In those conditions,
scene features used to explain the positions of observers’ fix-
ations have been based on, for instance, edge density [12], in-
tensity contrast [13,14], and intensity bispectra [9]. Models of
visual attention have also related gaze behavior to combina-
tions of low-level scene features, including luminous intensity,
contrast, color, and orientation [7,8,15,16], although see [17].
Fixation duration, as opposed to fixation position, has also
been examined in a relation to mean image luminance [18].
At best, in a nonparametric framework, local features explain
approximately 60% of the variance in point of gaze in free
viewing of gray-scale images [10]. The remaining variance
is usually attributed to the effects of search strategy and other
cognitive factors [3,4,19], in either a deterministic or random
way [20,21].

Among natural scene properties explaining gaze behavior,
color has received relatively little attention, for instance in
[8–10,13,14,19,22,23], although see [16,24–26]. In free viewing,
patterns of fixations have been reported as being different be-
tween colored and gray-scale images of natural scenes [25,27],
and in some specific discrimination tasks, the role of color can
be decisive, such as in discriminating fruit and fresh foliage

from more mature foliage [28,29]. But the general importance
of local scene color on gaze behavior in visual search is
unclear.

A previous report on target-detection performance in natu-
ral scenes estimated that 36–40% of the variance in observers’
fixations could be explained by local scene color [30]. That
estimate, however, did not include the possible effect on gaze
behavior of observers’ viewing strategy. In particular, no ac-
count was taken of the viewing bias that occurs with circum-
scribed images of scenes, where, rather than being distributed
uniformly, fixations tend to be directed toward the center of
the image or display [7,12,31], possibly reinforced by the pho-
tographer’s bias in scene composition [10]. The effect has also
been found in search with abstract displays of geometric el-
ements [32–34]. This central viewing bias could facilitate or
inhibit the influence of local scene color on gaze behavior
and has been argued to have a larger influence than scene
structure itself [12].

The aim of this study was to determine how much of the
variance in fixations in natural scenes can be explained by
local scene color and how that variance is related to viewing
bias. Data were taken from an experiment on visual search
[30] in which images of natural scenes were presented on a
color monitor. Within each scene, the target to be searched
for was a small, shaded, gray sphere matched in mean lumi-
nance to its local surround. The observer’s gaze position was
simultaneously monitored with an infrared video eye-tracker.
Fixations were classified from individual observers’ gaze data
by a method that required no parametric assumptions or
expert judgment. Viewing bias was estimated by pooling
fixations over both observers and scenes [12].

The analysis was based on multiple linear regressions,
which provide a natural framework for quantifying the
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variance contributions of different explanatory factors. First,
the spatial distribution of fixations for each scene was re-
gressed on the spatial distributions of the local color proper-
ties of the scene, namely lightness and the red–green and
yellow–blue chromatic components, defined in a particular
color appearance space [35]. As a control, observers’ viewing
bias was regressed on local color properties and then the fix-
ation distribution regressed on both local color properties and
viewing bias. Second, to provide an independent measure of
scene influence, the distributions of the first, second, and
subsequent fixations were compared with each other within
and between scenes. Finally, to provide a comparison with
other explanatory properties, the distribution of fixations
for each scene was regressed separately on the distributions
of local lightness, local lightness contrast, edge density, and
entropy.

Local color properties were found generally to yield a good
explanation of fixation position, better than that by other local
achromatic properties. Further, when combined with viewing
bias, local color properties accounted for 62%–96% of the vari-
ance in observers’ systematic fixation behavior.

2. METHODS
The methods of data acquisition have been reported else-
where [30] and are described here only in abbreviated form.
The methods of gaze analysis and regression analysis, how-
ever, differ from those in [30] and are therefore described
in full.

A. Apparatus
Images were presented on a 20-in. CRT color display (GDM-
F520, Sony Corp., Japan) controlled by a graphics workstation
(Fuel, Silicon Graphics Inc., California, USA) with spatial res-
olution 1600 × 1200 pixels, refresh rate approximately 60 Hz,

and intensity resolution 10 bits on each RGB gun. Observers’
point of gaze was recorded with an infrared monocular video
eye-tracker (High-Speed Video Eye-tracker Toolbox mk2,
Cambridge Research Systems Ltd., Kent, UK), with sampling
frequency 250 Hz, generating a sequence of horizontal and
vertical coordinates at 4-ms intervals.

B. Visual Stimuli
Twenty natural scenes were rendered from hyperspectral
images [36] under daylights with correlated color temperature
6500 K, corresponding to typical daylight. The test target, a
gray sphere (Munsell N7), was superimposed digitally. The
images on the screen subtended 17 × 13 deg visual angle
and the target approximately 0.25 deg at a viewing distance
of 1 m. Images of four example scenes are shown in
Fig. 1.

The mean luminance of the images on the screen was
3.6 cdm−2 (range 0–61.4 cdm−2). The luminance of the target
was matched in mean luminance to its local surround
(<1.0 deg extent) to avoid producing accidental chromatic
or luminance contrast cues. The small angular subtense of
the target was chosen to encourage observers to inspect the
entire image. The illumination and shading on the sphere were
consistent with that on the scene since the sphere was em-
bedded in the scene at the time of hyperspectral imaging.
In Fig. 1, second image, the target is shown arrowed, and
in the center of the close-up on the bottom right.

C. Procedure
In each trial, observers were presented with an image of a
scene for 1 s, followed by a dark field. Their task was to in-
dicate whether or not they saw the target by pressing a com-
puter mouse button after the image disappeared. They were
allowed to move their eyes freely during the trial and had
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Fig. 1. Examples of natural scene images and observed and fitted spatial distributions of observers’ fixations. The first row shows four of the
scenes from the 20 used in the experiment, including those producing the best fit (leftmost image) and worst fit (rightmost image). In the second
image, the target is shown arrowed, and in the center of the close-up on the bottom right. The middle row shows the smoothed observed fixation
distributions. The bottom row shows the estimated fixation distribution obtained by fitting the distributions of local color properties in each scene
[see Eq. (1) in text] and the resulting percentage R2 of variance explained at the bottom left. Values of R2 were adjusted for the degrees of freedom
in each fit. The smoothing was based on a locally weighted quadratic regression (loess) with a Gaussian kernel of 2.5-deg standard deviation. Higher
frequencies of fixations are indicated by darker contours. Positions of maxima are indicated by crosses.

K. Amano and D. H. Foster Vol. 31, No. 4 / April 2014 / J. Opt. Soc. Am. A A255



unlimited time to respond. No fixation point was displayed ei-
ther before or during the trial to guide gaze position, which
was recorded continuously. Head movement was minimized
with a forehead rest and chinrest.

Images derived from the same scenes were presented re-
peatedly in order to identify the systematic effects of scene
structure. Repetition is thought not to affect the influence
of basic features of natural images on gaze position [37–40].
The image duration of 1 s in each trial was chosen to limit the
observer’s fixations to about four, during which scene content
has the most influence [7,16,26].

Each scene was tested in 260 trials, constituting one exper-
imental block. Half of the trials, chosen at random, contained
the target, and the other half did not. Experimental blocks
were divided into four subblocks of 65 trials. For each
observer, the eye-tracker was calibrated at the start, in the
middle, and at the end of each subblock, and observers were
allowed to take a short break between subblocks. In total each
observer performed 5200 trials (20 scenes × 260 trials), with
additional trials repeated if there was a failure with the
eye-tracker.

In each calibration of the eye-tracker, the root-mean-square
error between the 20 calibration targets and the observer’s
corresponding gaze positions was taken as the calibration er-
ror. Over observers and scenes, based on 1120 measurements,
the mean calibration error was approximately 0.26 deg, with
standard deviation 0.06 deg [30,41].

D. Observers
Data were recorded from seven observers (4 female, 3 male,
aged 21–31 years). All had normal binocular visual acuity and
normal color vision, verified with a series of color vision tests
(Farnsworth-Munsell 100-Hue test, Ishihara pseudoisochro-
matic plates, Rayleigh and Moreland anomaloscopy with lumi-
nance test). All of the observers except one were unaware of
the purpose of the experiment.

The procedure was approved by the University of
Manchester Committee on the Ethics of Research on Human
Beings, which operated in accord with the principles of the
Declaration of Helsinki.

E. Gaze Analysis
Observers’ fixation positions were extracted from the point-
of-gaze sequences by a nonparametric classification method
[41]. The disadvantage with parametric methods of classifica-
tion is that they require choices of threshold values for such
parameters as speed, acceleration, duration, and stability of
point of gaze [31,42–44], all of which may vary with the
observer and viewing conditions. The nonparametric method
was based on some general distributional properties of eye
movements and required neither assumptions about threshold
nor expert judgment. As explained in [41], the method was
primarily speed-based, but by contrast with existing methods,
the optimum speed threshold for classifying saccades, and
therefore fixations, was derived automatically from the data
for each observer. Because speed-based methods can gener-
ate seemingly unphysiologically short fixations [45], an opti-
mum duration threshold, also derived automatically from
individual data, was used to eliminate the effects of instrumen-
tal noise. Results were verified against those from a paramet-
ric method due to Vig et al. [46] with hand tuning. The first,

second, third, and fourth fixations after the first saccade were
included in the analysis of each trial.

Fixation data from each scene were pooled over observers
to reflect the systematic effects of scene structure and viewing
bias [47] rather than randomvariations betweenobservers [21].

To anticipate the results, the number of fixations declined
steadily from first to last, with totals over scenes and observ-
ers of 34,800, 27,500, 8900, and 1000, respectively. In all, the
number of fixations was approximately 72,000.

For computational purposes, theobserved fixationpositions
were assigned to 130 square bins of side 1.5 deg forming an
imaginary 13 × 10 grid in each scene. Pooled over observers,
the number of fixations in each bin varied from 0 to 278, with
less than 5%of bins empty. Thesenaïve bin estimates of fixation
frequencywere improvedbysmoothing [48].A locallyweighted
quadratic regression, loess [49], was used as the smoother, but
with a relatively large Gaussian smoothing kernel of 2.5-deg
standard deviation. This value was chosen under the
assumption that the kernel defined the local region within
which surface color attributes were processed in parallel [50].
This local regression smoothing should not be confused with
the regression modeling on local color properties described
in detail in Section 2.H. A Gaussian kernel was used in prefer-
ence to a tricube kernel [30] but produced similar results.

As a control, the analysis was repeated with larger and
smaller values of the standard deviation of the Gaussian ker-
nel. An independent test of oversmoothing was provided by
data obtained from successive fixations. A logarithmic trans-
formation of the data produced little change in the fits.

Although the fixation data were acquired during visual
search [30], no use was made in this analysis of the recorded
detection performance (cf. [51]). Performance was well above
chance with discrimination index d0 from signal detection
theory averaged over observers ranging from 0.2 to 1.9, de-
pending on the scene. The mean d0 was 1.2, with a standard
deviation of 0.3. The mean hit rate was 0.17, and the mean
false-alarm rate was 0.02. For other details see [30], where
the relationship between detection performance and fixation
is also briefly discussed.

F. Local Color Properties
The local color properties of each scene were calculated ac-
cording to the CIE color appearance space CIECAM02 [35].
This space was chosen for its appearance attributes and its
approximate perceptual uniformity. Among other attributes,
CIECAM02 provides lightness J and the red–green and
yellow–blue chromatic (chroma) components, aC and bC, in
a Cartesian coordinate system (cf. [15]). The parameters of
the CIECAM02 space were set so that the white point was
D65, the luminance of the background was 20% of the white
level, and the surround level was “average” [35].

In each scene, values of the three quantities J, aC, and bC at
each pixel were averaged within each of the 13 × 10 square
bins and then smoothed by the same locally weighted quad-
ratic regression as for fixation position (Section 2.E).

G. Local Contrast, Edge Density, and Entropy
Local achromatic properties of each scene were calculated in
the following way. All were derived from the lightness J. Local
contrast was taken as the standard deviation of the values of J
at each pixel within each of the 13 × 10 square bins [11,13,22].
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Scaling by the mean value of J over the whole scene was omit-
ted since it could not be extended to the chromatic compo-
nents aC and bC, which can have nonpositive values.

Local edge density was taken as the proportion of pixels in
each bin that were edge pixels, as determined by a Canny edge
detector with parameters as in [52] applied to lightness J.
Local entropy was taken as the entropy of the values of J
at the pixels within each bin [53,54]. The value of the entropy
was estimated by an asymptotically bias-free, k-nearest-
neighbor estimator due to Kozachenko and Leonenko [55,56].
This measure was used instead of subband entropy [52],
which had been found earlier to account for less variance with
the scene images used here [57].

Values were smoothed by the same locally weighted quad-
ratic regression as for fixation position (Section 2.E).

As a control, local color contrast, edge density, and entropy
were similarly derived from the three local color properties J,
aC, and bC at each pixel.

H. Regression Analysis
The regression of fixation position on local color properties
was performed per scene in the following way. For each scene
i, suppose that f i�x; y� is the smoothed value of the observed
fixation distribution at position �x; y� and that Ji�x; y�,
aCi�x; y�, and bCi�x; y� are the corresponding smoothed values
of the distributions of lightness and the red–green and yellow–

blue chromatic components, respectively (the notation differs
somewhat from that in [30]). Then the estimated value f̂ i�x; y�
of f i�x; y� in scene i obtained by fitting Ji�x; y�, aCi�x; y�, and
bCi�x; y� to f i�x; y� is given by

f̂ i�x; y� � α1;iJi�x; y� � α2;iaCi�x; y� � α3;ibCi�x; y� � βi; (1)

where the scalar parameters α1;i, α2;i, α3;i, and βi are estimated
by minimizing the sum of squared residuals f i�x; y� − f̂ i�x; y�
over �x; y�.

The control regression of viewing bias on local color prop-
erties was performed analogously. Suppose that o�x; y� is the
smoothed value of the viewing bias at location �x; y�, assumed
to be the same for all scenes and observers and estimated as
the average of f̂ i�x; y� over all scenes i [12]. Then the esti-
mated value ôi�x; y� of o�x; y� for scene i obtained by fitting
Ji�x; y�, aCi�x; y�, and bCi�x; y� to o�x; y� is given by

ôi�x; y� � α1;iJi�x; y� � α2;iaCi�x; y� � α3;ibCi�x; y� � βi; (2)

where the scalar parameters α1;i, α2;i, α3;i, and βi are generally
different from those in Eq. (1).

The regression of fixation position on both local color prop-
erties and viewing bias was based on a straightforward exten-
sion of Eq. (1). That is, the estimated value f̂ i�x; y� of f i�x; y�
in scene i obtained by fitting Ji�x; y�, aCi�x; y�, bCi�x; y�, and
o�x; y� to f i�x; y� is given by

f̂ i�x; y� � α1;iJi�x; y� � α2;iaCi�x; y� � α3;ibCi�x; y�
� α4;io�x; y� � βi; (3)

where the scalar parameters α1;i, α2;i, α3;i, and βi are generally
different from those in Eq. (1) and depend on the scalar
parameter α4;i.

The regressions of fixation position on other explanatory
variables, including local lightness J, local lightness and color
contrast, edge density, and entropy, were based on obvious
modifications of Eq. (1).

I. Accounting for Variance
There exist many ways of evaluating how well the variance in
a set of data may be explained by a regression equation [58],
but the proportion R2 of variance explained is used almost
universally ([58], Section 11.2). It involves no assumptions
about the distribution of the error and allows the effectiveness
of different explanatory variables to be readily assessed, even
if they yield an incomplete account of the variance.

If goodness of fit does need to be tested, then under the
usual normality assumptions, the residual sum of squares di-
vided by an estimate of the pure error variance should be dis-
tributed approximately as χ2 with an appropriate estimate of
the residual degrees of freedom (d.f.) [59]. As noted in [16,60],
normality assumptions may well fail, as was found here with
most estimates of pure fixation error.

An alternative method of assessing goodness of fit without
any distributional assumptions is to compare the value of R2

with the results of a nonparametric bootstrap analysis [61].
In this bootstrap analysis, values of the proportion R2 of the
variance in fixations in each scene explained by fixations re-
sampled with replacement from the same scene were esti-
mated over 1000 bootstrap iterations. These values of R2

coincide with the coefficients of determination (the squares
of the product moment correlation coefficients) and provide
a reference for goodness of fit. Because of the strong contribu-
tion of nonscene effects to gaze position, none of the combina-
tions of local scene propertieswas expected to give a complete
account of the variance.

Other approaches to the analysis of the variance were con-
sidered. These included the use of the information-theoretic
divergence of distributional differences, which loses the con-
nection to a simple regression model, and the use of the area
under a receiver operating characteristic (ROC) curve as
the performance measure, which requires a classificatory
approach [16,47]. These measures were not taken further,
although values of the area under the ROC curve (AUC) were
estimated for the four example scenes to allow comparison
with the R2 estimates. ROC curves were estimated as in
[62] but with saliency modeled by Eq. (1), with no allowance
for degrees of freedom, and with raw (i.e., unsmoothed, un-
binned) fixation data. An AUC value of 100% corresponds
to perfect prediction and 50% to chance level. Some limita-
tions of the measure have been noted in [63,64].

Values of R2 in each scene i were estimated from the fol-
lowing sums of squared residuals, based on the values f̂ i�x; y�
fitted to the observed fixation distribution f i�x; y�, the values
ôi�x; y� fitted to the observed bias distribution o�x; y�
(Section 2.H), and f̄ i, the mean of f̂ i�x; y� over �x; y�:

RSS0 �
X

x;y

�f i�x; y� − f̄ i�2;

RSS1 �
X

x;y

�f i�x; y� − f̂ i�x; y��2;

RSS2 �
X

x;y

�o�x; y� − ôi�x; y��2:
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The proportion of variance in fixations explained by local
color properties is given by R2 � 1 − RSS1∕RSS0, and the pro-
portion of variance in viewing bias explained by local color
properties is given by R2 � 1 − RSS2∕RSS0. Analogous expres-
sions were used for other combinations of explanatory
variables.

The similarities between the distributions of first, second,
and subsequent fixations within and between scenes were
quantified by the corresponding coefficients of determination,
also denoted by R2, which, as with the bootstrap analysis, give
the proportion of the variation in one distribution explained
by another.

Providing they remainedpositive, valuesofR2wereadjusted
for losses in d.f. in smoothing. If the d.f. of the smoothed dis-
tribution is n, computed from the trace of the hat matrix ([59],
App. B), and if the number of estimated coefficients is k,
then the adjusted value is given ([58], Section 5.2) by
1 − �1 − R2��n − 1�∕�n − k�. For example, for Eq. (1), n � 41.2
and k � 4. Only adjusted values of R2 are reported in the
following.

3. RESULTS AND COMMENT
A. Influence of Local Color Properties and Viewing Bias
Figure 1 shows the observed fixation distributions for four ex-
ample scenes and fits to those distributions by local color
properties. The top row shows the rendered scene image
under daylight of correlated color temperature 6500 K; the
middle row the observed fixation distribution, with maxima
indicated by crosses; and the bottom row the estimated fixa-
tion distribution obtained by fitting the distributions of local
color properties, with R2 the proportion of variance explained
shown in the bottom left. Higher values are indicated by
darker contours. These R2 values of 85%, 55%, 16%, and 1%
corresponded to AUC values of 79%, 74%, 57%, and 53%,
respectively.

Figure 2 shows the viewing-bias distribution and the corre-
sponding fits by local color properties for the same four
scenes.

The scenes where local color properties gave the best and
worst fits to the fixation distributions had R2 values of 85% and
1%, respectively (the best is in the leftmost column of Fig. 1).
The corresponding fits to the viewing-bias distribution had
similar R2 values of 86% and 2%, respectively (the best is in

the leftmost column of Fig. 2). Over all the scenes, the mean
value of R2 for the fixation distributions was 36% and for the
bias distribution 32%.

With smaller and larger standard deviations of 2.0 and
3.0 deg for the Gaussian kernel defining the local regions
(Section 2.E), the mean values of R2 for fits of local color
properties to the fixation distributions were 33% and 39%, re-
spectively. The corresponding values for fits to the bias distri-
bution were 29% and 35%. A very small standard deviation of
0.5 degwas also tested, but with a local linear rather than quad-
ratic smoother, as there were too few data points in each local
region. The mean values of R2 for fits to the fixation distribu-
tions and bias distribution were 21% and 20%, respectively.

To compare these fits of local color properties to fixation
distributions with the fits of local color properties to the view-
ing-bias distribution, the R2 values were plotted against each
other for all 20 scenes. Figure 3 shows the result for the
Gaussian kernel with standard deviation of 2.5 deg. The dotted
line is a linear regression. The dependence was strong,
with the regression accounting for 64% of the variance (reli-
ably greater than chance; bootstrap p < 0.001). With the
smaller and larger standard deviations of 2.0 and 3.0 deg,
the regression explained 60% and 69% of the variance,
respectively.

Nevertheless, viewing bias did not dominate performance.
There were marked departures from the regression, as indi-
cated in Fig. 3 for the scenes B and C and as revealed in the
distributions in Figs. 1 and 2, second and third columns, re-
spectively. These departures might be explained in the follow-
ing way. Where local scene color varies strongly, as in scene
B, it can override an inconsistent viewing bias (i.e., one fitted
poorly by local color properties), producing a relatively high
R2 value (but not as high as in scene A, where it is consistent
with viewing bias, i.e., fitted well by local color properties). By
contrast, where local scene color varies only moderately, as in
scene C, it cannot override an inconsistent viewing bias and
produces a relatively low R2 value.

In short, local color properties are generally able to explain
fixation position providing that they are consistent with the
viewing bias [12]. Unsurprisingly, therefore, when local color
properties were combined with the viewing-bias distribution
in the fit to fixation distributions, values of R2 increased, rang-
ing from 62% to 96%, with a mean of 81%. The higher R2 values

86% 25% 57% 3%
Fig. 2. Observed and fitted viewing-bias distributions for the scenes shown in Fig. 1. The first row shows the bias distribution estimated by pooling
fixations over scenes and observers (and therefore common to all scenes). The second row shows the estimated fixation distribution obtained by
fitting the distributions of local color properties in each scene [see Eq. (2) in text]. Other details as for Fig. 1.
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may be compared with the bootstrap references for goodness
of fit (Section 2.I), for which R2 ranged from 88% to 97%.

As for the control measurements with the smaller and
larger standard deviations of 2.0 and 3.0 deg for the Gaussian

kernel, the mean values of R2 changed little, at 77% and 84%,
respectively. Even with the standard deviation of 0.5 deg, it
only fell to 56%.

B. Successive Fixations
Figure 4 shows the observed distributions of first, second,
third, and fourth fixations for the same four examples of Fig. 1.
Values of the coefficient of determination R2, that is, the pro-
portion of the variation in one distribution explained by an-
other, averaged over all six possible pairings of successive
distributions within a scene (i.e., 3 × 2 × 1), are shown in
the bottom left of each plot on the bottom row.

Over all 20 scenes, the mean value of R2 for successive fix-
ations within scenes ranged from 56% to 92%, whereas be-
tween scenes it ranged from 22% to 45%. The two ranges
were manifestly disjoint.

By definition, viewing bias was assumed independent of
scene. If it did dominate fixations, or, equivalently, if the Gaus-
sian kernel defining the local regions had led to oversmooth-
ing of the fixation distributions, then some overlap of the
ranges of R2 for the distributions within and between scenes
should have been evident.

The range of R2 values just reported for within scenes,
namely 56%–92%, may be compared with the range of R2 val-
ues for fits to the same fixation distributions of local color
properties and viewing bias, namely 62%–96% (Section 3.A),
which were remarkably similar. For any particular scene,
however, there need be no connection between the two values
of R2.
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Fig. 3. PercentageR2 of variance in fixations explained by local color
properties as a function of percentage R2 of variance in viewing
bias explained by local color properties. Each symbol represents a
pair of R2 values for a single scene out of the 20 tested. The dotted line
is a linear regression. Data for the scenes in Fig. 1 are shown labeled.
Values of R2 were adjusted for the degrees of freedom in each fit.
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Fig. 4. Observed spatial distributions of successive fixations for the scenes shown in Fig. 1. The first, second, third, and fourth rows show the
smoothed first, second, third, and fourth fixation distributions. The values of the coefficients of determination R2 averaged over all six possible
pairings of successive distributions within a scene (i.e., 3 × 2 × 1) are shown at the bottom left in the bottom row. Other details as for Fig. 1.
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C. Influence of Lightness Contrast, Edge Density, and
Entropy
Figure 5 shows a dot plot of the mean values of R2 over scenes
for fits to the fixation distributions in each scene of the dis-
tributions of local lightness J and local lightness contrast,
edge density, and entropy (Section 2.G). Mean values of R2

are also shown for the fits of local color properties and of local
color properties combined with viewing bias (Section 3.A).
Horizontal bars show �1 standard error (SE) of the mean.

These local achromatic properties are not independent of
each other, and so comparisons are confounded (the esti-
mated SEs of the differences in R2 values for two local proper-
ties were less than the square root of the sums of the
corresponding squared SEs). Nevertheless, it is clear from
Fig. 5 that the mean values of R2 for fits of local lightness con-
trast, edge density, and entropy were not greater than the
mean value of R2 for the fit of local lightness. Although not
shown in Fig. 5, similar results were obtained for local color
contrast, edge density, and entropy derived from the three lo-
cal color properties J, aC, and bC.

Crucially, the ordering of the effectiveness of the local
scene properties in Fig. 5 remained much the same for smaller
and larger Gaussian kernel standard deviations of 2.0 and
3.0 deg (Section 2.E).

4. DISCUSSION
Given the importance of color in foraging in animal species
[28,29] and in related animal activity [65], it is surprising that
this scene attribute has not received more attention in the
analysis of gaze behavior in natural scenes. Where it has been
analyzed, it has usually been reported as making a modest
contribution [7,16]. Importantly, the red–green and yellow–

blue chromatic components have often been combined in a
single quantity, such as chroma or a more general saliency
measure, which may have diminished their explanatory
power. It has also not always been possible to distinguish be-
tween the effects of local scene properties from top-down
behavior driven by the task and individual observers’ viewing
strategies [7], which may contain both systematic and random
effects [19,20]. The choice of a suitable scale or smoothing
kernel for defining local properties may also be relevant.

The present work attempted to deal with these issues by
averaging fixation positions over trials and observers [47]
and comparing the regressions of fixation position and central
viewing bias [12,31,64] on local scene color defined by all
three variables, lightness and the red–green and yellow–blue
chromatic components, with appropriate allowance for the
number of explanatory variables in the fits.

The proportion R2 of the variance in fixations explained by
local color properties ranged from 1% to 85%, depending
mainly on how well those properties were consistent with
observers’ viewing bias. When viewing bias was included in
the regression, values of R2 increased, ranging from 62% to
96%. By contrast, local lightness and local lightness contrast,
edge density, and entropy all explained variance less well
than local color. Although the smoothing kernel was chosen
specifically in relation to surface color processing [50], the
explanatory advantage for color properties held with different
sizes of the kernel. Moreover, the advantage seemed not to
be an artifact of fixations being oversmoothed with this
kernel: despite successive fixation distributions being
closely correlated within scenes, they were not so between
scenes [66,67].

Of course inferences about the role of color in natural
scenes necessarily depend on the choice of scenes. The col-
lection of 20 natural scenes used in this analysis included the
main vegetated and nonvegetated land-cover classes, namely
woodland, vegetation (e.g., grasses, ferns, and flowers), culti-
vated land, and urban residential and commercial buildings.
There was evidently enough variety for a wide range of fits
to fixation distributions, but the number of scenes may have
been too few to test all the relevant interactions between fix-
ation position, viewing bias, and local color properties, at least
of the kind implied by the fits shown in Figs. 1 and 2.

There is another potential issue to do with the interpreta-
tion of successive fixations. The similarity of their distribu-
tions within scenes may have been an artifact of the way
performance was pooled over observers. Suppose, for exam-
ple, that observers fixated positions a, b, and c in a particular
scene in an order that varied randomly either from trial to trial
or across observers (e.g., in one trial in the order b, a, c; in the
next trial in the order c, a, b; and so on). Then the distribution
of first fixations pooled over a sufficiently large number of tri-
als or observers would be centered on the positions a, b, and c,
and would coincide with the distribution of second fixations,
and so on. This behavior would be consistent with a model of
gaze shifts based on a random walk guided by the local prop-
erties of the scene [20,21]. Repeated iterations of the model
would yield similar distributions with the same scene,
whether starting from the first, second, or subsequent fixa-
tions, and would yield different distributions with different
scenes, precisely as observed.

Whether fixations are taken in order or not, it seems that
local scene color has a much stronger influence on gaze posi-
tion than is generally recognized, capturing significant aspects
of scene structure on observers’ systematic target search
behavior. Central viewing bias modifies that behavior, but
in a predictable way. Moreover, the explanatory power of
the regressions suggests that visual color representations
are approximately linearly related to the attributes of a uni-
form color appearance space. But how local scene color in-
formation is represented visually, that is, as local surface

 Percentage R 2 of fixations explained
0 20 40 60 80 100

color and bias

color

lightness

edge density

contrast

entropy

Fig. 5. Percentage R2 of variance in fixations explained by different
scene properties. Mean values of R2 are shown for fits to the fixation
distributions in each scene of local lightness entropy, contrast, and
edge density, local lightness, and color and color combined with view-
ing bias (for definitions, see Section 2.G). Symbols represent values
averaged over 20 scenes, and horizontal bars�1 standard error of the
mean. Values of R2 were adjusted for the different d.f. in each fit.
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color descriptors or as proto-objects or something else
[17,68,69], remains to be established.
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